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Neurofibromatosis Type 2- (NF2-) associated vestibular schwannomas (VSs) are histologically benign tumors.,is study aimed to
determine disease-related genes, pathways, and potential therapeutic drugs associated with NF2-VSs using the bioinformatics
method. Microarray data of GSE108524 were downloaded from the Gene Expression Omnibus (GEO) database, and differentially
expressed genes (DEGs) were screened using GEO2R. ,e functional enrichment and pathway enrichment of DEGs were
performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes Genomes (KEGG). Furthermore, the STRING and
Cytoscape were used to analyze the protein-protein interaction (PPI) network of all differentially expressed genes and identify hub
genes. Finally, the enriched gene sets belonging to the identified pathways were queried against the Drug-Gene Interaction
database to find drug candidates for topical use in NF2-associated VSs. A total of 542 DEGs were identified, including 13
upregulated and 329 downregulated genes, which were mainly enriched in terms of focal adhesion, PI3K-Akt signaling pathway,
ECM-receptor interaction, Toll-like receptor signaling pathway, Rap1 signaling pathway, and regulation of actin cytoskeleton. 28
hub genes were identified based on the subset of PPI network, and 31 drugs were selected based on the Drug-Gene Interaction
database. Drug discovery using bioinformatics methods facilitates the identification of existing or potential therapeutic drugs to
improve NF2 treatment.

1. Introduction

VSs, also known as acoustic neuromas, are histologically
benign tumors originating from the eighth nerve. NF2 is a
rare autosomal dominant inherited disorder tumor caused
by deletion or loss-of-function mutations in the NF2 gene
encoding merlin [1]. ,e main characteristic of NF2-asso-
ciated VSs is the bilateral schwannomas of the vestibular
nerve, which leads to sensorineural hearing loss, facial pa-
ralysis, vestibular dysfunction, brainstem compression, and
even death [2]. Despite their benign nature, NF2-associated
VSs have poor prognosis prone to recurrence, and there are
no curative treatments. At present, the primary treatments
are follow-up observation, microsurgery, and radiosurgery
which are not always effective and sometimes cause neu-
rological deficits [3]. Patients with hearing loss sometimes

accept the otolaryngology surgery and require improving or
saving hearing. With the targeted molecular therapies be-
coming increasingly common, drug therapy has gradually
become possible. ,erefore, it is urgently required to de-
termine effective drug targets for NF2-associated VSs
therapies. ,e present study aimed to determine disease-
related genes, pathways, and potential targeted therapeutic
drugs associated with NF2-associated VSs using the bio-
informatics method.

2. Materials and Methods

2.1. Microarray Datasets. ,e gene expression profile
GSE108524 of the NF2-associated VSs and normal nerve
groups was obtained from the NCBI GEO database. ,ese
microarray data were based on GPL17586 Platform [HTA-
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2_0] Affymetrix Human Transcriptome Array 2.0 [transcript
(gene) version], including 17 NF2-associated VSs tissues and
4 normal nerves.

2.2. Identification of DEGs. GEO2R (http://www.ncbi.nlm.
nih.gov/geo/geo2r/), a web tool based on the analysis of
variance or t-test, was used to identify DEGs between NF2-
associated VSs tissues and normal nerves. ,e DEGs were
identified as the genes with |log FC|≥ 1.5 and adj. P< 0.05.

