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ABSTRACT

Alternative polyadenylation (APA) is an important
post-transcriptional regulation that recognizes dif-
ferent polyadenylation signals (PASs), resulting in
transcripts with different 3′ untranslated regions,
thereby influencing a series of biological pro-
cesses and functions. Recent studies have revealed
that some single nucleotide polymorphisms (SNPs)
could contribute to tumorigenesis and develop-
ment through dysregulating APA. However, the as-
sociations between SNPs and APA in human can-
cers remain largely unknown. Here, using genotype
and APA data of 9082 samples from The Cancer
Genome Atlas (TCGA) and The Cancer 3′UTR Al-
tas (TC3A), we systematically identified SNPs af-
fecting APA events across 32 cancer types and de-
fined them as APA quantitative trait loci (apaQTLs).
As a result, a total of 467 942 cis-apaQTLs and 30
721 trans-apaQTLs were identified. By integrating
apaQTLs with survival and genome-wide associa-
tion studies (GWAS) data, we further identified 2154
apaQTLs associated with patient survival time and
151 342 apaQTLs located in GWAS loci. In addition,
we designed an online tool to predict the effects
of SNPs on PASs by utilizing PAS motif prediction
tool. Finally, we developed SNP2APA, a user-friendly
and intuitive database (http://gong lab.hzau.edu.cn/
SNP2APA/) for data browsing, searching, and down-
loading. SNP2APA will significantly improve our un-

derstanding of genetic variants and APA in human
cancers.

INTRODUCTION

Alternative polyadenylation (APA) is a widespread phe-
nomenon that generates transcript isoforms with differ-
ent lengths of 3′ untranslated regions (3′UTR) by recog-
nizing different polyadenylation signals (PASs) (1). More
than 70% of human genes have multiple polyadenylation
sites (2). As a common post-transcriptional modification
mechanism, APA events may cause the alteration of im-
portant regulatory elements, such as miRNA binding sites
and RNA protein binding sites, thus impacting the stabil-
ity, localization and translation rate of mRNAs (3). APA
modulation has been investigated in cells, tissues and dif-
ferent diseases. Previous studies have shown that APA of-
ten functions in a tissue- or cell-specific manner (4,5), and
several APA dysregulations have been identified in human
diseases (6–9), including cancers (10). A significant global
3′UTR shortening has been found in cancer cell lines and
tumor samples, compared with normal samples (11). An-
other study pointed out that shortening or lengthening of
3′UTR might lead to a worse prognosis in some cancers. For
example, kidney cancer samples with the shorter isoforms
TMCO7 and PLXDC2 were found to have lower survival
rates (12). However, research on the APA role and APA reg-
ulation in cancer is still at an early stage.

As the most common genetic variant, single nucleotide
polymorphisms (SNPs) are major contributors to the dif-
ferences in human disease susceptibility (13). Genome-wide
association studies (GWAS) have identified thousands of
SNPs associated with complex traits and diseases. Cur-
rently, most studies of the disease/trait-related SNPs remain
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at statistical level, and the biological mechanism underly-
ing them is still largely unknown (14). Quantitative trait
locus (QTL) mapping, such as eQTL and meQTL analy-
sis, is a method used to evaluate the effects of genetic vari-
ants on intermediate molecular phenotypes, and has been
demonstrated as a powerful tool to decipher the function of
SNPs and prioritize genetic variants within GWAS loci (15–
19). Recent studies have confirmed the associations between
several APA quantitative trait loci (apaQTLs) and cancer.
For example, the presence of a SNP in a canonical PAS
within TP53 (AATAAA to AATACA) has been found to be
highly associated with the processing of the impaired 3′ end
of TP53 transcripts and increase the susceptibility to can-
cers including cutaneous basal cell carcinoma, prostate can-
cer, glioma and colorectal adenoma (20). However, large-
scale genome-wide analyses of apaQTL have rarely been re-
ported, and no database for apaQTLs in cancer is available.
Recently, Feng et al. have used Percentage of Distal polyA
site Usage Index (PDUI) to quantify APA events for 10,537
tumor samples across TCGA 32 cancer types (21). There-
fore, it is feasible to add APA as an additional dimension to
the existing cancer genomic analysis.

