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ABSTRACT The analysis of microbial growth is one of the central methods in the field of
microbiology. Microbial growth dynamics can be characterized by meaningful parameters,
including carrying capacity, exponential growth rate, and growth lag. However, microbial
assays with clinical isolates, fastidious organisms, or microbes under stress often produce
atypical growth shapes that do not follow the classical microbial growth pattern. Here, we
introduce the analysis of microbial growth assays (AMiGA) software, which streamlines the
analysis of growth curves without any assumptions about their shapes. AMiGA can pool
replicates of growth curves and infer summary statistics for biologically meaningful growth
parameters. In addition, AMiGA can quantify death phases and characterize diauxic shifts.
It can also statistically test for differential growth under distinct experimental conditions.
Altogether, AMiGA streamlines the organization, analysis, and visualization of microbial
growth assays.

IMPORTANCE Our current understanding of microbial physiology relies on the simple
method of measuring microbial populations’ sizes over time and under different conditions.
Many advances have increased the throughput of those assays and enabled the study of
nonlab-adapted microbes under diverse conditions that widely affect their growth dynam-
ics. Our software provides an all-in-one tool for estimating the growth parameters of
microbial cultures and testing for differential growth in a high-throughput and user-
friendly fashion without any underlying assumptions about how microbes respond to
their growth conditions.

KEYWORDS computational biology, growth modeling, physiology

The study of the growth of microbial cultures has been a basic method of understanding
bacterial physiology since the pioneering work of Jacob and Monod and the Copenhagen

group in the 1950s to 1960s (1). Today, automated platforms equipped with multiwell plate
readers can rapidly generate large sets of microbial growth data. Several computational tools
have been developed for the rapid analysis and interpretation of these growth data sets (2–7).
However, the growth of clinical isolates, fastidious organisms, or microbes under various stres-
sors often generates curves that do not follow standard logistic or sigmoidal shape. Popular
tools using classical mathematical models of growth, such as logistic or Gompertz equations,
struggle to infer kinetic parameters for these microbial cultures. Nonparametric statistical
approaches, including spline fitting, input estimation methods, or Gaussian process (GP)
regression, are more effective at modeling the growth of atypical microbial cultures and esti-
mating their growth parameters (8–11).

GP regression has especially shown tremendous potential for modeling growth
curves. Unlike spline fitting, GP regression is robust to outliers and technical variation,
can inherently pool replicates, reliably infer growth rates, and estimate growth parameters
without cross-validation or bootstrapping (9, 10). While input estimation methods, such a
regularized linear inversion, can also reliably infer growth rates (11), GP regression provides
a principled framework for estimating uncertainty and statistical testing (10). Tonner et al.
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recently expanded their application of GP regression into a mixed-effects model of microbial
growth and further illustrated how it can statistically estimate the impact of perturbations
on growth dynamics (12). Both Swain et al. and Tonner et al. have openly shared tools for
the analysis of microbial growth with GPs (9, 10, 12). However, these tools are either limited
to measuring a very restricted set of growth parameters, are focused solely on statistical
modeling of growth differences without inferring growth parameters, or are inaccessible to
users who are unfamiliar with programming or Python. The wide adoption of the applica-
tion of GPs for modeling microbial growth is thus hampered by the lack of a general-pur-
pose and user-friendly software.

Here, we describe and showcase a new tool for the analysis of microbial growth
assays (AMiGA) without any underlying assumptions about the shape of growth curves.
AMiGA models growth curves with GP regression and infers biologically meaningful micro-
bial growth parameters, including maximum specific growth rate (i.e., exponential growth
rate), lag time, carrying capacity, and area under the curve (AUC). Because GPs do not
assume any underlying shape for the input observations, we also show that AMiGA can
quantify adaptation time, death, maximum death rate, and diauxic shifts. Finally, AMiGA can
expand growth curves beyond time to include other experimental variables, for example,
nutritional state (e.g., presence of substrate in culture), environmental conditions (e.g., pH
status), microbial stressors (e.g., antibiotics), or phylogenetic identities (e.g., genotype). Users
can accordingly test for functional differences in growth across distinct experimental condi-
tions (10, 13). These statistical tests are agnostic to microbial growth parameters but rather
detect differences between growth curves across all time measurements. Altogether, AMiGA
streamlines various aspects of microbial growth data analysis, including quality control, data
manipulation, growth curve fitting, and statistical testing.

To demonstrate the utility of AMiGA, we model the microbial growth of lab-adapted,
clinical, and environmental isolates. We show how AMiGA can fit different growth dynamics,
characterize diauxic shifts, describe Biolog phenotype microarray (PM) plates, and analyze
standard growth assays. We also showcase how AMiGA-based testing for differential growth
across distinct experimental conditions can extract useful insight from high-throughput
growth assays.

RESULTS
Implementation. AMiGA is an open-source, cross-platform Python package. Users

interact with AMiGA via the command-line interface. We provide detailed tutorials to
demystify the process for users with minimal background in using a command terminal. The
main input to AMiGA is raw data files in text format, which are often exported by multiwell
plate readers. Users can also pass metadata about each plate or each well using tables saved
as text files. AMiGA can recognize Biolog PM plates based on file names and automatically
assign wells to carbon, nitrogen, or phosphorous substrates. Users can optionally adjust many
of the default parameters for analysis or visualization with a configuration file. AMiGA can ana-
lyze multiple data sets in a single batch, and it can pool biological and technical replicates
before jointly modeling their growth curves.

