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Abstract

In plants oxygenic photosynthesis is performed by large protein complexes found in the thylakoid membranes of
chloroplasts. The soluble thylakoid lumen space is a narrow and compressed region within the thylakoid membrane which
contains 80–200 proteins. Because the thylakoid lumen proteins are in close proximity to the protein complexes of
photosynthesis, it is reasonable to assume that the lumen proteins are highly influenced by the presence of light.

To identify light regulated proteins in the thylakoid lumen of Arabidopsis thaliana we developed a faster thylakoid
preparation and combined this with difference gel electrophoresis (DIGE) of dark-adapted and light-adapted lumen
proteomes. The DIGE experiments revealed that 19 lumen proteins exhibit increased relative protein levels after eight hour
light exposure. Among the proteins showing increased abundance were the PsbP and PsbQ subunits of Photosystem II,
major plastocyanin and several other proteins of known or unknown function. In addition, co-expression analysis of publicly
available transcriptomic data showed that the co-regulation of lumen protein expression is not limited to light but rather
that lumen protein genes exhibit a high uniformity of expression.

The large proportion of thylakoid lumen proteins displaying increased abundance in light-adapted plants, taken together
with the observed uniform regulation of transcription, implies that the majority of thylakoid lumen proteins have functions
that are related to photosynthetic activity. This is the first time that an analysis of the differences in protein level during a
normal day/night cycle has been performed and it shows that even a normal cycle of light significantly influences the
thylakoid lumen proteome. In this study we also show for the first time, using co-expression analysis, that the prevalent
lumenal chloroplast proteins are very similarly regulated at the level of transcription.
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Introduction

Higher plants, algae and cyanobacteria have the ability to

perform oxygenic photosynthesis, and in higher plants the process is

centred in the thylakoid membrane of the chloroplast. Enclosed by

the thylakoid membrane is a space, the thylakoid lumen, which has

a limited distance between the membranes of 40–100 Å [1]. The

lumen compartment was for a long time believed to function mainly

in balancing the ion currents over the thylakoid membrane,

however today 80–200 different proteins are suggested to be located

there [2,3]. The small proteome is comprised of a wide range of

different types of proteins, some extensively studied while others

have unknown function. The most abundant proteins of the lumen

are the extrinsic photosystem II (PSII) proteins PsbO, PsbP and

PsbQ, and also plastocyanin [2]. The other known proteome

members consist of a large group of at least eight immunophilins, a

family of PsbP-like proteins, chaperone and proteolytic activity

associated proteins, peroxiredoxin Q, two pentapeptide repeat

proteins and a number of unclassified proteins such as TL29.

Considering the obvious, being the location of the lumen proteins

within the thylakoid membrane, the heart of photosynthesis, it

would be expected that several if not many of the proteins

participate in the regulation of photosynthesis. Indeed among those

lumen proteins which have not previously been identified as

extrinsic PSII components several have been implicated in PSII

function. PPL1, a member of the PsbP-like protein family, as well as

the 18.3 kDa lumen protein, have both recently been shown to play

roles in the efficient repair of photodamaged PSII [4,5].

Furthermore, mutant plants containing a T-DNA insertion in the

CYP38 gene are defect in assembly of PSII supercomplexes [6].

Plants have evolved a number of mechanisms for response to

changeable environmental conditions, especially to variations in light.

On the molecular level light is sensed by photoreceptors such as

phototrophins, cryptochromes and phytochromes as well as by redox
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signals originating from the photosynthetic electron transport chain

[7]. In addition to and in concert with these light-sensing

mechanisms, plants also use programmed responses commonly

named the circadian clock (rhythm). Microarray analysis has shown

that the mRNA-expression of genes encoding several subunits of both

photosystems are under circadian control [8] and that ,23% of

photosynthesis genes exhibit .1.75 fold diurnal expression changes

[9]. In general plants are found to exhibit increased photosynthesis,

growth, survival and competitive advantages when there is a

synchronisation between the circadian clock and light-dark cycles

[10]. Considering the critical role the light-dark cycle plays in the

regulation of photosynthesis itself, it is also of importance to increase

the scope of our understanding to also include proteins in direct or

close proximity with the photosynthetic machinery. To study this we

have identified thylakoid lumen proteins displaying light induced

abundance changes using difference-gel-electrophoresis (DIGE).

DIGE is a proteomics method where fluorescent probes are

covalently added to proteins prior to separation by two-dimensional

gel electrophoresis [11]. Typically two different samples are labelled

by Cy3 and Cy5 probes respectively while an internal standard,

containing an equal mix of both samples, is labelled with Cy2.

Because both samples are run in the same gel, gel to gel and other

experimental variation is minimized. Furthermore the inclusion of an

internal standard in each gel makes normalization between different

gels possible and facilitates the identification of proteins changing in

abundance by statistical methods [12]. With respect to the thylakoid

lumen, the original extraction method [13] is time consuming, taking

roughly 4–6 hours to perform. This means that all changes that are

faster than this will be missed or masked in the analysis. To solve this

problem we have here developed a faster lumen isolation method.

The original method was focused on obtaining highly pure lumen

and identifying truly lumen located protein, whereas we have here

shortened this procedure in order to make it faster but at the expense

of purity.

As a complement to our study of expression of lumenal

chloroplast proteins during the change from darkness to light, we

have examined transcriptional profiles of known lumen protein

genes using co-expression analysis. With the emergence of large

publicly available gene expression databases, co-expression analysis

has become a powerful tool for the identification of genes involved

in the same or related biological processes [4,14,15,16]. In co-

expression analysis one searches for genes that show a similar

expression profile across numerous different microarray experi-

ments, representing different environmental and stress conditions as

well as developmental stages and tissue types. This analysis method

was applied to genes encoding the proteins of the Arabidopsis

lumen, both in order to examine if the proteins identified using

DIGE show common regulation beyond the response to light, and

also to characterise differences and similarities in transcriptional

expression among all the known prevalent lumen proteins.