In this study, by using the genotype and PDUI data,
we developed a new computational pipeline to systemati-
cally perform apaQTL analyses across 32 cancer types. We
further identified apaQTLs associated with patient over-
all survival time and apaQTLs located in GWAS link-
age disequilibrium (LD) regions. The SNP2APA database
(http://gong lab.hzau.edu.cn/SNP2APA/) was constructed
for browsing, searching and downloading the apaQTL data.

MATERIALS AND METHODS

Collection and processing of genotype data

We downloaded the genotype data across 32 cancer types
from the TCGA data portal (https://portal.gdc.cancer.gov/)
(22), which contained 898,620 SNPs called by Affymetrix
SNP 6.0 array. We extracted 9082 samples with both geno-
type data and APA data available (Figure 1A). To increase
the power for apaQTL discovery, IMPUTE2 was used to
impute autosomal variants of all samples in each cancer
type with haplotypes of 1000 Genomes Phase 3 as the ref-
erence panel (23,24). After imputation, SNPs of each can-
cer type were selected in terms of the following criteria (25):
(i) imputation confidence score, INFO ≥0.4, (ii) minor al-
lele frequency (MAF) ≥5%, (iii) SNP missing rate <5% for
best-guessed genotypes at posterior probability ≥0.9 and
(iv) Hardy-Weinberg equilibrium P-value > 1 × 10−6 esti-
mated by Hardy-Weinberg R package (26).

Collection and processing of data for APA events

To quantify dynamic APA events, we used the PDUI value
as the indicator and downloaded them from The TC3A
Data Portal (http://tc3a.org/) for 32 cancer types (Figure
1B) (21). PDUI value was a novel, intuitive ratio for quanti-
fying APA events based on RNA-Seq data (12). PDUI was
calculated by the number of transcripts with distal polyA
site divided by the total number of transcripts with both
distal and proximal polyA sites. The greater PDUI repre-
sented the more transcripts using the distal polyA site, and

vice versa. For example, value 1 indicated that all transcripts
of the gene used the distal polyA site, while value 0 indicated
that all transcripts of the gene used the proximal polyA site.
For each cancer type, APA events were selected as follows:
(i) the missing rate of PDUI data <0.1, (ii) the standard de-
viation of PDUI > 5%. After filtering, an average of 4143
APA events per cancer type were included for the further
analyses. To minimize the effects of outliers on the regres-
sion scores, the PDUI values of each gene across all samples
were transformed into a standard normal based on rank
(25).

Obtaining of covariates

To improve the sensitivity in QTL analyses, we collected
several known and unknown confounders as covariates for
apaQTL analysis (25). We first used the smartpca in the
EIGENSTRAT program (27) to perform principal compo-
nent analysis (PCA) of the genotype data for each cancer
type. The top five principal components in genotype data
were included as covariates for correcting the ethnicity dif-
ferences. We additionally used PEER software (28) to anal-
yse the APA data and obtained the first 15 PEER factors
as covariates which were used for eliminating the possible
batch effects and other confounders. Finally, other common
confounders such as gender, age and tumor stage (25,29,30),
were also included as covariates for apaQTL analysis.

Identification of cis- and trans-apaQTL using MatrixEQTL

For each cancer type, we evaluated pairwise associations
between autosomal SNPs and APA events through lin-
ear regression by MatrixEQTL (31), a software for effi-
cient QTL analysis. The SNP locations (hg19) were down-
loaded from dbSNP database (https://www.ncbi.nlm.nih.
gov/projects/SNP) and distal PAS locations were extracted
from the APA datasets. The SNPs with false discovery rates
(FDRs) <0.05 calculated by MatrixEQTL and the abso-
lute value of correlation coefficient (r) ≥0.3 were defined
as apaQTLs (Figure 1C). Of them, we further defined the
apaQTLs within 1 Mb from the distal PAS as the cis-
apaQTLs (25), while defined the apaQTLs beyond that re-
gion or on another chromosome as the trans-apaQTLs.

Identification of survival-associated apaQTLs

To prioritize promising apaQTLs, we further examined the
association between apaQTLs and patient survival time.
The clinical data including survival time of patient were
downloaded from TCGA data portal. For each apaQTL,
the samples were divided into three groups by genotypes:
homozygous genotype (AA), heterozygous genotype (Aa),
and homozygous genotype (aa). Then the log-rank test was
performed to examine the differences in survival time, and
Kaplan–Meier (KM) curves were plotted for intuitive vi-
sualization of the survival time for each group. Finally,
apaQTLs with FDR <0.05 were designated as survival-
associated apaQTLs.