Estimating microbial growth parameters. Using observed measurements of opti-
cal density (OD), we often want to describe the underlying function of growth often
termed the growth curve. While preprocessing the data (see Materials and Methods),
AMiGA transforms ODmeasurements with a natural logarithm (ln) then shifts measurements
such that the first measurement is centered at zero. Using GP regression, AMiGA then infers
the underlying growth curve, which quantifies microbial community size over time, and its
first-order derivative, which quantifies the rate of growth over time (Fig. 1A and B). The algo-
rithm then infers biologically meaningful growth parameters by either directly analyzing the
growth and its derivative or by sampling from the posterior distribution of the predicted
growth model. The sampling approach provides summary statistics for each of the growth
parameters in terms of mean, standard deviation, and confidence interval. The estimated mi-
crobial growth parameters include classical growth characteristics, such as the carrying
capacity (K; the maximum growth supported by the environment), area under the curve
(AUC; the total growth supported by the environment over observed time), maximum
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growth rate (r; the maximum specific growth rate or exponential growth rate), doubling
time (the time needed during exponential growth to double community size), and lag time
(the time delay needed to initiate exponential growth, defined as the intersection of the tan-
gent at maximum growth rate with the axis of time). In addition, AMiGA infers less com-
monly studied, but useful, growth characteristics, including maximum death rate (the most
negative growth rate after reaching carrying capacity), death (the total loss of growth after
reaching carrying capacity), and adaptation time (the time interval needed to reach a posi-
tive growth rate). Collectively, these growth parameters describe informative dynamics
about microbial physiology under the specified experimental conditions.

Characterizing diauxic shifts. Diauxie is the biological phenomenon observed when
a microbial culture undergoes two phases of growth (1). Diauxic growth often occurs
when a microbial culture initially utilizes the most preferred carbon source in its environ-
ment but switches to a secondary source once the former is depleted (14). To identify dia-
uxic shifts, we take advantage of a key feature of GPs, the derivative of a Gaussian process
is also a Gaussian process. Therefore, we can easily infer the first- and second-order deriva-
tives of each growth curve (9). Here, the first-order derivative estimates the growth rate
over time, while the second-order derivative estimates the change in growth rate over
time, which is a measure of the acceleration or deceleration of growth. Using these esti-
mates, AMiGA then applies a novel iterative process and growth curve thresholds to detect

FIG 1 AMiGA infers microbial growth parameters and characterizes diauxic shifts. (A, B) AMiGA predicted the
mean growth and growth rate of a ribotype 053 C. difficile clinical isolate grown on 20mM fructose as the
primary carbon source using three technical replicates. Model estimates of the log-transformed growth and its
derivative can be used to describe the following parameters: carrying capacity (K), area under the curve (AUC),
maximum growth rate (r), maximum death rate, lag time, adaptation time, and stationary death. The black
dashed oblique line indicates the tangent to the growth curve at maximum exponential growth. The gray
dashed vertical lines map growth parameters to their respective time points, which are also exported by
AMiGA. (C, D) AMiGA characterized the diauxic shift of a C. difficile clinical isolate of an unknown ribotype
grown on minimal medium with 20mM glucose as the primary carbon source using three technical replicates.
AMiGA automatically detected two growth phases (separated by dashed vertical line), reaching maximum
growth rates at 6.0 and 15.3 h, respectively. The inset text states the estimated carrying capacity, K, and
maximum growth rate, r, for each unique phase. Bold green lines plot the predicted mean of the growth
function or its derivative, and green bands indicate the predicted 95% confidence interval including
measurement noise. The thin gray lines plot actual growth measurements.
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diauxic shifts. Users can optimize parameters of this algorithm for their specific application
in order to reduce false-positive calls (see Materials and Methods for technical details). This
algorithm can detect diauxic shifts with rapid transition or short lag phase, as we see for
one clinical isolate grown on minimal medium supplemented with glucose (Fig. 1C and
D), or slow transition into secondary growth, as we see for a C. difficile clinical isolate grown
on minimal medium (Fig. 2A; see also Fig. S1 in the supplemental material). Because GP
regression does not assume any underlying shape of growth, this algorithm can capture
two or more unique growth phases.

Here, multiple phases are considered unique if they are separated by a lag phase (defined
as deceleration of growth rate to zero) and if the secondary phase results either in a substan-
tial change of OD or reaches a sufficiently high growth rate. Users can select whether second-
ary shifts are called based on change in growth or growth rate and arbitrarily define the critical
thresholds for these changes. For our C. difficile growth assays, we found that diauxic shifts are
properly detected by a total change in OD during the secondary growth phase of at least 20%
of the total change in OD during the primary growth phase.

Modeling microbial growth dynamics. C. difficile is a Gram-positive spore-forming
pathogen that has recently become the most common hospital-associated infection in
the developed world (15). C. difficile is a genetically diverse species, and distinct ribo-
types are overrepresented in both human outbreaks and animals (16–18). Carbon sub-
strate utilization by clinical C. difficile isolates demonstrates phenotypic diversity
between ribotypes (19, 20). Here, we profiled CD2015, a ribotype 027 C. difficile clinical
isolate, on a Biolog phenotype microarray plate (PM1) using two technical replicates.
All wells in a Biolog PM plate are prearrayed with a single carbon source except for the
first well, which lacks a carbon source and serves as a minimal medium control.