In this work we show, using difference gel electrophoresis

(DIGE) on fast lumen preparations, that 21 proteins changed in

abundance between 8 h-light and 16 h-dark acclimated Arabi-

dopsis plants. The up-regulated lumen proteins were dominated

by proteins connected with photosynthetic performance. Further-

more co-expression analysis of prevalent lumen protein genes

reveals that the majority of protein members of the chloroplast

lumen are uniformly co-expressed on the transcriptional level.

Results

Evaluation of a new fast lumen preparation
In order to trap the proteome at a specific metabolic state or

situation it is important that the extraction is fast. Therefore the

original lumen preparation method for Arabidopsis, developed by

[13], which takes 4–6 hours, was modified by omitting thylakoid

membrane washing steps (for details see Materials and methods).

By doing this the extraction time was reduced to around two

hours, however, this unambiguously leads to more stroma protein

contamination, as illustrated in figure 1. In this DIGE experiment

the purple spots indicate the additional spots observed when

performing the fast thylakoid lumen preparation as compared to

the normal preparation. The purple-marked proteins in figure 1

were identified by MALDI-TOF MS and it was found that the

major part of contamination as expected originated from stromal

proteins (data not shown). The experimental design for the

experiment is showed in table 1.

Differences in the lumen proteomes of light- and dark-
adapted Arabidopsis plants

The lumen space is very narrow, and some of the thylakoid

membrane located protein complexes (PSII, Cytochrome b6/f)

extend into the lumen. It is logical to assume that most proteins in

this compartment are in close proximity to each other and to the

light-regulated photosynthesis complexes in the membrane. Thus

it is reasonable to assume that also the lumen located proteins may

be influenced by light. This is further corroborated by examination

of publicly available microarray data using the Arabidopsis eFP

Browser (bar.utoronto.ca, Short Day series, [17,18]). Analysis of

data from Arabidopsis seedlings, grown in 8 h light/16 h dark

cycles under comparable growth conditions as used in this study

shows that mRNA expression for the majority of prevalent lumen

proteins cycles in a diurnal manner, with expressions peaking

during the light period (data not shown).

To determine if this also holds true at the protein level and in

that case to which extent, light induced expression changes were

studied using difference-gel-electrophoresis (DIGE), comparing the

contents of the thylakoid lumen of Arabidopsis thaliana after a dark

period (16 h dark-adapted plants) and a light period (8 h light-

adapted plants). Chloroplast lumen was prepared from seven week

old light-adapted and dark-adapted Arabidopsis plants using the

fast lumen protocol. Four independent fast lumen preparations

were used in a dye-swap experimental design as described in

table 2. In all gels a Cy2 labelled internal standard was included,

containing an equal mix of all samples in the experiment.

Following gel running and scanning, image data was analyzed

using the DeCyderTM software package (GE Healthcare, Uppsala,

Sweden). Normalization was performed on the basis of the internal

standard, facilitating comparison between different gels. Protein

spots exhibiting statistically significant changes in abundance

across the 14 gels in the experiment were identified using a

student’s t-test with applied false discovery rate (FDR) and a p-

value threshold of p,0.05. Performing this analysis on light-

adapted versus dark-adapted preparations resulted in the identi-

fication of 31 protein spots exhibiting statistically significant

changes in abundance (figure 2). The gels were CBB stained,

matching protein spots were excised and 30 spots were successfully

identified by MALDI-TOF MS. Of the identified spots, 19

represented known lumen proteins while the remainder were

stroma proteins or proteins of unknown localisation. 26 protein

spots showed significantly increased levels and five spots

significantly decreased levels in the light-adapted plants. The

proteins showing changed abundance are presented in table 3

(lumen proteins) and table 4 (non-lumen proteins and unidentified

protein spots). Four of the up-regulated proteins are known to be

components of or related to PSII: PsbP1 (At1g06680), which is

essential for the regulation and stabilization of PSII [19], showed a

fold change of 1.43–1.48. PsbQ2 (At4g05180), one of two isoforms

Thylakoid Lumen Regulation
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of PsbQ, which is required for PSII assembly/stability in low light