Identification of GWAS-associated apaQTLs

GWAS has been successfully used for identifying thousands
of disease susceptibility loci, but it remains a challenge to
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Figure 1. Simplified schematic showing the workflow of SNP2APA database. (A) Collection of genotype and clinical data. (B) Collection of APA data and
GWAS data. (C) Database content in SNP2APA. (D) The online PAS predict tool in SNP2APA. (E) Main functions in SNP2APA.

pinpoint the causal variants and decipher their underlying
mechanisms. To facilitate the interpretation of GWAS re-
sults, we integrated apaQTLs with the existing GWAS risk
loci to explore trait/disease-associated apaQTLs. We down-
loaded all the risk tag SNPs identified in GWAS studies
from GWAS catalog (http://www.ebi.ac.uk/gwas, accessed
September 2018) (32). Then the SNPs in linkage disequi-
librium (LD) regions with GWAS tag SNPs were extracted
from SNAP (https://personal.broadinstitute.org/plin/snap/
ldsearch.php) (33). The parameters were set as follows: (i)
SNP dataset: 1000 Genomes, (ii) r2 (the square of the Pear-
son correlation coefficient of LD) threshold: 0.5, (iii) popu-
lation panel: CEU (Utah residents with northern and west-
ern European ancestry), (iv) distance limit: 500 kb. Finally,
we defined apaQTLs that overlapped with these GWAS tag
SNPs and LD SNPs as GWAS-associated apaQTLs.

DATABASE CONSTRUCTION AND CONTENT

All results mentioned above were stored into MongoDB
database (version 3.4.2) in the form of relation tables.
A user-friendly web interface, SNP2APA (http://gong lab.
hzau.edu.cn/SNP2APA/), was constructed to support data

browsing, searching, downloading and PAS online predic-
tion (Figure 1D and E), based on Flask (version 1.0.3)
framework with Angularjs (version 1.6.1) as the JavaScript
library. It was running on Apache2 web server (version
2.4.18). We have tested SNP2APA on various web browsers,
including Chrome (recommended), Firefox, Opera, Inter-
net Explorer, Windows Edge and Safari of macOS.

Data summary of SNP2APA

In total, SNP2APA included 9082 tumor samples across 32
cancer types with both genotype data and APA data avail-
able for apaQTL analysis. The sample sizes for each can-
cer type ranged from 36 in cholangiocarcinoma (CHOL)
to 1,091 in invasive breast carcinoma (BRCA) with a me-
dian of 221 (Table 1). After genotype imputation and qual-
ity control, 4 390 660 SNPs on average per each cancer
type were included for further analysis, ranging from 2 746
335 for BRCA to 5 143 663 for acute myeloid leukemia
(LAML). After filtering APA events by both the rate of
missing PDUI value >0.1 and PDUI standard deviation
>0.05, we obtained an average of 4143 APA events per can-
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cer type, ranging from 519 for thyroid carcinoma (THCA)
to 6978 for stomach adenocarcinoma (STAD).

cis- and trans-apaQTLs in SNP2APA

SNP2APA mainly provided four kinds of datasets: cis- and
trans-apaQTLs, survival apaQTLs and GWAS-associated
apaQTLs (Figure 2A and B). In the cis-apaQTL analysis,
a total of 467 942 cis-apaQTLs across 32 cancer types were
identified at the level of FDR < 0.05 and |r| ≥ 0.3, with a
median of 14 811 apaQTLs per cancer type, minimum of
1580 in lymphoid neoplasm diffuse large B-cell lymphoma
(DLBC), and maximum of 34 381 in glioblastoma mul-
tiforme (GBM). In the trans-apaQTL analysis, a total of
30 721 trans-apaQTLs across 32 cancer types were identi-
fied at P-value < 1 × 10−8 and |r| ≥ 0.3, with a median of
936 apaQTLs per cancer type, minimum of nine in thyroid
carcinoma (THCA), and maximum of 2171 in DLBC.