Using AMiGA, we pooled duplicate growth curves for each substrate, modeled
them jointly with GP regression, and inferred microbial growth parameters (Data Set
S1). To identify substrates that supported CD2015 growth, parameters were normalized
by AMiGA to the minimal medium well. Predicted growth curves and parameters can
be visualized with basic, but customizable, figures (Fig. S2 and S3). We detected signifi-
cant growth (defined as a normalized AUC of at least 1.2) on 10 carbon substrates
(Fig. 2). Because GP regression is a nonparametric approach, AMiGA can fit growth
curves with various shapes (Fig. 2A). In minimal defined medium supplemented with a
single carbon source, CD2015 exhibited multiple growth modalities, including rapid

FIG 2 C. difficile exhibited growth curves with various shapes that can be distinguished by growth parameters
inferred by AMiGA. (A, B) CD2015, a ribotype 027 C. difficile isolate, was profiled with a Biolog phenotype
microarray (PM1) plate with two technical replicates. Growth curves for each substrate were natural log
transformed, baseline corrected, and then modeled jointly with GP regression by AMiGA. Growth parameters
for all substrates were normalized to growth parameters on minimal medium by division. (A) CD2015 grew to a
normalized AUC higher than 1.2 on 10 substrates. Substrate labels on the right are color coded and ordered by
the final value of their corresponding growth curves. (B) On four substrates (green), CD2015 experienced
growth rates that are at least 20% higher than growth rates on minimal medium. On ribose and sorbitol, C.
difficile exhibited biphasic growth (orange). On remaining substrates (purple), C. difficile showed logistic or
sigmoidal growth and grew at rates comparable to the rate of growth on the minimal medium (black). Dashed
horizontal and vertical lines show arbitrary thresholds for color coding by normalized growth rate and calling
positive growth, respectively.
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growth followed by rapid death (green; normalized growth rate of $1.2), biphasic
growth with a lower growth rate in the second phase for a prolonged period (orange;
diauxie = true), and logistic or sigmoidal growth (purple and black; normalized growth
rate of ,1.2) (Fig. 2B and Fig. S4). As a bacterial generalist, C. difficile can colonize dif-
ferent nutritional niches in the gut (21). It is also capable of using amino acids as its
sole energy and biomass source (22), which explains its ability to grow on minimal me-
dium and may explain its biphasic growth on ribose and sorbitol. C. difficile may ini-
tially ferment amino acids via the Stickland pathway until they are depleted then tran-
sition to growth on sugars present in the environment (22, 23). However, it is less clear
why rapid growth on certain monosaccharides was swiftly followed by rapid death.

A parametric approach for modeling growth would have poorly characterized some of
these curves andmisrepresented growth dynamics on different substrates. In addition, analysis
that eschews fitting growth curves due to their atypical shapes and simply analyzes areas
under the curve or carrying capacity would miss differences in growth dynamics. For example,
CD2015 showed similar total growth on fructose and trehalose (95% confidence intervals for
AUC, in units of ln OD � h, are 35.89 to 36.55 and 35.93 to 36.94, respectively), but its growth
rates on these substrates were different (95% confidence intervals are 0.57 to 0.64 h21 and
0.33 to 0.48 h21, respectively). Importantly, our approach is not limited to modeling clinical iso-
lates of C. difficile but can model growth dynamics of other microbes, including lab-adapted
and environmental isolates, as we show for Citrobacter sedlakii, Pseudomonas aeruginosa, and
Yersinia enterocolitica (Fig. S5). Because our nonparameteric approach models different growth
shapes, it is especially useful in high-throughput screens for which manual validation of
growth curves would be prohibitively laborious.

Detecting differential growth by comparing growth parameters. In our Biolog
phenotyping, we noticed that certain monosaccharides promoted an atypical growth
curve characterized by a rapid rise followed by a rapid decay in optical density.
Substantial decay in optical density may be explained by autolysis due to rapid loss of
energy-generating substrates (23), sugar-driven phage induction that leads to lysis (24), or
smaller cell sizes due to reductive division or dwarfing (25). Because the substrate concentra-
tion in Biolog PM plates is proprietary information and thus unknown, we wanted to see if
this phenomenon occurs at different concentrations of these substrates. We therefore
assayed 11 clinical isolates of C. difficile representing four different ribotypes (a molecular
classification of closely related strains) for their growth dynamics on minimal medium sup-
plemented with either fructose or glucose as the sole carbon source (Table S1). We recapitu-
lated the rapid growth followed by rapid death phenomenon at 20 mM concentrations of
fructose and glucose (Fig. 3A). Higher concentration of 50mM sugar did not result in the
rapid decay experienced at a lower concentration within 24h, although strains reached simi-
lar carrying capacity on both concentrations (Fig. 3A). Next, we estimated growth parame-
ters and their 95% credible intervals on pooled experimental and technical replicates for
each unique combination of ribotype, sugar, and substrate concentration (Fig. 3B). Growth
on fructose exhibited more dramatic decay of OD after reaching carrying capacity. Indeed,
death rates were also higher (more negative rates) at low concentrations of fructose than at
low concentrations of glucose. In addition, differences in death rates between low and high
concentrations were statistically significant for three ribotypes on fructose but only for one
on glucose (Fig. 3B). In summary, low concentrations of simple sugars, such as glucose or
fructose, can result in rapid lysis of C. difficile after reaching carrying capacity, and the rapid
lysis was heightened for select ribotypes.