conditions [20], displayed an increased abundance of 1.78–1.88

fold. The major form of plastocyanin (At1g20340) which transfers

electrons from cytochrome-f to photosystem I (PSI), was up-

regulated 1.46–1.54 fold. Finally HCF136 (At5g23120), a

chaperone-like assembly factor, which displays a PSII-less

phenotype in T-DNA knock out mutants [21], was up-regulated

by a factor 1.53–1.57. Besides these four proteins, the TL26 PsbP-

like protein (At3g55330, also referred to as PPL1) which is

required for the efficient repair of photodamaged PSII [4] and

eight additional lumen proteins of unknown or predicted function

were identified as being up-regulated in the light-adapted

preparation with fold changes ranging from 1.25–1.63. Two

stromal proteins, the two isoforms of leaf FNR (ferredoxin-

NADP+-oxidoreductase), AtLFNR1 (At5g66190) and AtLFNR2

(At1g20020), were up-regulated 1.51 and 1.47–1.52 fold respec-

tively. Leaf FNR plays a well defined role in linear electron

transport in chloroplasts, with the two isoforms forming homo- or

heterodimers in complex with ferredoxin [22]. Finally two proteins

of unknown sub-cellular localisation and function, At5g27390 and

At5g42765, showing an up-regulation of 1.09 and 1.59 fold

respectively, were identified. These two proteins both exhibit

putative bipartite transit peptides and a twin arginine motif,

indicating that they may be transported into the thylakoid lumen

via the TAT-pathway. A recent mass spectrometry based study,

identifying the probable N-terminal peptide, supports this

hypothesis in the case of At5g42765 [23]. The At5g27390 protein

is predicted to contain a PsbP-like domain, characteristic of

members of the PsbP-like protein family known to reside in the

thylakoid lumen [2]. On the other hand, both subunits A and B of

stromal glyceraldehyd 3-phosphate dehydrogenase, which catalyse

the reaction D-glycerate 1,3 bisphospate to glyceraldehyd 3-

phosphate, using NADP as an electron carrier, are down

regulated, as is carbonic anhydrase and sedoheptulose-bispho-

sphatase. An increase in levels of Bovine Serum Albumin (BSA), a

contaminant from the preparation medium, was also observed in

8-h light-adapted samples. Upon light exposure the thylakoid

membranes become stressed and it is probable that a slightly

higher degree of thylakoid leakage takes place, leading to the

observed abundance change. For this reason only lumen proteins

displaying an increased abundance should be considered in this

type of experiment, which in this study all are.

Table 1. Experimental design for fast vs. normal Arabidopsis thylakoid lumen preparation DIGE experiment.

Gel nr. Cy 2 Cy 3 Cy 5

1 pooled standard Normal preparation 16 h dark-adapted A, with NaBr

2 pooled standard 16 h dark-adapted A Normal preparation

3 pooled standard 8 h light-adapted A, with NaBr Normal preparation

4 pooled standard Normal preparation 8 h light-adapted A

doi:10.1371/journal.pone.0005649.t001

Figure 1. DIGE-gel image showing differences in normal and fast thylakoid lumen preparations. Composite DIGE-gel image of normal
and fast thylakoid lumen preparations. Light blue spots represent proteins observed in the normal preparation and purple spots represent
chloroplast stroma contaminations specifically observed in the fast preparation.
doi:10.1371/journal.pone.0005649.g001

Thylakoid Lumen Regulation
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Co-expression analysis of lumen protein genes
As previously stated analysis of public microarray data using the

Arabidopsis eFP Browser (bar.utoronto.ca, Short Day series,

[17,18]) revealed that mRNA levels for the majority of known

lumen proteins were elevated in response to light according to a

diurnal pattern. The experimental data, using the DIGE technique,

indeed found thirteen lumen proteins, ,35% of the lumen

proteome experimentally identified by [2], as being up-regulated

in light-adapted as compared to dark-adapted Arabidopsis plants.

Although this gives an indication of common transcriptional control

for the lumen proteome, regulated by light or circadian rhythm, it

was interesting to investigate if the lumen protein genes were in fact

more generally co-expressed, both across developmental stages and

tissue types as well as by different stimuli. To study this, co-

Figure 2. Representative 2D-gel image of 8 h light-adapted and 16 h dark-adapted thylakoid lumen proteomes of Arabidopsis
thaliana. Protein spots displaying significant changes in spot intensity between treatments (marked by assigned numbers) were excised, in-gel
digested with trypsin and identified by peptide mass fingerprinting.
doi:10.1371/journal.pone.0005649.g002

Table 2. DIGE experimental design for 16 h dark-adapted vs. 8 h light-adapted thylakoid lumen preparations.

Gel nr. Cy 2 Cy 3 Cy 5

1 pooled standard 16 h dark-adapted A 8 h light-adapted A

2 pooled standard 8 h light-adapted B 16 h dark-adapted B

3 pooled standard 16 h dark-adapted C 8 h light-adapted C

4 pooled standard 8 h light-adapted D 16 h dark-adapted D

5 pooled standard 8 h light-adapted A 16 h dark-adapted A

6 pooled standard 16 h dark-adapted B 8 h light-adapted B

7 pooled standard 8 h light-adapted C 16 h dark-adapted C

8 pooled standard 16 h dark-adapted D 8 h light-adapted D

9 pooled standard 8 h light-adapted A, with NaBr 16 h dark-adapted A, with NaBr

10 pooled standard 16 h dark-adapted B, with NaBr 8 h light-adapted B, with NaBr

11 pooled standard 8 h light-adapted C, with NaBr 16 h dark-adapted C, with NaBr

12 pooled standard 16 h dark-adapted D, with NaBr 8 h light-adapted D, with NaBr

13 pooled standard 16 h dark-adapted A, with NaBr 8 h light-adapted A, with NaBr

14 pooled standard 8 h light-adapted B, with NaBr 16 h dark-adapted B, with NaBr

15* pooled standard 16 h dark-adapted C, with NaBr 8 h light-adapted C, with NaBr

16* pooled standard 8 h light-adapted D, with NaBr 16 h dark-adapted D, with NaBr

*Gels were not included in the DeCyder analysis due to scanning problems.
doi:10.1371/journal.pone.0005649.t002
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expression analysis using the Arabidopsis Co-expression Tool

(http://www.arabidopsis.leeds.ac.uk/act/, experiments 2_1-2_50,

[24]) was performed on array probes corresponding to not only the

genes coding for lumen proteins identified by the proteomics

analysis but also on probes for all other previously experimentally

identified lumen protein genes according to [2].