2.3. Functional and Pathway Enrichment Analysis of DEGs.
,e Database for Annotation, Visualization, and Integrated
Discovery (DAVID) (Version 6.8, https://david.ncifcrf.gov/)
was used to perform GO and KEGG pathway enrichment
analysis of DEGs. GO analysis contains biological process
(BP), cellular component (CC), and molecular function
(MF). GO term with the criterion of P< 0.05 and false
discovery rate (FDR)< 0.05 and KEGG pathway analysis
with the criterion of P< 0.05 were considered statistically
significant.
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Figure 1: (a) DEGswere selected by volcano plot filtering (|fold change |≥ 1.5 and adj.P< 0.05). (b),e heatmap of DEGs inNF2-associatedVSs
(top 100 upregulated and downregulated genes). Green represents a downregulated expression, and red indicates an upregulated level.
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2.4. Protein-Protein Interaction (PPI) Network Analysis.
We submitted DEGs in Search Tool for the Retrieval of
Interacting Genes database (STRING, http://www.string-db.
org/) to screen the PPI pairs with a combined score of ≥0.4
and visualized the interaction using Cytoscape software
(Version 3.7.0.). Finally, CentiScaPe and Molecular Com-
plex Detection (MCODE), a Cytoscape plugin, were utilized
to screen PPI network key genes. ,e default parameters of
MCODE were used: degree cutoff ≥2, node score cutoff ≥0.2,
k-score ≥ 2, and maximum depth� 100.

2.5. Drug-Gene Interaction Analysis. To better identify po-
tential targeted therapeutic drugs for NF2-associated VSs,
the hub genes were mapped onto the Drug-Gene Interaction
database (DGIdb; http://www.dgidb.org) to obtain potential
drug target genes and potential NF2-associated VSs treat-
ment drugs. Visualization of the drug-gene interaction was
generated using Cytoscape software (Version 3.7.0.). In
addition, ClinicalTrials.gov (https://clinicaltrials.gov) was
used to identify whether drugs have been previously in-
vestigated or are being currently tested in clinical trials.

2.6. Human NF2-Associated VSs Specimens. Human NF2-
associated VSs tissues with the matched normal adjacent
specimens were obtained from the Second Hospital of
Guangxi Medical University.,is study was approved by the
Ethics Committee of the Second Hospital of Guangxi
Medical University.

2.7. Quantitative PCR (qPCR). Reverse transcription was
carried out using SYBR premix EX Taq (Takara, Japan), and

SYBR Premix Ex Taq II (Takara) was used for qPCR. We
used several sequences: EGFR forward primer 5′-CTA-
CAACCCCACCACGTACC-3′ and reverse primer 5′-
CGCACTTCTTACACTTGCGG-3′; GAPDH forward
primer 5′-CTTCGCTCTCTGCTCCTCCTGTTCG-3′ and
reverse primer 5′-ACCAGGCGCCCAATACGACCAAAT-
3. ,e results were calculated using the 2−ΔΔCt method.

2.8. StatisticalAnalysis. Statistical analysis was conducted by
SPSS 20.0 software. ,e statistical significance between
groups was determined using a two-tailed Student’s t-test.
Values of P< 0.05 were considered to indicate statistically
significant differences.

3. Results

3.1. IdentificationofDEGs. A total of 542 DEGs, including 13
upregulated and 329 downregulated genes, were identified
by comparing 17 NF2-associated VSs tissues and 4 normal
nerves from GSE108524. ,e heat map and volcano plot
showed these DEGs (Figure 1).

3.2. FunctionalAnnotationandPathwayEnrichmentAnalysis
of DEGs. GO functional annotation revealed that the DEGs
were significantly enriched in BP terms including cell ad-
hesion, inflammatory response, immune response, signal
transduction, positive regulation of protein kinase B sig-
naling, positive regulation of ERK1 and ERK2 cascade, and
positive regulation of GTPase activity. In addition, the CC
terms mainly showed plasma membrane, extracellular
exosome, extracellular region, extracellular matrix, and
membrane raft. MF enrichment indicated heparin binding

Table 1: GO analysis of differentially expressed genes.