Ribotypes notably varied in the precision of their growth dynamics. For example,
predicted growth curves for ribotype 027 strains had much wider confidence intervals than
curves for ribotype 053 strains (Fig. 3B). The difference in confidence is due to differences in
experimental variation across biological and technical replicates of each ribotype (Fig. S6).
Difference in measurement variance is captured by the model-optimized Gaussian noise
term, which is used in the estimation of confidence intervals (Fig. 3B). Here, noise is modeled
as a single time-independent term and optimized for estimating measurement noise across
all time points while maximizing model fit. To do so, it may, however, amplify confidence
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intervals at time points where measurement variance is empirically low. For example, mea-
surement noise is smaller during lag and exponential phases but larger during stationary
and death phases. To fine-tune predicted confidence intervals, AMiGA users can opt to
empirically estimate measurement noise as previously described (9), which can result in con-
fidence intervals that more closely follow actual measurement noise over time (Fig. S6). Still,
the time-independent noise term provides useful insight about our experiment. Here, we
saw that ribotype 027 has the largest noise term and widest confidence intervals relative to
other ribotypes. This may reflect larger phenotypic diversity among ribotype 027 isolates or
may suggest a need for generating starting cultures in a manner that reduces variability in
initial population size and physiology (26).

Quantifying differential growth across all time points. We initially contrasted
growth on distinct experimental conditions by comparing growth parameters using

FIG 3 Low concentration of glucose or fructose induce rapid death of microbial cultures in stationary phase. (A) AMiGA-predicted growth curves for clinical
isolates belonging to four ribotypes (two RT001 isolates, four RT027 isolates, two RT053 isolates, and three RT078 isolates) grown on minimal medium
supplemented with no (0mM), low (20mM), or high (50mM) concentrations of either glucose or fructose. Growth for each isolate was measured with three
technical replicates. Bold lines indicate the predicted mean of growth, and bands indicate the predicted 95% credible intervals, including measurement
noise. (B) Summary of differences in growth using model estimates of the area under the curve, exponential growth rate, and stationary death rate.
Sampling uncertainty was summarized with the model-estimated Gaussian noise. Error bars indicate the 95% credible interval, and asterisks indicate no
overlap of credible intervals between low and high conditions for each ribotype and sugar combination.
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standard univariate statistical tests. This approach only detected differences captured
by selected growth parameters. AMiGA can instead agnostically test for differential
growth due to specific covariates (or conditions) as previously developed and
described (10, 27). Briefly, the primary covariate of microbial growth measurements is
the independent variable of time. We can extend a GP regression model to include
additional categorical covariates that may contribute to differences in growth meas-
urements over time, such as nutrient conditions (e.g., carbon substrate) or genotypes
(e.g., C. difficile ribotype). We can then jointly predict microbial growth (ln OD) on these
different conditions and the functional difference (ODD = ODHigh 2 ODLow) in growth
between these conditions (Fig. 4A and Table S2). Functional differences that deviate
from zero suggest that different experimental conditions yield different growth dy-
namics. By aggregating these functional differences into a single metric, we can further
compare how sugar concentration contributes to differences in growth based on C. dif-
ficile ribotype (Fig. 4B). AMiGA computed the Euclidean distance between two curves
over time, which we refer to as the “sum of functional differences” (kODDk; see
Materials and Methods for computation) (27). We confirmed that RT078 isolates experi-
enced the largest growth differences due to sugar concentration, and that differences
of growth due to fructose concentration for all ribotypes are higher than differences
due to glucose concentration (Fig. 4B).

The sum of functional differences is a valuable metric for rank ordering conditions
that impact overall growth dynamics. However, these summary scores are sensitive to
the scale or magnitude of the growth curves. If the overall growth of C. difficile on both
conditions is amplified by the same factor, then so are the functional differences
between them. We can instead quantify the effect of an additional covariate on the
growth model with less bias from the overall magnitude of growth using log Bayes fac-
tor scores (10). Briefly, growth is modeled on two hypotheses. The null hypothesis
assumes that only time explains differences in growth data, while the alternative hy-
pothesis includes additional covariates of interest in the model. We assess the

FIG 4 Testing for differences in growth of each ribotype on low versus high concentrations of glucose or fructose. For each ribotype
and sugar combination, we jointly modeled growth of microbial isolates on both low and high concentrations of each sugar. (A)
Ribotype 053 C. difficile exhibited functional differences in growth on high versus low concentrations of fructose (ODD = ln ODHigh 2 ln
ODLow) with small differences in OD during early stationary phase and much larger differences in OD after 18 h. (B) Functional
differences between growth on low versus high concentration of each sugar for each ribotype are summarized with the sum of
functional differences, kODDk, which quantifies the magnitude of differences between two curves. Error bars indicate 95% confidence
intervals. (C) Log Bayes factor scores estimated how much the performance of these models improved by including the “concertation”
covariate in addition to “time” in the models’ input. Black horizontal lines indicate the FDR of #10% threshold based on 100 model
permutations. Actual log Bayes factor scores above these thresholds are considered significant.
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goodness of fit (or likelihood) of these competing models using the log Bayes factor
score, which is the log ratio of the likelihood of the alternative hypothesis to the likeli-
hood of the null hypothesis. Log Bayes factor scores higher than zero provide more
evidence for the alternative hypothesis than for the null hypothesis. By permuting the
covariate labels, we can also determine the false discovery rate (FDR) thresholds and
only consider Bayes factor scores that outperform the threshold as significant.

We can broadly recapitulate our previous findings using the nonparametric log Bayes
factor score. For the growth of each ribotype on either fructose or glucose, we computed a
Bayes factor score, which evaluated if model predictions improve with knowledge of sub-
strate concentration. Indeed, model performance improved for all conditions except for
RT053 isolates grown on glucose, where the growth on low or high concentrations of glu-
cose barely differed (Fig. 4C). Importantly, the log Bayes factor score highlighted differences
in growth curves that are not captured by significant differences in death rate, such as the
differential growth of RT001 and RT027 on distinct concentrations of glucose as well as the
differential growth of RT001 on distinct concentrations of fructose (Fig. 3B). Although signifi-
cant, these differences are minor in terms of functional differences or effect size, as indicated
by the sum of functional differences (Fig. 4B).