When using almost any given lumen protein gene as a query

gene for the multi-experiment co-expression database tool, the

Table 3. Lumenal protein spots displaying significant changes in spot intensity. Thylakoid lumen and suggested thylakoid lumen
proteins identified by MALDI-TOF MS exhibiting statistically significant changed relative protein levels in light-adapted as
compared to dark-adapted Arabidopsis plants, determined by a t-test with applied FDR and a significance threshold of p,0.05.
Positive average ratios represent a higher relative protein level in light-adapted plants.

Spot No. Protein description
Gene locus
(TIGR)

Average
Ratio

T-test with
FDR

Mascot
score

Mass of
precursor

Matched
peptides

Sequence
coverage

3 HCF136 At5g23120 1.57 0.043 132 44076 12 32%

4 HCF136 At5g23120 1.53 0.031 177 44076 17 45%

12 PsbP1 At1g06680 1.46 0.031 75 28078 8 45%

13 PsbP1 At1g06680 1.58 0.031 77 28078 9 39%

14 PsbP1 At1g06680 1.43 0.043 90 28249 8 39%

15 35.8 kDa PsbP-like At5g11450 1.46 0.047 112 33344 11 38%

17 17.5 kDa PPIase At2g43560 1.58 0.031 74 23549 6 21%

18 17.9 kDa unknown lumen protein At4g24930 1.63 0.031 78 24680 7 28%

19 15.9 kDa PsbP-like At1g76450 1.59 0.032 82 27473 7 38%

20 Unknown lumen protein At5g42765 1.59 0.031 64 25083 6 26%

22 TL17 pentapeptide protein At5g53490 1.48 0.040 114 25628 11 48%

23 TL16 unknown lumen protein At4g02530 1.38 0.031 74 23648 7 31%

24 15.0 kDa unknown lumen protein At5g52970 1.48 0.031 83 24553 7 19%

25 PLAT, Plastocyanin major At1g20340 1.46 0.043 77* 10445 4 54%

26 TL15 pentapeptide protein At2g44920.2 1.25 0.049 131 23764 11 55%

27 TL26 PsbP-like At3g55330 1.56 0.031 137 25607 12 46%

28 Proposed lumen protein At5g27390 1.09 0.031 102 26751 8 47%

29 PsbQ2 At4g05180 1.88 0.043 123 24628 11 49%

30 PsbQ2 At4g05180 1.78 0.043 136 24628 11 46%

31 PsbQ2 At4g05180 1.79 0.043 111 24628 9 46%

*Identified using an in-house modified Arabidopsis TAIR database.
doi:10.1371/journal.pone.0005649.t003

Table 4. Non-lumenal protein spots displaying significant changes in spot intensity. Non-lumenal and unidentified protein spots
displaying differential relative protein levels. Positive average ratios represent a higher relative protein level in light-adapted plants
while negative ratios denote a lower relative level.

Spot No. Protein description
Gene locus
(TIGR)

Average
Ratio

T-test with
FDR

Mascot
score

Mass of
precursor

Matched
peptides

Sequence
coverage

1 Unidentified - 1.97 0.031 - - - -

2 BSA gi|30794280 1.79 0.043 83 69278 13 25%

5 GAPDH subunit B At1g42970 21.35 0.047 151 47630 20 33%

6 Sedoheptulose-bisphosphatase At3g55800 21.32 0.046 86 42815 15 28%

7 Sedoheptulose-bisphosphatase At3g55800 21.32 0.047 138 42787 21 40%

8 GAPDH subunit A At3g26650 21.41 0.031 165 42463 16 36%

9 LEAF FNR 1 At5g66190 1.51 0.047 171 40301 21 54%

10 LEAF FNR 2 At1g20020 1.47 0.046 85 41142 15 26%

11 LEAF FNR 2 At1g20020 1.52 0.042 161 41142 23 63%

16 Carbonic anhydrase At3g01500 21.26 0.046 130 28166 17 50%

21 Unidentified** - 1.54 0.032

**According to location on gel identified as Plastocyanin major (At1g20340) [40].
doi:10.1371/journal.pone.0005649.t004
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resulting list of co-expressed genes contained many other genes

coding for lumen proteins with high correlation coefficients (data

not shown). To study the extent of this co-expression among the

lumen protein genes in detail, co-expression correlation coeffi-

cients between all lumen protein genes were extracted from the

database and subjected to unsupervised hierarchical clustering and

visualised as a heat map (figure 3). Three genes encoding typical

stromal contaminants; HSP 7C-7, Lipoxygenase 2 and the small

subunit of RUBISCO were included in the analysis, as well as

three genes encoding fibrilins previously identified in lumen

preparations but where the exact localisation remains uncon-

firmed [2]. High co-expression correlation coefficients (r-values),

typically in the range of 0.80 to 0.95, were observed between the

majority of lumen protein genes. Exceptions were the genes

encoding violaxanthin de-epoxidase and PsbP2, which displayed

low co-expression to other lumen protein genes. This could be an

effect of either distinct differences in function or of low transcript

abundance. A prominent cluster was identified, consisting of genes

encoding the extrinsic PSII proteins together with genes encoding

the major form of plastocyanin (PLAT) and an 18.3 kDa lumen

Figure 3. Hierarchical clustering of co-expression coefficients for thylakoid lumen protein genes and typical stroma contaminant
genes. Co-expression correlation coefficients (r-values) were extracted from the Arabidopsis Co-expression database and subjected to hierarchical
clustering. A high level of co-expression is indicated by yellow color while blue color represents very low co-expression. While stroma protein genes
display low co-expression to lumen protein genes, lumen protein genes exhibit very high levels of co-expression among each other.
doi:10.1371/journal.pone.0005649.g003
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protein recently implicated in the regulation of the PSII repair

cycle [5]. These seven genes showed very high correlation

coefficients (r-values around 0.90 and above) among each other

but lower towards other lumen protein genes. Among the

remaining genes several interesting clusters could be observed.