Survival and GWAS associated apaQTLs

To prioritize promising apaQTLs, we associated apaQTLs
with the survival data of patients downloaded from the
TCGA portal. A total of 2154 apaQTLs associated with
overall survival time across 32 cancer types at FDR < 0.05,
were identified and included in SNP2APA. For example, we
found that rs10247994 was highly associated with patient
overall survival time in kidney renal clear cell carcinoma
(KIRC) (Figure 2C). The significant differences in PDUI
values among corresponding genotypes of rs10247994 were
observed, indicating that this SNP might play an important
role in regulating the APA event of PUSH gene in KIRC
(Figure 2C).

We further mapped apaQTL results to SNPs in GWAS re-
gions and identified a total of 151 342 apaQTLs overlapping
with GWAS LD regions with one or multiple traits. For ex-
ample, rs2303282, as a risk SNP, was reported to be associ-
ated with BRCA (34). In our study, we found that rs370151
was in LD with the rs2303282 (LD r2 = 0.87) and was highly
associated with APA event of AMFR gene. AMFR was re-
ported to encode a tumor motor stimulating protein recep-
tor (35). Thus, it could be inferred that rs370151 might play
an important role in breast cancer by affecting APA events
(Figure 2D).

THE FUNCTION AND USAGE OF SNP2APA
DATABASE

SNP2APA provided a user-friendly web interface (http:
//gong lab.hzau.edu.cn/SNP2APA/) that enabled users to
browse, search, and download four datasets: cis-apaQTLs,
trans-apaQTLs, survival-apaQTLs, and GWAS-apaQTLs.
In addition, we designed a ‘Pancan-apaQTL’ page for batch
search and visualization. A ‘PAS Predict’ page was con-
structed for online predicting whether a SNP could destroy
or create the PAS of APA.

On the homepage, we provided a quick search option for
users. After inputting an interested SNP, gene or APA event,
users could obtain the corresponding results presented as
four dynamic tables containing the information of cis-
apaQTLs, trans-apaQTLs, survival-apaQTLs and GWAS-
apaQTLs. By querying the cis/trans-apaQTL page, we

could obtain a table containing the information of SNP ID,
SNP genomic position, SNP alleles, APA events, gene sym-
bol of APA, APA position, beta value (effect size of SNP on
PDUI value), r value and P-value of apaQTL (Figure 2E).
For each record, a vector diagram of the boxplot was em-
bedded to display the association between SNP genotypes
and PDUI values. By querying the survival-apaQTL page,
the SNP ID, SNP genomic position, SNP alleles, sample
size, log-rank test P-value, and median survival time of dif-
ferent genotypes will be displayed. For each record, a vector
diagram of the KM-plot was provided for visualizing the as-
sociation between SNP genotypes and overall survival time.
On the ‘GWAS-apaQTL’ page, the information of the SNP,
related APA event, gene symbol of APA and related traits
would be available.

On the ‘PanCan-apaQTL’ page, users could submit mul-
tiple SNPs or gene symbols of APA events. Then they would
obtain two heatmaps displaying the correlation coefficient
(r) of cis-apaQTLs and trans-apaQTLs across the cancer
types (Figure 2F).

PAS is the most important regulatory element during the
regulation of APA events (3). To further explore the impact
of SNP on PAS, we developed a web-based tool by utiliz-
ing Dragon PolyA Spotter (http://www.cbrc.kaust.edu.sa/
dps/Capture.html) (36) and designed the ‘PAS Predict’ page.
On this page, users could submit a wild-type sequence and
the corresponding mutant sequence to predict the effect of
SNP on polyadenylation signals (PAS) so as to determine
whether SNP could destroy or create the PAS (Figure 2G).

In SNP2APA, four main datasets for each cancer type
are freely available from the ‘Download’ page. The ‘Help’
page provided the basic information on database, pipeline
of database construction, result summary, and contact.
SNP2APA was open to any feedback with email address
provided at the bottom of the ‘Help’ page.

