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ABSTRACT: Physiological and biochemical mechanisms behind nanoparticle
(NP)-induced seed germination by nanopriming with metal sulfide NPs are
lacunae in the field of agriculture. Sonochemically synthesized aqua-dispersed
ferrous sulfide NPs (FeS-NPs) and manganese sulfide NPs (MnS-NPs) were
examined as nanopriming agents for physiological, pathological, and antioxidative
defense parameters of rice in the present study. Under pot house conditions, in
vivo nanopriming of rice seeds with FeS NPs and MnS-NPs at a concentration of
35 μg/mL for 8 h significantly improved the physiological parameters, viz.,
germination percentage, seed germination index, mean germination time, dry
weight, and vigor index, and decreased the phytopathological parameters of
nanoprimed rice seeds, viz., mortality, seed rot, and seedling blight. Stimulation of
superoxide dismutase (SOD ≥ 28.16%), ascorbate peroxidase (APX ≥ 52.38%),
and catalase (CAT ≥ 28.57%) enzymes in FeS-NP- and MnS-NP-nanoprimed
seeds as compared to control (hydroprimed seeds) enhanced the fitness of rice seedlings. The augmented levels of Fe and Mn
content in the shoots and roots of NP-treated seedlings as compared to hydroprimed seedlings confirmed the incorporation
nanometals in rice seedlings as nanonutrients for effective plant growth. Inclusively, FeS-NPs and MnS-NPs were shown to be
effective nanopriming agents for promoting the germination of naturally fungal infested rice seeds.

■ INTRODUCTION
Quick seed germination is necessary for augmented growth,
successful plant establishment, and crop yield. The seeds are
usually held for longer period, get aged, and degrade by various
biotic and abiotic stresses that relay a cascade of events of their
further oxidative damage, resulting in loss of their vitality and
vigor.1 Invigoration of seeds is an important trait that
encompasses aging tolerance, viability, rapid germination, and
seedling establishment.2 These stresses can be circumvented by
using seed enhancement techniques, viz., seed invigoration
(priming), coating, hardening, soaking, and pelleting.
Seed priming is the practice of partly hydrating seeds in

natural or synthetic composites in the definite setting until a
spot at which germination-related metabolic activities are
activated, but radicle has not yet emerged.3 Priming agents
have different characteristics and efficiencies, and therefore,
optimization of the priming solution is essential for different
plant species. Recently, the technique of seed priming with
synthetic nanoparticles (NPs), typically called “nanopriming”,
has also been gaining importance in improving desired traits in
crops.4 Several NPs including silver NPs, gold NPs, copper
NPs, titanium oxide NPs, Fe2O3 NPs, and carbon-based NMs
have already been used as nanopriming agents.5,6 NPs such as
Ag, Zn, Fe, Mn, and Cu have also been used as pre-sowing
agents that are testified to be supportive, where seeds are sown

directly following the application lacking a preceding drying
procedure.4,7−12

Metal NPs are often extremely reactive due to their high
specific surface area, promoting catalytic activity and positive
impacts on germination of seeds as compared to bulk
equivalent molecules.13 Seed priming with Fe-NPs was
reported to be safer as compared to their bulk counterparts
and had no toxic impact on seed germination, seedling
development, and chlorophyll biosynthesis in watermelon
seedlings.14 Seeds primed with bulk ZnO did not endorse the
beneficial effects in corn seed germination and seedling
development.15 Nanopriming of infested rice seeds with
nano-ZnS (150 μg/mL) showed the invigorating effect on
seeds by boosting the growth of seedlings as compared to bulk
ZnS (150 μg/mL).7
Metal sulfides are of great interest to agriculturalists and

environmentalists owing to their low nanotoxicological
concerns.7 Moreover, metal sulfides are water insoluble, and
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the dispersion of insoluble bioactive materials in water is also
required to reduce the toxicity and percolation of materials
into the groundwater.8 Iron is an important trace element
inflicting a vital role in bioinorganic chemistry as heme and
Fe−S proteins playing crucial roles in nitrogen fixation,
photosynthesis, and sulfur assimilation.16 The iron require-
ment of rice (Oryza sativa L.) is greater than that of other
plants, and iron deficiency is a common disorder of rice
growing on well-drained (aerobic) soils, whether neutral,
calcareous, or alkaline. Iron sulfide is a benign, natural, and
nonhazardous material and less explored for remediation of
agri-problems.17 Efforts by our group have reported that the
preparation, characterization, and application of FeS-NPs had a
significant effect on the germination and vigor index of rice
seeds.9,10 The foliar applications of nano-FeS were also
reported with better yielding effects.18,19 Analogous results of
FeS2 by seed and root treatment have also shown promising
results.20−22