As an additional example of AMiGA hypothesis testing, we reanalyzed the data set
of Dunphy et al. (28) where they tested the growth of Pseudomonas aeruginosa trans-
poson mutants on 20mM N-acetyl-D-glucosamine. They found that seven out of eight
mutants had significantly different carrying capacities compared with the ancestral
strain. Our analysis further identified differential growth that can be missed by only
analyzing carrying capacity (Fig. S7). The sums of functional differences, kODDk, indicated
that all mutants exhibited statistically different growth compared with the ancestral strain.
Most of these functional differences can be attributed to differences in carrying capacity,
growth rate, and lag time. We confirmed that seven out of the eight strains grew to a higher
OD or carrying capacity than the ancestral strain. We also showed that the eighth strain
(PA14_57880) reached similar carrying capacity as the ancestral strain, but it did so with a
shorter lag time and lower growth rate. We also showed that two strains with similar carry-
ing capacities (PA14_41710 and PA14_44360) had significantly different lag time, growth
rate, and total growth, as indicated by area under the curve. A comparison of these two iso-
lates had a log Bayes factor score of 311.29 and a sums of functional differences of 1.36
(95% confidence interval of 1.04 to 1.68). Overall, differential testing can help users prioritize
post hoc analysis and experimental validation by ranking conditions based on log Bayes fac-
tor scores or sums of functional differences.

DISCUSSION

Recent advances in laboratory automation have dramatically increased the throughput
of microbial growth assays. Important aspects of analyzing these data sets include screening
for desired phenotypes (29), discovering genotype-phenotype relationships (27, 30), investi-
gating cross talk of environmental pressures and microbial dynamics (28, 31), and predicting
microbial fitness under a variety of conditions (32, 33). Yet, we are continuing to learn how
growth dynamics are affected by a variety of technical and experimental factors (26).
Scientists are also increasingly able to cultivate nontraditional or nonlab-adapted strains and
manipulate them under a wide variety of treatments. The study of diverse microbes under
widely different applications and growth conditions can thus generate growth modalities
that do not follow standard sigmoidal growth and require more nuanced analysis. Here, we
contribute a user-friendly software that can further streamline the analysis of microbial
growth assays (AMiGA) with a nonparametric modeling approach.

We showcased our software using multiple examples to highlight several useful fea-
tures. AMiGA can infer biologically meaningful parameters either by analyzing individ-
ual growth curves or pooling replicates of similar experimental conditions across multi-
ple data sets. The latter approach enables inference with summary statistics for growth
parameters, in particular the mean and confidence intervals. It can also probabilistically
compare microbial growth under distinct conditions, which can aid scientists in ranking
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experimental conditions for post hoc validation. We also developed a novel algorithm for
the detection and characterization of multiphasic growth without any underlying assump-
tions of growth curve shape. Diauxie is a complex behavior characterized by two phases of
growth that are often separated by a lag phase (1, 14, 34). There are no consensus formula-
tions for diauxie, and current studies have relied on ad hoc analysis of growth data. Our
novel algorithm for diauxie characterization can simplify its analysis and contribute to
ongoing efforts for studying its behavior. Finally, emerging research on antibiotic- and
phage-microbial interactions can benefit from automated approaches for measuring and
quantifying the inhibition of microbial growth or death of microbial culture as we demon-
strate here (29, 33). In summary, AMiGA streamlines the analysis and interpretation of
growth curve assays in a high-throughput user-friendly manner and can be utilized in a
wide variety of microbiology experiments.

MATERIALS ANDMETHODS
Bacterial strains and growth. C. difficile strains were mostly clinical isolates obtained from the Michigan

Department of Community Health (Table S1) (35). Growth assays were carried out at 37°C in anaerobic atmos-
phere (5% CO2, 5% H2, 90% N2) using prereducedmedium. Strains were cultured overnight in brain heart infusion
(Difco) supplemented with 5% (wt/vol) yeast extract (BHIS). C. difficile cultures were diluted 1:10 in defined mini-
mal medium (DMM) to a final OD of;0.05 based on absorbance (620nm) in a 1-cm cuvette with a spectropho-
tometer (Thermo Scientific, Genesys 20). DMM is the basal definedmedium in Table 1 of Karasawa et al. (36) with
several adjustments. The concentrations for 11 amino acids were lowered to the following: glycine, histidine, and
tryptophan, 75mg liter21; arginine, methionine, and threonine, 150mg liter21; isoleucine and valine, 225mg
liter21; leucine, 300mg liter21; cysteine, 400mg liter21; and proline, 450mg liter21; and the concentrations for
biotin were increased to 0.125mg liter21. Cultures were mixed 1:1 with sugar solutions for final concentrations of
either 20mM or 50 mM glucose or fructose. For Biolog PM assays, overnight growth of CD2015 was subcultured
1:5 in BHIS broth and grown to mid-exponential phase (OD ;0.6) then diluted in DMM to a final OD of 0.05
based on absorbance (620nm) in a 1-cm cuvette. Each well in the prereduced Biolog PM plate was inoculated
with 100ml of final cell suspension. In remaining assays, cultures were grown in 200 ml volumes. All cultures
were grown statically for 24h and optical density (620nm) was measured every 10 min immediately after 5 s of
orbital shaking by a microplate reader (Tecan Life Sciences, Sunrise).