Category Term Count P value FDR
BP GO:0007155∼ cell adhesion 38 <0.001 <0.001
BP GO:0006954∼ inflammatory response 34 <0.001 <0.001
BP GO:0006955∼ immune response 32 <0.001 <0.001
BP GO:0007165∼ signal transduction 58 <0.001 0.0054
BP GO:0051897∼ positive regulation of protein kinase B signaling 12 <0.001 0.0203
BP GO:0070374∼ positive regulation of ERK1 and ERK2 cascade 17 <0.001 0.0261
BP GO:0043547∼ positive regulation of GTPase activity 34 <0.001 0.0265
BP GO:0030198∼ extracellular matrix organization 18 <0.001 0.0285
BP GO:0030335∼ positive regulation of cell migration 17 <0.001 0.0488
CC GO:0005615∼ extracellular space 87 <0.001 <0.001
CC GO:0005887∼ integral component of plasma membrane 88 <0.001 <0.001
CC GO:0005886∼ plasma membrane 177 <0.001 <0.001
CC GO:0005578∼ proteinaceous extracellular matrix 31 <0.001 <0.001
CC GO:0009986∼ cell surface 42 <0.001 <0.001
CC GO:0070062∼ extracellular exosome 121 <0.001 <0.001
CC GO:0005576∼ extracellular region 81 <0.001 <0.001
CC GO:0031012∼ extracellular matrix 28 <0.001 <0.001
CC GO:0009897∼ external side of plasma membrane 21 <0.001 <0.001
CC GO:0045121∼membrane raft 20 <0.001 0.0020
CC GO:0016021∼ integral component of membrane 179 <0.001 0.0020
CC GO:0005925∼ focal adhesion 27 <0.001 0.0122
CC GO:0045202∼ synapse 17 <0.001 0.0224
MF GO:0008201∼ heparin binding 20 <0.001 <0.001
MF GO:0005178∼ integrin binding 14 <0.001 0.0041
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and integrin binding (Table 1). Furthermore, KEGG path-
way enrichment analysis revealed focal adhesion, PI3K-Akt
signaling pathway, ECM-receptor interaction, Toll-like re-
ceptor signaling pathway, Rap1 signaling pathway, and
regulation of actin cytoskeleton (Table 2).

3.3. PPI Network Analysis. In total, we made the PPI
network of 369 nodes and 1,322 edges, based on the

STRING database (Figure 2(a)). We identified 28 hub
genes with connectivity degree ≥20 (Figure 2(b), Table 3).
,en, using MCODE, three modules with scores >4.5 and
a number of nodes >18 were selected. Module 1 with a
score of 9.368 consisted of 20 nodes and 89 edges
(Figure 2(c)), module 2 with a score of 4.588 comprised 18
nodes and 39 edges (Figure 2(d)), and module 3 with a
score of 4.455 comprised 23 nodes and 49 edges
(Figure 2(e)).

Table 2: KEGG pathway analysis of differentially expressed genes.

Term Count P

value Genes

hsa05150: staphylococcus aureus
infection 13 <0.001 C3AR1, C3, HLA-DRB3, FPR1, C1R, C1S, HLA-DQA1, FCGR1A, CFH,

FCGR3A, CFD, SELPLG, FCGR3B

hsa04145: phagosome 19 <0.001
MRC1, NOS1, OLR1, C3, TUBB2A, HLA-DRB3, TLR2, HLA-C, C1R, TLR6,
HLA-DQA1, CYBB, CD36, FCGR1A, COMP, CLEC7A, FCGR3A, FCGR3B,

THBS4
hsa04514: cell adhesion molecules
(CAMs) 16 <0.001 CLDN19, HLA-DRB3, HLA-C, L1CAM, NLGN3, CDH2, HLA-DQA1, CDH5,

ALCAM, NCAM1, CD86, CD34, ITGA8, CLDN1, CD4, SELPLG

hsa04640: hematopoietic cell lineage 12 <0.001 CR1, CD37, CD36, CD34, HLA-DRB3, FCGR1A, MME, IL1B, CD4, ANPEP,
CSF2RA, CSF1R

hsa05144: malaria 9 <0.001 CR1, CD36, COMP, TLR2, IL1B, HBA2, HBA1, HBB, THBS4
hsa04610: complement and
coagulation cascades 10 <0.001 C3AR1, VWF, CR1, C3, F13A1, CFH, TFPI, C1R, C1S, CFD

hsa04510: focal adhesion 17 0.0017 PIK3CG, EGFR, CAV1, TNXB, TNC, FLNB, MYL9, VWF, CCND1, PAK3,
CCND2, COMP, ITGA8, COL6A3, PDGFRA, SPP1, THBS4

hsa04060: cytokine-cytokine receptor
interaction 18 0.0022 EGFR, CCL3, TGFBR1, LIFR, EDA2R, CCL4L1, CCL4, CXCL12, IL17RA, LEP,