The genes encoding the serine proteases Deg1 and Deg8 clustered

together, while the gene encoding Deg5 (HhoA) clustered alone.

This is interesting because Deg5 and Deg8 are believed to form

hexameric complexes in the lumen [25]. On the other hand Deg1

and Deg8 are proteolytically active towards photodamaged D1-

protein in vitro, which Deg5 appears not to be [25,26].

Furthermore two genes, encoding the pentapeptide proteins

TL15 and TL17, clustered together. Although the function of

these proteins remains unknown, three out of four of the protein

family members in Arabidopsis are known or predicted to be

located in the thylakoid lumen [27]. Finally a cluster of genes

encoding immunophilin proteins (38 kDa PPIase, 18.5 kDa

PPIase and 16.9 kDa PPIase) was observed. While the 16.9 kDa

PPIase has been implicated in the accumulation of PSII

supercomplexes [28], the precise function of the other lumenal

immunophilins remains unknown. The genes encoding stromal

contaminants exhibited low (r,0.50) correlation coefficients to the

genes coding for lumen proteins, although the gene encoding the

small subunit of RUBISCO shares a certain amount of co-

expression with genes coding for the oxygen evolving complex

(OEC) proteins of PSII and the major form of plastocyanin. The

genes for the light-induced lumen proteins identified by the DIGE

experiments were spread among the different co-expression

clusters, displaying, with the exception of those encoding PsbP1,

PsbQ1 and major plastocyanin, high correlation coefficients to

other lumen protein genes.

It is evident from this analysis that the majority of lumen protein

genes have very similar expression profiles across the microarray

experiments included in the Arabidopsis Co-expression Tool

database (http://www.arabidopsis.leeds.ac.uk/act/, experiments

2_1-2_50, [24]), indicating that their regulation at the transcrip-

tional level is very similar, irrespective of the environmental

condition, developmental stage or tissue type. This in turn suggests

common function or participation in common biological pathways

for these gene products. Based on this observation it seemed

reasonable to assume that novel lumen related proteins could be

identified by co-expression analysis. Co-expression correlation

coefficients between the known lumen protein genes and all 22000

genes represented on the Affymetrix ATH1 arrays were extracted

from the Arabidopsis Co-expression Tool and combined to a

single dataset. Genes co-expressing specifically with the prominent

cluster identified in figure 3 (containing genes encoding the

lumenal extrinsic PSII components, the major form of plastocy-

anin and the 18.3 kDa lumen protein) were identified by

calculating their mean correlation coefficient against the seven

genes in the cluster. As expected the list of genes displaying the

highest mean r-values to the cluster is dominated largely by genes

encoding other components of PSII as well as genes encoding

components of PSI (supplemental data, table S1). The remaining

lumen protein genes, which showed a lower degree of co-

expression with the genes in the above mentioned cluster but a

high degree of co-expression among themselves (genes to the right

of the gene encoding the 18.3 kDa protein with the exception of

the gene coding minor plastocyanin (PLAS) in figure 3), were used

in the same way to identify novel lumen related proteins. Genes

exhibiting mean r-values higher than 0.8 were selected in order to

obtain a subset of 176 genes with high co-expression to the

majority of lumen protein genes (the top 60 genes are shown in

supplemental data, table S2). The subset is to a large extent

comprised of genes of unknown or putative function although

there is an interesting representation of genes encoding ribosomal

proteins and redox-signalling proteins, including several members

of the thioredoxin family. Strengthening the hypothesis that these

gene products may be related to the thylakoid lumen, TargetP

predicts 89% of the gene products as being chloroplast targeted.

Also 87% are reported in the Plant Proteome Database (http://

ppdb.tc.cornell.edu/, [29]) as having a plastid localisation. One of

the unknown proteins identified in the proteomic part of this study,

encoded by the gene At5g42765, is among the highly co-expressed

genes, with a mean co-expression correlation coefficient of 0.85,

suggesting further that it is a true lumen protein as reported in

another study [23]. Also an immunophilin (At3g10060) and Psb27

(At1g03600), experimentally shown to be lumen proteins [3], have

high correlation coefficients of 0.83–0.85.

In summary the results from this study show that a major

portion of the lumen proteome exhibits increased protein

expression in light-adapted as opposed to dark-adapted Arabi-

dopsis plants. Proteins displaying light-induced expression includ-

ed the PsbP1 and PsbQ2 extrinsic components of PSII, the major

form of plastocyanin and several other lumen proteins of various

or unknown function. Furthermore co-expression analysis indi-

cates that the lumen proteome encoding genes are transcription-

ally regulated in a common manner, not only as a response to

light, but uniformly across stress conditions, developmental stages

and tissue types.

Discussion

Plants sense light of different types by a set of specific

photoreceptors distinct from the pigments of photosynthesis. The

perceived light induces signalling cascades, resulting in short-term

responses as well as long-term acclimation. Besides the direct

perception of light by photoreceptors, plants also sense light via

plastid redox-sensing mechanisms and possess an internal clock

system regulating gene transcription, the circadian clock, which

runs on a period of 24 hours. Rather than being separate

processes, light signalling pathways and circadian control are

interconnected pathways, with photoreceptors being involved in

timing of the clock, while the clock regulates expression of

photoreceptor genes (for review see [30]). It has been predicted

that more than 6% of Arabidopsis genes are under circadian

control and that as many as 30–50% of genes expressed in rosette

leaves undergo some form of diurnal expression changes [8,9].