Modeling growth data as a Gaussian process. Microbial growth is defined as the observations of
microbial abundance over time. Mathematical models, such as logistic or Gompertz equations, can
describe a microbial growth curve (37). However, microbial growth does not always follow the standard
sigmoidal shape. As a nonparameteric statistical approach, GPs can model microbial growth without
making assumptions about the underlying shape or characteristics of its function. A GP is a probability
distribution over functions (here, curves) where any finite number of observations of these functions,
with independent and identically distributed Gaussian noise, are distributed as a multivariate normal dis-
tribution (38). In the GP framework, we assume that we have a set of observed functions f (x) [ RN at
input random vector of x [ RN, where N is the number of random variables. The observed values are
drawn from a multivariate normal distribution.

f xð Þ;N m xð Þ; Rð Þ

The equation m(x) [ RN is a mean function, and R [ RN�N is a covariance function or kernel where Rij =
k(xi, xj) with i; j 2 1 � � �N.

To model microbial growth curves, a GP can be specifically indexed at time such that a microbial
growth function is a vector where each entry in the vector specifies a random variable, here, the func-
tion value fðtiÞ at a particular input time ti 2 t1; t2; � � � ; T .

lnOD tð Þ;N m tð Þ; Rð Þ

The natural log of optical density (lnOD) is now the observed function at input values of t 2 RT , m tð Þ is a
mean function, R is a covariance function or kernel, and T indicates the number of observed random
variables or time points.

While a Gaussian process is a distribution over an infinite number of arbitrary functions, we can bias a GP
to infer functions that follow certain characteristics. To ensure the inference of smooth microbial growth curves,
we can specify the priors of a GP to a mean function of zero, m tð Þ ¼ 0, and the kernel or covariance function
to a radial basis function (RBF) with a time-independent Gaussian noise hyperparameter.

k ti; tjð Þ ¼ s 2
RBFexp 2

ti 2 tjð Þ2
2‘2

� �
1s 2

noise � d i¼j

The RBF signal variance is s 2
RBF, ‘

2 is the RBF lengthscale, s2
noise is Gaussian noise hyperparameter, and

d i¼j is an indicator function that is equal to one when i ¼ j and zero otherwise.
In the above definition, the sampling uncertainty is modeled by the time-independent Gaussian

noise hyperparameter s 2
noise. Users can opt to empirically estimate measurement noise, s2

emp, and include it in
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the kernel as previously described (9). In particular, we specify the kernel to be the sum of the RBF kernel and
time-dependent noise parameters.

k ti; tjð Þ ¼ s 2
RBFexp 2

ti 2 tjð Þ2
2‘2

� �
1 s 2

noise 1s 2
empðtiÞ

� �
� d i¼j

The empirical noise parameter, s2
emp, is estimated empirically using the variance across all replicates

at each time point, which is then smoothed over time with a Gaussian filter (scipy.ndimage.gaussian_
filter1d). Default width of the filter is 1 h but can be adjusted by users. Unlike model-estimated noise,
empirically estimated noise is only used for model optimization and cannot be used for predicting OD
at new time points.

Estimating microbial growth parameters. The GP model parameters are optimized to any given
data by maximizing the marginal likelihood through integrating over all possible functions. The opti-
mized hyperparameters can then be used to predict the latent or hidden function and sample new func-
tions from its posterior distribution. Because the derivative of a GP is another GP (38, 39), we can also
use GPs to make predictions about the derivatives of the growth curve (i.e., growth rate over time) and
sample the posterior of the first and second derivatives of the GP.

AMiGA estimates growth parameters from the optimized model either directly by analyzing the
latent function and its derivatives or by sampling many functions from the posterior of the latent func-
tion and its derivatives then estimating the growth parameters of each new sample. The latter approach
provides a distribution for the estimates of each growth parameter, which are then summarized into
their means, standard deviations, and confidence intervals.

The growth curve metrics of carrying capacity (K), maximum specific growth rate (mmax), and area under
the curve (AUC) were estimated as previously described (10). Briefly, K and mmax are the maximum a posteriori
(MAP) estimates of the growth, lnOD tð Þ, and the growth rate, d=dtð ÞlnODðtÞ, functions. The estimate of AUC
was calculated as the Riemann sum of the lnOD tð Þ function. In particular, lnOD was predicted at evenly spaced
time points, then linearly transformed with vector of time intervals, a ¼ Dt;Dt; . . ., such that an approximation
of the AUC follows a normal distribution of AUC;N a �m; aRaT

� �
, where m and R are the mean and covari-

ance of the predicted lnOD tð Þ function.
AMiGA also computes additional growth parameters, including death, maximum death rate, adaptation

time, lag time, and doubling time. Death is simply the absolute difference between the growth measurements
at the final time point and the carrying capacity. The maximum death rate is estimated as the minimum of the
negative of the derivative function d=dtð ÞlnOD tð Þ, except t is limited to tK ; . . . ; Tð Þ to capture maximum death
rate after reaching carrying capacity at tK , whereas T indicates the final time measurement. Adaptation time is
computed probabilistically as the time at which the 95% credible interval of the growth rate, d=dtð ÞlnOD tð Þ,
deviates from zero. Lag time is computed using its classical definition (37) as the intersection of the tangent
line to the d=dtð ÞlnOD tð Þ function at maximum growth rate and the line parallel to the x axis or time (9).
Doubling time is computed as ln 2ð Þ times the inverse of the maximum specific growth rate.