CONCLUSION AND FUTURE DIRECTIONS

We developed SNP2APA as a resource providing compre-
hensive apaQTLs across 32 cancer types. To the best of our
knowledge, this is the first database systematically evaluat-
ing the effects of the genetic variants on APA, especially
in multiple cancer types with a large sample size. In recent
years, increasing studies have suggested that APA is likely
to play important roles in cancer. Therefore, it is urgent to
add APA as an additional dimension to existing cancer ge-
nomic analysis. In this version of TC3A, by using genotype
and APA data of 9082 tumor samples, we provided numer-
ous apaQTLs among multiple cancer types and identified
abundant apaQTLs associated with patient survival time
or located in known GWAS loci. To explore the impact of
SNPs on PAS, we also designed an online tool for users to
predict functional apaQTLs. The SNP2APA database will
greatly facilitate the interpretation of risk SNPs identified
in genetic studies. In the future, with the increasing number
of RNA-Seq datasets and genotype data from large con-
sortium projects, we will continue to update the SNP2APA
database. We believe that our database will be of particu-
lar interest to researchers in the field of genetic variants and
APA in cancer.
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Figure 2. The interface of SNP2APA database. (A) Browser bar in SNP2APA. (B) Modules of cis- and trans-apaQTL, survival apaQTL and GWAS
apaQTL. (C) An example of survival apaQTL. KM-plot indicated that rs10247994 in KIRC was highly association with patient survival time, and box plot
indicated that rs10247994 in KIRC was highly associated with PDUI values of the APA event in PUSH gene. (D) An example of GWAS apaQTL. Box
plot indicated that GWAS associated apaQTL rs370151 in BRCA was highly associated with PDUI values of the APA event in AMFR. (E) Search results
of cis-apaQTL dataset. (F) The heatmap displaying the correlation coefficient (r) of apaQTLs in the ‘Pancan-apaQTL’ page. The label for y-axis contains
SNP ID, gene symbol of APA and APA event. (G) The input of online PAS prediction tool.
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Table 1. Summary of apaQTLs in SNP2APA

Cis Trans

Cancer
type

No. of
amples

No. of
enotypes

No. of PA
events Pairs APA events apaQTLs Pairs APA events apaQTLs

ACC 77 3 567 954 3114 3026 135 2864 1566 158 1422
BLCA 408 4 190 525 3780 17 072 218 16 472 883 82 819
BRCA 1 091 2 746 335 5379 11 941 212 11 376 501 7 470
CESC 299 4 291 784 3268 14 767 211 14 358 773 114 745
CHOL 36 4 012 152 3564 1 710 54 1610 1980 34 1153
COAD 285 4 499 815 3356 15 797 231 15 264 1341 231 1280
DLBC 48 4 845 461 3658 1630 67 1580 2640 126 2171
ESCA 184 4 457 611 4510 27 484 615 26 009 665 122 644
GBM 150 4 556 998 5353 36 614 801 34 381 575 126 539
HNSC 518 4 254 665 4646 19 960 254 19 162 715 18 655
KICH 66 3 771 774 4477 3047 136 3010 1477 128 1313
KIRC 525 4 577 720 4906 20 978 240 19 596 905 25 867
KIRP 290 4 895 360 4355 19 494 280 18 258 2390 330 2156
LAML 122 5 143 663 3754 7675 159 7588 517 81 501
LGG 515 4 634 138 5251 29 267 330 27 826 1150 41 1008
LIHC 369 4 158 963 3127 10 779 159 10 511 842 131 738
LUAD 511 4 384 429 4471 19 628 241 18 763 1210 23 1160
LUSC 500 3 744 419 5126 21 804 296 20 915 718 14 673
MESO 87 4 784 882 3999 9077 237 8447 1082 120 1019
OV 291 2 963 431 6174 21 159 382 19 702 285 57 285
PAAD 178 4 996 008 4466 20 351 462 19 177 1065 178 951
PCPG 178 4 721 561 3696 25 042 571 23 185 1133 131 1130
PRAD 494 4 828 721 4704 30 998 332 29 312 1842 15 1796
SARC 258 4 088 267 3910 13 158 232 12 582 897 320 536
SKCM 103 4 854 570 4179 12 811 310 11 672 1766 144 1702
STAD 414 4 310 492 6978 23 045 334 21 499 478 97 465
TGCT 150 4 825 013 4616 20 876 487 19 369 1118 204 1068
THCA 503 4 877 853 519 2999 35 2896 10 9 9
THYM 120 4 940 146 3773 12 939 325 12 255 971 117 957
UCEC 176 4 950 486 2588 8903 288 8788 987 212 920
UCS 56 3 888 385 3733 2206 99 1999 1185 143 1112
UVM 80 4 737 552 3149 8021 186 7516 552 66 457
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