Manganese(II) sulfide, a nontoxic, essential nutrient that is
stable and sparingly water soluble, can be used as a safer
material in bioapplications.10 Mn-NPs have been reported as
nanofertilizers that increased lettuce yield without causing
toxicity at high concentrations as high as 50 ppm in a few
reports of manganese nanoform.23 Application of Mn NPs
efficiently augmented nitrogen uptake, assimilation, and
metabolism in mung bean plants and promoted crop
management by bio-safe NPs.24 The biochemical mechanisms
behind NP-induced seed germination by nanopriming with
metal sulfide NPs are needed to be explored in the agricultural
field. The present study aims at synthesizing FeS-NPs and
MnS-NPs using an environmentally friendly method and
subsequently investigating its role and effectiveness as a seed
priming agent. The growth promotion activity as a nano-
priming agent (biophysical and biochemical parameters) was
estimated and compared with that as a conventional priming
agent.

■ RESULTS AND DISCUSSION
Morphological and Structural Details of FeS-NPs and

MnS-NSs. The production of tiny, distorted round-shaped,
slightly agglomerated NPs with an average size of 11.45 ± 1.07
nm was confirmed by a TEM nanograph of FeS-NPs (Figure
S1).9 Zeta potential analysis of the FeS-NPs exhibited a
potential value of −6.5 mV (Figure S2a). The negative charge
on the surface of NPs can be attributed to the presence of the
PVP group as a capping agent over the NPs.25 The NPs are
said to be stable and highly charged if the potential exists in the
range of +30 to −30 mV.26 The broad surface plasma
resonance band with absorption maxima at 285 nm in the
UV−visible spectrum of FeS-NPs supported the existence of
the nanoform of iron sulfide (Figure S2b).9

The morphological details of MnS-NPs by TEM revealed
the formation of slightly aggregated and distorted spherical to
semispherical shaped NPs with an average size of 56.26 ± 4.5
nm (Figure S3).10 The negative zeta potential value of −5.2
mV represents the better stability index of the MnS-NP
solution (Figure S4a). The optical absorption maxima analyzed
by UV−visible spectroscopy was observed at 314 nm
attributed to the formation of nano-MnS (Figure S4b).10

Physiochemical Characteristics of Loamy Sand Soil
Used in a Pot House Study. The physicochemical
characteristics of soil were determined by standard protocols
and showed that the pH of loamy sand soil was 6.98 with an

electrical conductivity (EC) value of 0.18 dS m−1. The organic
carbon (OC) content of the tested soil was 0.46% with
available N, P, and K contents of 68.30, 12.58, and 116.60 kg
ha−1, respectively. The mechanical composition of sand, silt,
and clay in loamy sand soil consists of 87.13, 2.31, and 10.56%,
respectively. DTPA-extractable Fe and Mn were 16 and 8 mg
kg−1 soil, respectively.
Impression of Nanopriming on Seed Quality Param-

eters of Rice Seeds. Eight hours of priming with FeS-NPs
(35 μg/mL) and MnS-NSs (35 μg/mL) favorably affected the
germination of rice seeds sown in pots. The dry weight and
vigor index of seedlings were also affected positively. The
germination percentage was increased with the DAS (days
after sowing) and significantly affected by the type of the
priming agent. After 16 days of sowing, the germination
percentage was found to be highest in FeS-NP-primed seeds
(91%) (Table 1). The germination percentage in priming
treatments with MnS-NPs (86%) and captan (85%) was
statistically similar and superior to hydropriming treatment
(77%). The seed germination index showed a statistically
different value for the FeS-NP (67.07)- and MnS-NP (61.80)-
primed seeds and a significantly higher value than that of
captan (60.31) and hydroprimed seeds (54.58). The mean
germination time showed statistically similar results in all the
priming treatments but significantly higher than control
(hydropriming). The dry weight of FeS-NP (0.1421 g)-treated
seedlings was significantly different and higher than rest of the
treatments, but the dry weight of MnS-NP (0.1391 g)-primed
seedlings was on par with that of captan (0.1336 g) and higher
than hydropriming (0.1045 g) treatments. Notably, the overall
seedling quality vigor index of FeS-NP-primed seedlings was
recorded to be 12.93, which was much higher than that of
MnS-NPs (11.96), captan (11.35), and hydropriming (8.04).
These results are in line with those of Ahuja et al. (2019)9