One prominent group of genes displaying circadian control

identified by Harmer et al. [8] encodes 22 components of

photosynthesis, including LHCAs, LHCBs as well as PSI and PSII

reaction centre genes. All these genes exhibit co-regulation, with

mRNA levels peaking around midday. In a second study [9] it was

shown that ,23% of photosynthesis genes undergo diurnal

expression changes of an amplitude higher than 1.75-fold. Light-

regulation of nuclear photosynthesis genes is well known [31], but

in depth it is a complex interplay of photoreceptor-, circadian-,

redox- and sugar-mediated signalling pathways.

Considering the recent increase in our knowledge regarding the

involvement of several thylakoid lumen proteins in the regulation

of photosynthesis [4,5,19,20,28,32], it was interesting to study how

and to which extent these proteins are differentially expressed

during the day and night. A study of publicly available microarray

data indicated that the majority of genes coding for lumen proteins

seemed to undergo diurnal expression changes, with expression

peaking during the light period (Arabidopsis eFP browser,

bar.utoronto.ca, Short Day series, [17,18]). To study the extent

of this regulation in more detail at the protein level, we compared
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protein expression between the thylakoid lumen proteomes of 8 h

light-adapted and 16 h dark-adapted Arabidopsis plants using the

DIGE technique. We identified thirteen lumen proteins undergo-

ing significant abundance changes, showing an approximate

increase of up to 1.9-fold after the 8 h light treatment. Especially

noteworthy is that three of these proteins, PsbP1, PsbQ2 and

major plastocyanin, are among the most highly abundant lumen

proteins [2].

The presence of the extrinsic PSII subunits PsbP1 and PsbQ2

among the up-regulated lumenal proteins is consistent with the

previous observation that the chloroplast lumen contains a soluble

pool of unbound extrinsic PSII proteins that may serve as a ready

source of material for the assembly of new OECs, being directly

available after D1-turnover and PSII re-assembly [33]. Consistent

with our observed up-regulation of the PsbP1 and PsbQ2 proteins

this would be especially important during the light period, when

the rate of D1-turnover increases with light intensity [34].

Intriguingly though, we could not discern any change in levels

of PsbO protein. Possibly an increased protein expression was

masked by a simultaneous increase of PSIIs to which PsbO

became bound. The major form of plastocyanin, another critical

lumenal component of the photosynthetic electron transport

chain, which functions in electron transport from cytochrome-

b6f to PSI, also displayed significant up-regulation of protein levels

in the light. The plastocyanin promoter has been extensively

studied previously and it is well known that gene expression is

induced by light, via an interplay of photoreceptor- and redox-

signalling [35,36]. Together with these well studied components of

photosynthesis, HCF136, a protein required for PSII assembly

and/or stability, was up-regulated in light-adapted plants [21], as

was the TL26 PsbP-like protein, required for efficient repair of

photodamaged PSII [4]. Two other PsbP-like proteins of unknown

function were also identified, but although they contain a similar

domain as the TL26 PsbP-like protein, they may be involved in

distinctly different processes, as demonstrated recently in the study

by Ishihara and co-workers [4]. Of the other up-regulated lumen

proteins very little is known regarding their function and possible

relation to photosynthesis. Further characterization of these

proteins in detail is an exciting area of future research, possibly

leading to the identification of novel factors involved in the

regulation of photosynthesis. Although it is probable that most of

the observed changes in protein abundance are due to changes in

protein expression it cannot be ruled out that some changes may

also be partly caused by increased/decreased translocation across

the thylakoid membrane and changes in the strength of

interactions between proteins and the thylakoid membrane.

The proteomic analysis showed that a large portion of the

lumen proteome was under some form of diurnal regulation,

hinting at a certain level of co-expression. But because as much as

30–50% of expressed genes in Arabidopsis rosette leaves are

expected to undergo diurnal expression changes [9], the high level

of co-expression between lumen protein genes, as observed by co-

expression analysis, cannot be attributed to light/dark-cycle

dependent expression alone. While the proteomic analysis only

studied light/dark induced changes of protein levels, co-expression

analysis in contrast considers transcriptional expression in very

many different experimental conditions. Performing this type of

analysis showed that transcription of the prevalent lumen protein

genes is similarly regulated across different environmental

conditions, tissue types and developmental stages. Clustering of

co-expression data revealed that although almost all lumen protein

genes share a high level of co-expression, certain sub-groups could

be identified. Most prominently, a cluster containing genes

encoding the OEC proteins, major plastocyanin and the

18.3 kDa lumen protein was observed. The inclusion of the

18.3 kDa lumen protein gene in this tight cluster is consistent with

and strengthens the suggestion that the protein is intimately

involved in regulation of PSII [5]. Clustering of the genes encoding

two pentapeptide proteins and of a group of immunophilins,

suggests that these related proteins may also share common

function in the lumen. Expanding the co-expression analysis to

include all other genes in the genome showed that the OEC

encoding gene cluster co-expressed with genes for other PSII and

PSI components. This proved the robustness of the analysis

approach, hence suggesting that it also could be used to identify

novel genes co-regulated with the other lumen protein genes. A

well known problem of transcriptomic analysis though, is genes

expressed at low levels, which probably is the case for so far

unidentified lumen protein genes. A detailed analysis of common

regulatory elements in the promoters of the genes for the lumen

proteins is necessary to further understand the mechanisms

controlling the observed uniform regulation.