PPBP, CXCL14, CCL3L3, CX3CR1, PDGFRA, IL1B, CSF2RA, CSF1R
hsa05140: leishmaniasis 9 0.0027 CR1, C3, HLA-DRB3, FCGR1A, TLR2, IL1B, FCGR3A, FCGR3B, HLA-DQA1

hsa04151: PI3K-akt signaling pathway 23 0.0033
EGFR, PIK3CG, FGF7, TNXB, TNC, TLR2, FGF10, IRS1, DDIT4, VWF, CCND1,
LPAR5, CCND2, COMP, ITGA8, COL6A3, PDGFRA, MDM2, ANGPT1, FGF1,

SPP1, THBS4, CSF1R
hsa00350: tyrosine metabolism 6 0.0063 MAOA, AOX1, ADH1C, ADH1B, ADH1A, AOC3
hsa03320: PPAR signaling pathway 8 0.0075 LPL, CD36, OLR1, PLIN1, SLC27A6, FABP4, ACADL, ADIPOQ
hsa04512: ECM-receptor interaction 9 0.0094 VWF, CD36, TNXB, COMP, TNC, ITGA8, COL6A3, SPP1, THBS4
hsa04620: Toll-like receptor signaling
pathway 10 0.0100 PIK3CG, CD86, CCL3, CCL3L3, TLR2, CCL4L1, IL1B, TLR6, CCL4, SPP1

hsa05323: rheumatoid arthritis 9 0.0101 CD86, CCL3, HLA-DRB3, CCL3L3, TLR2, IL1B, ANGPT1, CXCL12, HLA-
DQA1

hsa05218: melanoma 8 0.0103 PIK3CG, EGFR, CCND1, FGF7, PDGFRA, MDM2, FGF10, FGF1

hsa04015: Rap1 signaling pathway 15 0.0126 FYB, PIK3CG, EGFR, FGF7, FPR1, FGF10, APBB1IP, DOCK4, PLCB4, LPAR5,
RASGRP3, PDGFRA, ANGPT1, FGF1, CSF1R

hsa05416: viral myocarditis 7 0.0126 CAV1, CD86, CCND1, HLA-DRB3, SGCD, HLA-C, HLA-DQA1
hsa04730: long-term depression 7 0.0160 PLA2G4A, PLCB4, NOS1, GRIA2, LYN, GUCY1A2, GUCY1B3

hsa05206: microRNAs in cancer 18 0.0176
EGFR, TNXB, CYP1B1, TNC, MIRLET7F1, MIR99A, ZEB1, MIR222, MIR221,

IRS1, DDIT4, NOTCH3, CCND1, CCND2, PDGFRA, MDM2, MARCKS,
MIR181B2

hsa05152: tuberculosis 13 0.0178 MRC1, CR1, ITGAX, C3, FCGR1A, HLA-DRB3, TLR2, IL1B, CLEC7A, FCGR3A,
TLR6, FCGR3B, HLA-DQA1

hsa05205: proteoglycans in cancer 14 0.0191 PIK3CG, EGFR, CAV1, LUM, FZD1, TLR2, DCN, FLNB, CCND1, CBLB, GPC3,
RRAS2, MDM2, PTCH1

hsa05143: African trypanosomiasis 5 0.0250 PLCB4, IL1B, HBA2, HBA1, HBB
hsa05332: graft-versus-host disease 5 0.0250 CD86, HLA-DRB3, IL1B, HLA-C, HLA-DQA1
hsa05142: Chagas disease (American
trypanosomiasis) 9 0.0254 PIK3CG, CCL3, PLCB4, C3, TGFBR1, CCL3L3, TLR2, IL1B, TLR6

hsa05200: pathways in cancer 22 0.0267
EGFR, PIK3CG, FGF7, TGFBR1, FZD1, RUNX1T1, FGF10, CXCL12, CBLB,
CCND1, PLCB4, LPAR5, RASGRP3, SLC2A1, PDGFRA, MDM2, PTCH1,