and Ahuja et al. (2020),10 which showed that the application of
FeS-NPs and MnS-NPs had a significant effect on the
germination and vigor index of rice seeds using the rolled
paper towel method. The enhanced germination and dry
weight in FeS-NP- and MnS-NP-primed seeds may be
attributed to the absorption and utilization of metallic NPs
by seeds which are covered in more detail later in this work.
Invigoration of rice seeds on nanopriming with FeS-NPs and
MnS-NPs demonstrated the nutritional modulation by
enhanced uptake of nanoforms of iron and manganese. The
enhanced germination of chick pea by priming the seeds with
FeS2 NPs (80 μg/mL) provided the better uptake of iron as an
essential nutrient.21 A significant increase in the growth of rice
seedlings and seedling vigor was reported on nanopriming with
20 mg/L of zero-valent iron NPs (nZVI).27 Similar results
were found in peanut seeds, where seedling growth was
increased significantly in plants treated with 2−5 mg/L of the
nZVI solution.28 Mn-NPs were reported as a better nutrient
source in mung bean plants than commercial MnSO4 for the
sustainable agricultural productivity.24 The reports on the
concentration-dependent effect of green-synthesized MnO-
NPs in watermelon seedlings recommended them as a safer
seed priming agent to enhance agricultural crop production.29

In the case of rice seeds, various metal sulfide NPs have been
explored as nanopriming agents invigorating the seed potential.
In addition to MnS and FeS nanoforms, CuS NPs, ZnS NPs,
and zinc-coated ZnS NPs have boosted the vitality of rice seeds
during post-priming germination.5,7,8 The results pertain to
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alleviating the biotic stress on the fungal infested seeds by
acting as mycotoxic agents.
Effect of Seed Nanopriming on Disease Parameters

of Rice. FeS-NPs and MnS-NPs successfully inhibited the
mycelial growth of fungi in vitro;9,10 thus, their ED90
concentration values were chosen, and their efficacy in pots
under pot house conditions was assessed. In the present study,
both FeS-NPs and MnS-NPs were effective in the reduction of
the disease parameters of germinated rice seeds. The minimum
occurrence of disease of seed rot (8.10 ± 0.31%) and seedling
blight (3.20 ± 0.45%) was recorded at 35 μg/mL
concentration of FeS-NPs (Figure 1). Similarly, low disease

parameters were recorded when we used 35 μg/mL
concentration of MnS-NPs, i.e., seed rot (11.15 ± 0.22%)
and seedling blight (4.35 ± 0.35%). The seed rot and seedling
blight in NP-primed seedlings were at par with the standard
fungicide captan and significantly lowered than the hydro-
primed treatment (control). Both FeS-NPs and MnS-NPs have
strong ability to minimize the mortality rate in comparison to
standard fungicide (captan) and hydropriming. The reduction
in disease parameters was inferred due to the good antifungal
activity of nanoforms of FeS and MnS as reported by Ahuja et
al. (2019)9 and Ahuja et al. (2020).10 At the molecular biology
scale, metal sulfide NPs interact better with sulfur-containing
fungal proteins and other biomolecules by common ligand
adsorptions through colloidal interfaces, endorsing the role of
NPs on disrupting the external architecture of fungal hyphal
and finally leading to fungal death to lower down the disease
parameters.7,30 The decrease in disease parameters in the
present case can be hypothesized as the nanometals cause the
disturbance in fungal hyphal wall composition by inhibition of
vital enzymes involved in fungal cell wall synthesis. These NPs
could be utilized as an effective and economical nano-
alternative for mitigating myco-induced seed disease parame-
ters.
Assessment of Antioxidant Enzyme Activity in Nano-

primed Rice Seeds. The antioxidant enzymatic [stimulation
of superoxide dismutase (SOD), ascorbate peroxidase (APX),
and catalase (CAT)] activities in primed seeds fluctuatedT
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Figure 1. Comparative evaluation of FeS NP and MnS NP
nanopriming on the disease parameters of rice with respect to captan
(standard fungicide) and hydroprimed seeds (control). Each value
represents the mean ± SD (standard deviation) (n = 3). Different
lowercase letters indicate the significant difference among different
treatments, followed by Tukey’s test at P < 0.05.
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substantially in retort to the different seed priming treatments.
The priming of seeds with FeS-NPs and MnS-NPs for 8 h
significantly changed the antioxidant enzymatic activity levels.
Stimulation in the enzymatic activity of SOD, APX, and CAT
to be 37.50, 52.38, and 42.30%, respectively, was observed in