Detecting and characterizing multiple growth phases. AMiGA applies a novel algorithm for
detecting diauxic shifts that utilizes first- and second-order derivatives of growth measurements and a
customizable heuristic for calling unique growth phases (see Fig. S1 in the supplemental material for
illustration). AMiGA computes the first- and second-order derivatives of each latent function, which cor-
respond to the growth rate and the change in growth rate over time, respectively. The second-order de-
rivative indicates inflection points that are defined as d2=dt2

� �
lnOD tð Þ ¼ 0. Positive inflection points

indicate acceleration of growth, while negative inflection points indicate deceleration. These inflection
points also correspond to the valleys and peaks in the first-order derivative, respectively. Multiple phases
are considered unique if they are separated by a lag phase, which is indicated by a negative inflection
point in the second-order derivative (i.e., deceleration of growth rate to zero). Thus, each potential
unique growth phase is bounded by two consecutive positive inflection points. AMiGA handles edge
measurements by assuming positive inflection points at the first and last time points.

AMiGA then applies a heuristic to determine if each potential growth phase indicates a significant
change in growth dynamics. A potential growth phase is deemed real if it either results in a substantial
change of growth, lnOD tð Þ, or reaches a sufficiently high growth rate, d=dtð ÞlnOD tð Þ, relative to the pri-
mary growth phase. Users can select whether secondary shifts are called based on change in growth or
growth rate and arbitrarily define the critical thresholds for these changes. For our C. difficile assays, we
found that diauxic shifts are properly detected, with few false positives, by a total change in OD during
the secondary growth phase of at least 20% of the total change in OD during the primary growth phase.

After computing the first-order and second-order derivatives, AMiGA iteratively compares potential
phases based on their total growth (or growth rate). Starting with the phase with the smallest growth,
AMiGA compares it to the primary phase with the largest growth. If the smallest phase is associated
with growth that exceeds a certain ratio of the growth caused by the primary phase, it is confirmed as a
unique growth phase. Otherwise, this nongrowth phase is merged to one of its adjacent phases. The
nongrowth phase is merged to the adjacent phase with the lower activation energy, which is defined as
the difference between the maximum growth rate during the nongrowth phase and the growth rates at
either its left or right boundary (i.e., at its beginning and end). Growth phases are then reranked based
on their total growth, and iteration continues. The iterative process is completed when the smallest
growth phase is confirmed as a unique growth phase or when all potential phases have been merged
into a single growth curve, thus indicating that no diauxic shifts (or shifts in growth phases) have
occurred. Once all growth phases have been detected, AMiGA describes them by their growth parame-
ters in addition to their time boundaries.
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Testing for differential growth. AMiGA applies the framework of Tonner et al. (10) for Bayesian testing
of differential growth between two conditions. A Gaussian process can be extended to model additional cova-
riates or dimensions beyond time, where each dimension has a unique independent lengthscale. This is illus-
trated in vector notation of the squared exponential covariance as described in Solak et al. (39) where

k xi; xjð Þ ¼ s 2
RBFexp 2

1
2

xi 2 xjð Þ C xi 2 xjð Þ9
� �

1s 2
noise � d i¼j

Here, the random variables are now multidimensional with input vectors xi = [xi,1,� � �,xi,D],xi = [xj,1,� � �,xj,D], D is
the number of dimensions and the first dimension of the random variable, xi;1 or xj;1 is always time, and the

dimension-specific lengthscales are defined by C ¼ diag 1
‘21
; . . . ; 1

‘2D

� �
, where ‘2d is the RBF lengthscale for dimen-

sion d. Other model hyperparameters include s 2
RBF (RBF variance) and s2

noise (Gaussian noise).
Accordingly, AMiGA tests for differential growth by comparing a null model, where the only

dimension in input is time, xi ¼ ½time�, with an alternative model where input is multidimensional, for
example, xi ¼ ½time; substrate�, with time as the first covariate and an additional covariate included
as a binary variable xi;2 2 0; 1f g.

Differential growth is quantified with a Bayes factor score, defined as the ratio of the likelihood (L)
of the data given the alternative hypothesis or model (M1) to the likelihood of the data given the null hy-
pothesis or model (M0).

Bayes factor ¼ L DatajM1

� �
L DatajM0

� �

A Bayes factor score higher than 1 indicates stronger evidence for the alternative model than for the
null model. High scores indicate that the additional covariate improves null model performance and
suggest that growth curves are functionally different due to covariate effects. A false discovery rate
(FDR) for each Bayes factor score is calculated by estimating the null Bayes factor score distribution. In
particular, the label of the additional covariate was randomly assigned to each sample without replace-
ment from the original distribution of the covariate in the model input. Then, a null Bayes factor score
was calculated for each permutation of the model. The null distribution comprised 100 permutations of
the data set, and FDR (default is #10%) was defined as the 90th percentile of the null Bayes factor
distribution.

Quantifying functional differences between conditions. When testing for differential growth,
AMiGA also models the functional difference due to the additional covariate. The functional difference
across all time points, ODDðtÞ, is defined as the difference in OD predicted for each condition (10) as
follows:

ODDðtÞ ¼ lnODAðtÞ2 lnODBðtÞ

Time is indicated by t 2 1; � � � ; T , and OD is predicted for conditions A and B jointly. These differences
can be summarized into a single metric, kODDk, which is the Euclidean distance between the predicted
OD curves and thus represents the magnitude of functional difference between conditions (27). We
define the “sum of functional differences” as follows:

ODD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

t¼t0

ODDðtÞ½ �2
vuuut

Time is indicated by t, t0 indicates the first time measurement, and T indicates the final time measurements.
The uncertainty of the sum of functional differences is estimated by sampling 100 times from the

posterior distribution of the functional difference, computing the sum of functional differences for each
sample, then reporting the mean and 95% confidence interval of the distribution.