Taken together the present study shows that ,35% of the

prevalent lumen proteome displays increased abundance after

exposure to 8 hours of light. This includes both proteins involved

directly in photosynthesis as well as lumen proteins of unknown

function. Furthermore we conclude from co-expression analysis of

known lumen protein genes that transcriptional regulation of these

genes occurs uniformly, a prospect which facilitated the identifi-

cation of a variety of chloroplast protein encoding genes sharing

high co-expression with the lumen protein genes. Further studies

regarding the origin and consequences of the observed increases in

protein levels, together with detailed characterization of lumen

proteins of still unknown function are now necessary in order to

further understand the biological role that the light-induced

abundance changes play.

Materials and Methods

Plant material
Arabidopsis thaliana ecotype Columbia were grown on soil for 7

weeks with a dark/light cycle of 16/8 hours using a light intensity

of 120–150 mmol photons m22 s21. For the fast lumen prepara-

tion leaves were harvested before the light was turned on (16 h

dark-adapted plants) and before the light was turned off at the end

of the 8 h light period (8 h light-adapted plants).

Thylakoid lumen preparation
After harvesting the leaves were kept in ice cold water in either

light or darkness for 20 minutes before the preparations were

started. All preparation was performed at 4uC and dark-adapted

leaves were harvested and prepared under green light. Arabidopsis

chloroplasts were prepared from 60 g leaves, divided in portions of

10 g which were blended in 200 mL of homogenising buffer

(20 mM Tricine-NaOH (pH 8.4), 300 mM sorbitol, 10 mM

EDTA, 10 mM KCl, 0.25% (w/v) bovine serum albumin (BSA),

90 mM sodium ascorbate, and 5 mM cysteine) five times for 1 sec.

using a Heidolph DIAX 900 homogeniser. The preparation

continues as described in [13] with changes for Arabidopsis thaliana

thylakoid lumen preparation according to [2]. Thylakoid mem-

branes were washed twice with 10 mM sodium pyrophosphate

(pH 7.8), twice with 300 mM sucrose in 2 mM Tricine (pH 7.8)

and twice using fragmentation buffer (pH 7.8). Between washes

thylakoids were resuspended and homogenised in a glass

homogeniser and centrifuged for 5 min at 75006g. All according

to [13] with the exception that 1 mM EDTA was added to the last

fragmentation buffer before Yeda press fragmentation of the

thylakoids. Thylakoid membrane fragments were ultra-centrifuged

Thylakoid Lumen Regulation

PLoS ONE | www.plosone.org 8 May 2009 | Volume 4 | Issue 5 | e5649



at 200 0006g for 60 min. Supernatants (lumen fraction) were

moved to new tubes followed by an additional centrifugation step.

In the fast thylakoid lumen preparation, the chloroplast

preparation was performed as above. The washing steps of the

thylakoid membranes with sodium pyrophosphate, sucrose and

one of the wash steps with fragmentation buffer were excluded

before Yeda press fragmentation. The first ultra-centrifugation was

performed for only 10 min at 200 0006g and after discarding the

thylakoid membrane fragment a new ultra-centrifugation for 1

hour was performed. Four fast thylakoid lumen preparations of

day- and four preparations of night-acclimated plants were made

from plants in the same development stage. Fast lumen

preparation with the addition of 5 mM NaBr in the fragmentation

buffer was also used to extract more of the proteins loosely bound

to the thylakoid membrane. However, this modification did not

have any significant effect on the composition of the lumenal

fractions obtained.

Concentration of protein samples and protein assay
The lumen fraction was concentrated using Microsep 3K

centrifugal devices (PALL Life Ccience) and the buffer was diluted

with double distilled water approximately to half the strength in

order to decrease the salt concentration prior to iso-electric

focusing (IEF). Protein quantification was carried out according to

the method of Bradford [37] using bovine serum albumin (fraction

V) as a standard. The method was adjusted to a smaller amount

for use with ELISA plate wells; 5 mL of standard BSA solution or

sample and 195 mL of room temperature Bradford solution were

measured at 595 nm. The chlorophyll content was determined

according to [38].

Difference gel electrophoresis (DIGE)
Lumen samples were precipitated with 4 volumes of ice cold

acetone overnight at 220uC and the precipitated lumen proteins

were collected by centrifuged at 12 0006g for 15 minutes at 4uC.

The supernatant was removed and the pellet air dried for

5 minutes. The lumen proteins were solubilised and labelled

according to the GE Healthcare manual for DIGE (GE

Healthcare, Uppsala, Sweden), with the exception that 400 pmol

CyDye colour to 100 mg of protein was used. Samples were

labelled with Cy3 and Cy5 while an internal standard containing a

mix of equal amounts of the two samples was labelled with Cy2.

Tables 1 and 2 show the experimental designs used. The final

concentration of solubilisation buffer was; 7.4 M urea, 1.1 M

thiourea, 1.3 mM tris, 4% CHAPS, 76 mM DTT and 0.8 %

IPGbuffer (pH 3–11 NL) (GE Healthcare, Uppsala, Sweden).

63 mg of protein (21 mg of each CyDye labelled sample and 21 mg

of Cy2 labelled internal standard) in 450 mL of the solubilised and

labelled thylakoid lumen sample was applied to 24 cm immobiline

strips, pH 3–11 NL (GE Healthcare, Uppsala, Sweden), passive

rehydrated for two hours and active rehydrated at 60 V for

10 hours. After rehydration the strips were moved to a 12-

manifold and iso-electric focusing was performed on an IPGphor

II (GE Healthcare, Uppsala, Sweden). Strip equilibration and

second dimension electrophoresis were performed according to the

manufacturer’s instructions (2D- Electrophoresis - Principles and

Methods. GE Healthcare, Uppsala, Sweden) as follows: Equili-

bration was performed in 20 mL standard equilibration solution

for 15 minutes with 2% DTT and 15 minutes with 4.5%

iodoacetamide. All strips were washed with 26electrophoresis

buffer prior to loading on the second dimension gel and sealed

with 26electrophoresis buffer containing 0.5% low melting

agarose. The second dimension was run on 12–20% SDS-

polyacrylamide gradient gels using an Ettan Daltsix electrophoresis

unit. Prior to gel casting the glass plates were coated with bind-

silane solution in order to keep the gels fixed to one glass plate

during post staining and automatic spot picking (2D- Electropho-

resis - Principles and Methods, GE Healthcare, Uppsala, Sweden).