PTCH2, HHIP, FGF1, CSF2RA, CSF1R
hsa04810: regulation of actin
cytoskeleton 14 0.0282 PIK3CG, EGFR, FGF7, FGF10, NCKAP1L, MYL9, ARPC1B, ITGAX, CHRM3,

PAK3, ITGA8, RRAS2, PDGFRA, FGF1

hsa04380: osteoclast differentiation 10 0.0349 PIK3CG, CYBB, FCGR1A, TGFBR1, IL1B, FCGR3A, TREM2, FCGR3B, CSF1R,
BLNK
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Figure 2: Continued.
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3.4. Drug-Gene Interaction Analysis. Based on the DGIdb,
we use the 28 hub genes to screen for drug-gene interactions,
which revealed that 31 drugs associated with 12 key genes
may be potential NF2 treatment drugs (Figure 3). Based on
ClinicalTrials.gov, we found that nilotinib was previously
investigated for Phase 2 of growing VSs treatment and
everolimus is being used in Phase 2 of the NF2 treatment
study.

3.5. mRNA Expression Levels of EGFR. qPCR analysis veri-
fied EGFR mRNA underexpression levels in the NF2-as-
sociated VSs tissues (Figure 4).

4. Discussion

In this study, we found that the 28 hub genes had been
insufficiently studied or not studied at all in VSs, 12 of which
may be target genes for potential NF2 treatment drugs.
Among these genes, IL1B, PIK3CG, CSF1R, LYN, FCGR3A,
FCGR3B, SPP1, and CCND1 were upregulated in NF2-as-
sociated VSs, while EGFR, DCN, VWF, and PDGFRA were
downregulated. ,en, LYN, FCGR3A, and FCGR3B are
involved in “module 1” of the subnetwork, in which GO
functional annotation is enriched in inflammatory response
and immune response, and KEGG pathway enrichment
analysis is enriched in staphylococcus aureus infection,
phagosome, and osteoclast differentiation. EGFR and VWF
are involved in “module 2,” which is enriched in focal ad-
hesion and PI3K-Akt signaling pathway. PIK3CG and SPP1
are involved in “module 3,” which is also enriched in focal
adhesion and PI3K-Akt signaling pathway.

We found that upregulated genes PIK3CG, CSF1R,
SPP1, and CCND1 and downregulated genes EGFR and

VWF were significantly enriched in PI3K-Akt signaling
pathway involved in VSs development, which can increase
schwannoma cell proliferation, survival, and cell-matrix
adhesion acting [4–6]. ,at may be the cause of poor
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Figure 2: (a) ,e PPI network of DEGs. (b) ,e hub genes with connectivity degree ≥20. (c) Module 1. (d) Module 2. (e) Module 3. Green
represents a downregulated expression, and red indicates an upregulated level.

Table 3: 28 hub genes with connectivity degree ≥20.

Number Gene Degree of connectivity Regulation
1 EGFR 59 Down
2 IL1B 53 Up
3 PIK3CG 49 Up
4 CSF1R 40 Up
5 CXCL12 39 Down
6 CD34 36 Down
7 EDN1 36 Down
8 ITGAX 34 Up
9 ACACB 34 Down
10 LYN 32 Up
11 FCGR3A 32 Up
12 DCN 30 Down
13 CD36 30 Down
14 VWF 30 Down
15 CD86 29 Up
16 TLR2 29 Up
17 ACTA2 29 Down
18 LEP 29 Down
19 FCGR3B 26 Up
20 NCAM1 25 Up
21 CAV1 24 Down
22 HBA1 23 Up
23 ACTG2 22 Down
24 SPP1 21 Up
25 C3 21 Up
26 PDGFRA 20 Down
27 CCND1 20 Up
28 RRAS2 20 Up
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prognosis in NF2-associated VSs. ,e drugs that inhibit the
PI3K-Akt signaling pathway may be a potential therapeutic
strategy for NF2 by antitumor activity against NF2-related
tumor cells.