FeS-NP-primed seeds as compared to control (Figure 2).
Similarly, upregulation of SOD (28.16%), APX (53.27%), and
CAT (28.57%) activity was observed in MnS-NP-primed seeds
as compared to control. Nanopriming induces the formation of
nanopores in the shoot and helps in the uptake of water

Figure 2. Antioxidant activity of (a) SOD, (b) APX, and (c) CAT enzymes in rice seeds primed with FeS NPs, MnS NPs, hydropriming, and
captan. Each value represents the mean ± SD (standard deviation) (n = 3). Different lowercase letters indicate the significant difference among
different treatments, followed by Tukey’s test at P < 0.05.

Figure 3. (a) Internalization of Fe in FeS NP-treated seedlings. (b) Modulation of Mn in MnS NP-nanoprimed seedlings. Each value represents the
mean ± SD (standard deviation) (n = 3). Different lowercase letters indicate the significant difference among different treatments, followed by
Tukey’s test at P < 0.05.
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absorption and activates the antioxidant mechanisms in
seeds.31 Nanoprimed seeds showed the more vigorous
antioxidant defense system due to the oxidative burst
stimulation during germination and early seedling establish-
ment.32 The increased antioxidant properties can enhance the
fitness of seedlings and plants during post-priming germina-
tion.33 Similar results have also been reported by the
application of chitosan NPs in wheat for the upregulation of
antioxidant enzymes.34 Mahakham et al. (2017) reported the
stimulation of SOD and CAT enzymatic activity in seedlings
by priming the seeds with green synthesized silver NPs.35

Sharma et al. (2020) demonstrated that rice seedling treated
with different concentrations of molybdenum NPs shows
altered activities of antioxidant enzymes (SOD, CAT, and
APX).36 Mechanistically, the seeds primed with NPs undergo
various synergistic events as a result of enhanced metabolism,
modulating biochemical signaling pathways, trigger hormone
secretion and upregulation of aquaporin gene expression, and
reduce reactive oxygen species leading to increased seed
germination with improved disease resistance.37 Overall, FeS-
NPs and MnS-NPs triggered the upregulation of potential
antioxidant metabolism with an increase in enzymatic activity
to manage the stress involved in the rice defense mechanism.
Internalization of Fe and Mn in Rice Seedlings. FeS-

NP and MnS-NP nanopriming to rice cultivars significantly
increased the Fe and Mn content in their respective
treatments, considerably higher from hydropriming. In FeS-
NP-treated seedlings, the highest Fe content in the shoot
(246.36 μg/g) and root (345.17 μg/g) was observed in
comparison to hydroprimed seedlings (Figure 3a). A higher
Mn content of 105.44 μg/g in the shoot and 223.71 μg/g in
the root was observed in MnS-NP-primed seedlings with
respect to hydroprimed treatment (Figure 3b). The augmented
Fe and Mn levels in nanoprimed seedlings confirmed the
accumulation of NPs in seedlings by enhancing their nutritive
values for the better fitness of rice seedling. Results are in
consonance with our previous studies, where the enhancement
in the uptake of nutritional metal in rice seedling was reported
by priming the seeds with metal sulfide NPs.8 Guha et al.
(2018) reported the augmented growth of seedlings by
priming the seeds with low concentration of NPs (<80
ppm).27 Seeds priming with Fe (micronutrient) can stimulate
the activation of enzymes to enhance the nutritive value for
improved productivity of crops.38 The essential micronutrient
Mn, required in trace amounts by plants, is involved in
photosynthesis, respiration, and nitrogen metabolism, affecting
the germination profile of seedling. The higher uptake of intact
Mn NPs (20 nm) was reported in the root and shoot of
germinated mung bean seedling relative to control.24 The
present work substantiated that the increase in seed
germination and seedling vigor of rice seeds is attributable to
the enhanced nutritional modulation by absorption and
translocation of iron and manganese in rice seedlings.
To assure an environmentally safe application of stabilized

metal sulfide NPs, it is important to understand their potential
environmental risks to the ecosystem and human health. The
transport, transformation, and accumulation of metal sulfide
NPs through food chains have limited impacts on acute
toxicity to organisms.39 Our previous studies reported that the
nonhepatotoxic and biodegradable nature of aqua-dispersed
metal sulfide nanoformulation makes them a safer alternative
than organic pesticides which have toxic residues with long-
term impacts.7 Due to the soil-degradable and chemically

unstable (at low pH) nature of metal sulfide NPs, they can
dissociate into nutritious compounds which can be assimilated
by the plants for the better growth and development.39

Inclusively, these outcomes suggest that the applied lower
concentrations of FeS-NPs and MnS-NPs can be used as eco-
safer, bio-assimilative, and agro-compatible nanoseed priming
agents over commercially used seed treatment chemicals.