Gel imaging and analysis
Labelled proteins were visualised using a TyphoonTM 9400,

Variable Mode Imager, (GE Healthcare), scanned in-between low

fluorescence glass-plates (GE Healthcare). The three Cy colours

were scanned with recommended filters according to the DeCyder

manual as follows; Cy2 images were scanned using a 488 nm laser

and a 520 nm band pass (BP) 40 emission filter (EF), Cy3 images

were scanned using a 532 nm laser and a 580 nm BP 30 EF and

Cy5 images were scanned using 633 nm laser and a 670 nm BP 30

EF. All gel images were scanned at 100 mm resolution and the

photo-multiplier tube was set to ensure maximum pixel intensity

without saturated spots. Prior to gel analysis the image extraneous

areas were removed using ImageQuantTM V5.2 (GE Healthcare).

Gel analysis was performed using DeCyderTM V 6.5 (GE

Healthcare), designed specifically to be used for DIGE. The

estimated number of spots used in the batch processor was set to

2500, as recommended, and no exclusion filter was applied before

processing. The DeCyderTM statistical tool was used to calculate

average ratios by a t-test with applied false discovery rate (FDR)

and a significance threshold of p,0.05. Prior to spot picking the

gels were hot Coomassie stained according to the method of

Reiner Westermeier and Tom Naven [39]. Spots were picked

using an Ettan SpotpickerTM with a 1.4 mm picker head (GE

Healthcare, Uppsala, Sweden).

In-gel digestion and MALDI-TOF MS
Gel pieces were dehydrated and de-stained with 35%

acetonitrile in 20 mM ammonium hydrogen carbonate, three

times 30 minutes. Complete drying of the gel pieces was

performed by addition of 100% acetonitrile for 5 minutes two

times. The dry gel pieces were digested with 3–5 ng/ml trypsin

(Promega) in 20 mM ammonium hydrogen carbonate and 10%

acetonitrile over night. In-gel digested proteins were analysed with

a MALDI-TOF Voyager-DETM STR Bio SpectrometryTM

Workstation from Applied Biosystems. Database searches were

performed on an in-house Mascot server licensed to Umeå

University by Matrix Science (http://www.matrixscience.com)

using the NCBInr, Arabidopsis TAIR7 databases and an in-house

modified Arabidopsis TAIR7 database where experimentally

determined mature lumen protein sequences are included. The

search parameters were set to allow an error for peptide masses of

50 ppm and one missed cleavage site. Oxidation of methionine

and carbamidomethylation of cysteine were set as parameters for

variable modification.

Co-expression analysis
Co-expression correlation coefficients (r-values) between Affy-

metrix probes corresponding to genes encoding all experimentally

identified thylakoid lumen proteins described by [2] as well as

three selected typical stromal contaminants were extracted from

the Arabidopsis Coexpression Data Mining Tools (www.

arabidopsis.leeds.ac.uk/act/, experiments 2_1-2_50, [24]). The

resulting data matrix, containing all permutations of co-expression

coefficients for the 44 genes, was clustered by unsupervised

hierarchical clustering using the MultiExperiment Viewer software

v.4.2 (MeV) from The Institute for Genomic Research (J. Craig

Venter institute), (www.tm4.org/mev.html). The clustered data

was visualised as a heat map with the r-value colour scale set from

0 (no correlation) to 1 (perfect correlation). Co-expression
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coefficients between a lumen protein gene probe and probes

representing all genes on the Affymetrix ATH1 array were

extracted using the multi-experiment co-expression tool of the

Arabidopsis Coexpression Data Mining Tools. This process was

repeated for all the lumen protein genes described above. In the

resulting data matrix, each probe on the Affymetrix ATH1 array is

thereby represented by 38 co-expression correlation coefficients

corresponding to the probes co-expression with all lumen protein

gene probes. In order to identify genes showing high co-expression

with selected lumen protein genes the mean correlation co-efficient

for the selected lumen protein genes and any given probe was

calculated. Ranking of the probes according to the mean

correlation co-efficient was then used to determine which genes

were specifically co-expressed with the identified PSII-related

cluster and to the remaining lumen protein genes. The

experiments in the database in total represented 422 arrays and

details regarding each microarray experiment can be easily

obtained at www.arabidopsis.leeds.ac.uk/act/expinfo.php.

Supporting Information

Table S1 Genes co-expressed with lumenal PSII genes. 30 genes

sharing the highest co-expression with a cluster of lumenal PSII

genes identified in figure 3. Mean correlation co-efficients (r-

values) were calculated from the r-values between a gene and each

gene in the lumenal PSII cluster.

Found at: doi:10.1371/journal.pone.0005649.s001 (0.03 MB

XLS)

Table S2 Genes co-expressed with 29 selected lumen protein

genes. 60 genes sharing the highest co-expression with 29 selected

lumen protein genes identified as exhibiting a high level of co-

expression. Mean correlation co-efficients (r-values) were calculat-

ed from the r-values between a gene and each of the 29 selected

lumen protein genes.

Found at: doi:10.1371/journal.pone.0005649.s002 (0.04 MB

XLS)
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