Merlin, a tumor suppressor, is constantly inactivated in
NF2-associated VSs. SPP1, also known as osteopontin
(OPN), is a secreted, integrin-binding phosphoprotein. OPN
had been insufficiently studied in VSs, while elevated OPN is

a utility of some tumors progression and metastasis, sug-
gesting a poor prognosis, such as breast cancer [7]. Morrow
et al. study [7] revealed that OPN-initiated signaling induced
Akt-mediated phosphorylation and degradation of merlin in
breast cancer cells; it was reported for the first time that OPN
is involved in merlin protein degradation. We showed that
SPP1 is upregulated in NF2-associated VSs, consistent with
the result of Torres-Martin et al. [8]. SPP1 may be a bio-
marker of NF2-associated VSs, whose interaction with
merlin has not been reported in NF2-associated VSs. Fur-
thermore, we found that drugs associated with SPP1, in-
cluding tacrolimus and tretinoin, may be potential
therapeutic agents for NF2-associated VSs, which require a
one-step study. Tacrolimus, a powerful immunosuppressant,
significantly increased OPN mRNA and protein expression
from kidney tissue and renal cells, which may contribute to
nephrotoxicity inducing [9]. However, tacrolimus used to
treat autoimmunity blocks IL2 production and is used for
active rheumatoid arthritis [10] and lupus nephritis [11].
Based on functional annotation and pathway enrichment
analysis of DEGs, inflammatory response, immune re-
sponse, melanoma, and rheumatoid arthritis may be con-
nected with NF2-associated VSs development. ,erefore,
tacrolimus may be used for NF2-associated VSs treatment.

In our study, CCND1 involved in apoptosis and cell cycle
control, a key cell cycle regulatory protein, was upregulated
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in NF2-associated VSs, which is consistent with previous
studies [12, 13]. Elevated CCND1 is known to suggest poor
prognosis in many cancers, such as colorectal cancer [14],
breast cancer [15], and multiple myeloma [16, 17]. We found
drugs associated with CCND1, including palbociclib and
mycophenolic acid, which had not been studied in VSs.
Palbociclib, a cyclin-dependent kinase 4 and 6 (CDK4/6)
inhibitor, prolongs progression-free survival among patients
with advanced estrogen receptor-positive and HER2-nega-
tive breast cancer [18, 19]. Mycophenolic acid, an immu-
nosuppressant, can inhibit proliferation and induce
apoptosis in cancer cells, which may be caused by inhibition
of upregulation of CCND1 and the PI3K/AKT/mTOR
pathway [20]. Very interestingly, CCND1 was also upre-
gulated in NF2-associated VSs and was significantly
enriched in the PI3K-Akt signaling pathway in this study.
,us, palbociclib and mycophenolic acid may inhibit the
growth of NF2-associated VSs.

In contrast to SPP1 and CCND1, EGFR was down-
regulated in NF2-associated VSs, in agreement with the
results of Torres-Martin et al. [8], but contrary to those of Yi
et al. [21]. At present, the efficacy of EGFR inhibitors in
acoustic neuroma treatment is not ideal yet, which may be
related to EGFR downregulated in some patients.

In conclusion, with the present analysis, we identified 28
drugs not yet tested in NF2-associated VSs. Tacrolimus,
palbociclib, and mycophenolic acid may be candidate drugs.
SPP1 and CCND1 may be potential targeted genes in NF2-
associated VSs. PI3K-Akt signaling pathway may be in-
volved in VSs development.
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