■ CONCLUSIONS
The present effort demonstrated that FeS NPs and MnS NPs
might function as an efficient seed priming agent to enhance
the germination potential and reduce the disease parameters of
rice seedlings. Crop development and production may be
benefit from the application of these NPs with twin affirmative
effects on seed health and quality. Stimulation of antioxidant
enzymes and internalization of NPs into the seed supported
the effective use of FeS and MnS as nanonutrients for the
efficient defense and plant growth. Hence, the application of
FeS NPs and MnS NPs as seed nanopriming agents can be
utilized as a nanofertilizer with fungicidal effects on rice seeds
and can be commercialized after extensive field trials for
sustainable agriculture.

■ MATERIALS AND METHODS
Chemicals Used. Ferrous sulfate heptahydrate (FeSO4·

7H2O), manganese sulfate monohydrate (MnSO4·H2O),
sodium sulfide (Na2S·9H2O), Triton-X, and polyvinyl
pyrrolidone (PVP) were purchased from HiMedia Laborato-
ries Pvt. Ltd, Mumbai, India, for the synthesis of NPs. All the
chemicals were of analytical grade and used without further
purification.
Synthesis of FeS-NPs and MnS-NPs. Iron sulfide NPs

(FeS-NPs) were prepared using the standard methodology
given by Ahuja et al. (2019).9 In brief, an aqueous solution of
sodium sulfide was added dropwise to ferrous sulfate solution,
containing a drop of Triton-X (surfactant), under sonicating
conditions, and PVP (0.3 g) was added to aid in the
stabilization of the synthesized NPs. The solution was
sonicated for 30 min to get PVP-coated FeS-NPs.
MnS-NPs were synthesized using the sonochemical method-

ology given by Ahuja et al. (2020).10 An aqueous solution of
manganese sulfate monohydrate (0.0015 M) was added
dropwise to sodium sulfide solution (0.0015 M), containing
a drop of Triton-X, under sonication. PVP (0.3 g) was added
to the sonicating solution to get PVP-stabilized MnS-NPs.
Characterization of FeS-NPs and MnS-NPs. The

morphological details and particle size of the prepared NPs
were measured using transmission electron microscopy (TEM)
in the Electron Microscopy and Nanoscience Laboratory,
Punjab Agricultural University, Ludhiana. The zeta potential of
FeS NPs and MnS-NPs was measured by using a Malvern Zeta
Potential Analyzer at the Central Instrumentation Facility,
Lovely Professional University, Phagwara. The UV−visible
spectrum of NPs was recorded on a UV-1800 Shimadzu
double-beam spectrophotometer in Punjab Agricultural
University, Ludhiana. The uptake of Fe and Mn in rice
seedlings was determined by using an inductively coupled
plasma−atomic emission spectrophotometer (ICP−AES)
(Agilent Technologies, Japan) at the Department of Soil
Science, Punjab Agricultural University, India.
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■ POT HOUSE STUDIES
Physiochemical Properties of Experimental Soil. Pots

were filled with approximately 2000 g of loamy sand soil for
the sowing, germination, and growth of rice seeds under pot
house conditions. The international pipette method was used
to determine the soil texture.40 The pH was determined using
a 1:2 soil−water suspension using a glass electrode pH
meter,41 and the EC of soil was determined from soil−water
suspension equilibrated for 24 h using a conductivity bridge.42

Soil OC was determined through wet combustion by the
Walkley and Black (1934) rapid titration method.43 Briefly, 2 g
of the soil sample was taken in a conical flask; 10 mL of 1 N
K2Cr2O7 was added with 20 mL of concentrated H2SO4 to the
flask. Excess of K2Cr2O7 was determined by titration with 0.5
N ferrous ammonium sulfate in the presence of a diphenyl-
amine indicator and NaF, which gives a clear solution. The
DTPA-extractable Fe and Mn in soil was analyzed on ICP−
AES.44