Data preprocessing. To account for background optical density and instrumentation noise and to
prepare for growth modeling, AMiGA can apply several corrections in the following order. First, AMiGA
can ignore the first few time points because plate reader measurements often exhibit abnormally high
variation in OD at the beginning of a growth assay. Second, users can subtract blank medium controls
from each well to account for background optical density due to medium and its variation over time.
Third, growth curves belonging to group-specific control samples (e.g., minimal medium in Biolog PM)
can be subtracted from treatment or target growth curves. Fourth, AMiGA handles negative or zero val-
ues by vertically shifting all measurements such that the lowest value is positive. The smallest possible
vertical offset can be either defined by the user as the limit of detection of their plate reader assay or
empirically estimated from the distribution of the change in OD between consecutive measurements.
Fifth, growth data are transformed with a natural logarithm. Because the natural logarithm of zero
equals one, changes in log OD over time thus indicate changes in OD relative to an arbitrary starting
population size of one. Finally, the OD value at the first measurement can be estimated with polynomial
regression of degree of five on the first five time points as previously described (10). Based on user pref-
erences, polynomial-estimated OD measurement or the actual OD measurement at the first time point is
then subtracted from all consecutive measurements in a curve. The only required steps in these corrections are
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the handling of negative or zero values, natural logarithm transformation, and baseline correction to start growth
curves at zero. The remaining steps are optional and can be requested and configured by users.

In this article, we eliminated the first measurement of each growth curve only for the CD2015 Biolog PM
assay, did not correct for blank medium or control samples, and subtracted the first measurement after log trans-
formation to start growth curves at zero. However, we encourage users to perform all necessary corrections in
their assay as high background optical density or low signal-to-noise ratio in the early stages of growth can affect
the inference of several growth parameters, including adaptation time, lag time, and growth rate.

Growth data sets for C. sedlakii, P. aeruginosa, and Y. enterocolitica were publicly available (see Data availabil-
ity) and underwent minor preprocessing. Growth data for ancestral strain and transposon mutants of P. aerugi-
nosa (Fig. S7) were based on four colonies per strain with three technical replicate curves per colony. We used
only the median growth curve of technical replicates for each colony. Unlike other assays, the growth data for Y.
enterocolitica (Fig. S5) were based on Biolog PM technology, where absorbance corresponded to colorimetric
changes due to cellular respiration on nutrients in each well. The measurements for Y. enterocolitica were very
noisy in the first few measurements (at the first time point, mean=16.4, median=15, minimum=0, and
maximum=60), while the maximum absorbance detected across all time points and growth curves was 333
with an average of 126.2. Therefore, we forced a limit of detection of 20 units on all growth measurements of Y.
enterocolitica to reduce the bias of the first few noisy time points on growth modeling.

Data postprocessing. AMiGA has options for exporting preprocessed and postprocessed data,
including input and output of the GP model, predicted growth parameters, predicted mean and covari-
ance for both growth and its first-order derivative, predicted Gaussian noise, s 2

noise, as well as sampling
uncertainty (i.e., measurement variance) if estimated empirically. Credible intervals for growth curves (or
parameters) can be computed from the predicted means and standard deviations.

lnODðtÞ ¼ mðtÞ6 Ut 12
a

2

� �
� sðtÞ

Here, m tð Þ and s tð Þ are the mean and standard deviation of the latent function, respectively, Ut is
the inverse of the cumulative distribution function for the standard normal, and a indicates statistical
significance, such that 12að Þ is the desired confidence level. The standard deviation for predicted OD
at each time point is computed as the square root of the sum of variances due to RBF signal, s2

RBF,
Gaussian noise, s 2

noise, and empirically estimated measurement noise, s2
emp, as follows:

s tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2

RBF 1s 2
noise 1s 2

empðtÞ
q

Users can opt to plot confidence intervals and compute functional differences without accounting
for Gaussian or measurement noise.

Software implementation. AMiGA is written in Python 3 (Python Software Foundation, https://
www.python.org). It utilizes GPy for Gaussian process regression (40), Pandas (41), NumPy (42), and
SciPy (43) for data manipulation and scientific computing, and Matplotlib (44) and Seaborn (45) for data
visualization. Code for AMiGA and growth data for C. difficile analyzed in this article are available online
(https://github.com/firasmidani/amiga) with detailed documentation and tutorials.

Data availability. Growth data for C. difficile analyzed in this article are available online; see https://
github.com/firasmidani/amiga. Growth data for C. sedlakii (2), Pseudomonas aeruginosa (28), and Yersinia
enterocolitica (7) were previously published and are available in public repositories listed in their corre-
sponding articles. See https://github.com/dacuevas/PMAnalyzer for C. sedlakii data, https://github.com/
lauradunphy/dunphy_yen_papin_supplement for P. aeruginosa data, and https://github.com/kevinVervier/
CarboLogR for Y. enterocolitica data.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
DATA SET S1, XLSX file, 0.1 MB.
FIG S1, TIF file, 0.5 MB.
FIG S2, TIF file, 0.7 MB.
FIG S3, TIF file, 0.5 MB.
FIG S4, TIF file, 0.5 MB.
FIG S5, TIF file, 2.2 MB.
FIG S6, TIF file, 0.9 MB.
FIG S7, TIF file, 1.2 MB.
TABLE S1, DOCX file, 0.03 MB.
TABLE S2, DOCX file, 0.03 MB.
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