Collection of Seeds for Priming. Infested seeds of Pusa
basmati rice were procured from the Seed Technology
Laboratory, Punjab Agricultural University, India. Surface-
sterilized seeds were dried in the shade at room temperature
(28−30 °C) with constant aeration.
Seed Priming and Sowing. A pot experiment was

conducted to check the effect of FeS-NPs and MnS-NSs on
the growth potential and disease resistance of rice. Based on
previous in vitro mycelial growth inhibition trials, the ED90
values (i.e., the effective dose at which 90% inhibition of
fungus has occurred) of 35 μg/mL of FeS-NPs and 35 μg/mL
of MnS-NSs were selected for priming of rice seeds by
following the standard methodology of Ahuja et al. (2019).9,10

After 8 h of seed priming, FeS-NP- and MnS-NS-treated seeds
were sown in loamy sand soil. Captan-primed seeds were used
as a standard, and hydroprimed seeds sown in soil were served
as a control. In each pot, 100 seeds were sown and placed in a
pot house for the observation of physiological and pathological
parameters after a regular interval of time until maximum
germination.45

Physiological Parameters. The physiological parameters,
viz., germination percentage, mean daily germination and mean
germination time, seed germination index, dry weight, and
vigor index, were studied after the emergence of seeds in loamy
sand soil under pot house conditions. After 6 days of sowing,
the number of germinated seeds and seed germination
percentage were recorded after an interval of 48 h until 16
days. Seeds were considered as germinated when their radicle
showed at least 2 mm length. The mean germination time,
mean daily germination, and germination index were
calculated.46 The fresh weight of shoots was calculated by
carefully removing (without any root loss) 10 plants per
treatment, using a sensitive weighing balance. For the
calculation of dry weight, the samples were placed in an
oven at 70 °C for 24 h, the dry weight of the seedlings was
recorded after 72 h, and the vigor index was calculated.7

Measurement of Disease Parameters. To investigate
the efficacy of FeS-NP and MnS-NP nanopriming for 8 h on
rice seeds under pot house conditions, the phytopathological
parameters in terms of mortality, seed rot, and seedling blight
were recorded. Visual assessment of seed rot and seedling
blight were observed in the plants of various treatments by
following a well-defined protocol and compared with the
standard fungicide (captan) and hydropriming (control).47,48

The seedling mortality percentage of germinated plants was
measured and calculated after 16th day of sowing in all the
treatments.
Antioxidant Enzymatic Activity. The activity of SOD,

APX, and CAT enzymes in FeS-NP- and MnS-NP-primed
seeds was evaluated by following the methodology of Afzal et
al. (2020).26 Seed embryos (1 g) were homogenized in a pre-
chilled mortar pestle containing 10 mL of 50 mM buffer (pH =
7.8), 1% PVP (polyvinylpyrrolidone), 0.5% Triton X-100, and
1 mM ethylenediaminetetraacetic acid (EDTA). The homo-
genate was centrifuged at 6000 g for 30 min at 4 °C, and the
supernatant was used for the detection of antioxidant enzymes.
The antioxidant enzymatic activities of SOD, APX, and CAT in
NP-treated seeds were evaluated by the standard methodology
of Giannopolitis and Ries (1977),49 Chen and Asada (1989),50

and Aebi (1984),51 respectively. One unit (U) activity of SOD
is the particular quantity of enzyme needed for 50% inhibition
of NBT, APX (U) is the amount of enzyme needed for
oxidizing 1 nmol ascorbate min−1, and CAT (U) is equal to 1
nmol H2O2 dissociated min−1.
Determination of Internalization of Fe and Mn in

Rice Seedlings. To visualize the capability of NPs to
influence the content of Fe and Mn in primed seedlings as
compared to control (hydropriming), the oven-dried tissues
(separate roots and shoots) of NP-treated seedlings and
hydroprimed seedlings were weighed, crushed to powder, and
digested in aqua regia (i.e.. HNO3/HCL; 3:1). The digested
samples were diluted with 1% nitric acid. The diluted solutions
were analyzed by using inductively coupled plasma atomic
emission spectroscopy (ICAP−OES) for Fe and Mn contents
in treated seedlings.8

Statistical Analysis. The entire data was expressed as
mean ± standard deviation of three independent replicates. A
one-way analysis of variance (ANOVA) followed by Tukey’s
test was performed to test the significance of differences
between means obtained among the treatments at the 5% level
of significance using the SPSS statistical software package
release 16.0 (SPSS Inc., Chicago, IL, United States).
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