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grative studies differ from paral-
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modeling of the relationships
between data. We outline steps
and considerations towards inte-
gromic studies to exploit the
synergy between data sets.
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Exploiting Interdata Relationships in
Next-generation Proteomics Analysis*

Burcu Vitrinel‡**, Hiromi W. L. Koh§¶**, Funda Mujgan Kar‡, Shuvadeep Maity‡,
Justin Rendleman‡, Hyungwon Choi§¶**, and Christine Vogel‡�**

Mass spectrometry based proteomics and other technol-
ogies have matured to enable routine quantitative, sys-
tem-wide analysis of concentrations, modifications, and
interactions of proteins, mRNAs, and other molecules.
These studies have allowed us to move toward a new field
concerned with mining information from the combination
of these orthogonal data sets, perhaps called “integrom-
ics.” We highlight examples of recent studies and tools
that aim at relating proteomic information to mRNAs, ge-
netic associations, and changes in small molecules and
lipids. We argue that productive data integration differs
from parallel acquisition and interpretation and should
move toward quantitative modeling of the relationships be-
tween the data. These relationships might be expressed by
temporal information retrieved from time series experi-
ments, rate equations to model synthesis and degradation,
or networks of causal, evolutionary, physical, and other
interactions. We outline steps and considerations toward
such integromic studies to exploit the synergy between
data sets. Molecular & Cellular Proteomics 18: S5–S14,
2019. DOI: 10.1074/mcp.MR118.001246.

THE PAST AND THE PRESENT: DIRECTIONS IN PROTEOMIC DATA
INTEGRATION

Recent large-scale analysis of protein concentrations, mod-
ifications, and interactions has seen tremendous advances,
pushing us to consider the next steps in multiomics studies.
Some of the new work lies “outside the box” of standard
parallel mining of individual data sets and attempts to model
the relationships between proteomic variations and other mo-
lecular changes to gain insights at their interface (Fig. 1). A
new field might be born: “integromics.” Integromics studies
have included information on the dynamics of mRNA and
protein concentration changes, but also other molecules,
such as lipids and metabolites, or completely orthogonal in-
formation on genomic variation across a population of sam-
ples. Because several excellent reviews discuss the relation-
ship between protein and mRNAs, as well as proteogenomic
approaches, e.g. (1–4), we will focus here on other new di-

rections that have emerged in the last few years, e.g. with
respect to combination of proteomics with other technologies
or other data types. We will also discuss components of such
integrative analysis.

Integrating Proteomic and Transcriptomic Measurements

Correlating Protein and mRNA Concentrations—The first
and long-debated question in integrative proteomic studies
concerns the correlation between mRNA and protein concen-
trations in a steady-state system, i.e. in unperturbed cells that
do not change over time. High correlation between mRNA and
protein concentrations implies that transcription determines
the cellular architecture; low correlation implies a dominant
role for post-transcriptional regulation. For yeast and mam-
malian cells, estimates started to appear over ten years ago
and differed considerably (5): although most studies agreed
on substantial contribution of post-transcriptional regulation
to the overall expression landscape (6, 7), some argued for a
dominant role of transcription (8).

In 2012, we attempted to synthesize these findings into a
common theme: transcription regulation might often act as an
on-off switch, whereas translation and protein degradation
fine-tune actual concentrations, like a rheostat (2). This two-
step process attributes to the different response signals for
different groups of genes (9). A 2015 study of bone-marrow
derived dendritic cells exposed to lipopolysaccharide sup-
ported this view (10): indeed, most of the responses to the
stimulus were initiated by RNA expression changes. In com-
parison, protein levels for housekeeping genes were also
altered substantially when examining absolute molecule num-
bers. Because of the high protein concentrations, the result-
ing fold-changes remained comparatively small. We observed
a similar trend in cancer cells responding to protein misfold-
ing: protein concentration changes were much smaller in
magnitude than mRNA expression changes (11). In addition,
the transcriptome returned to pretreatment levels after �12 h
whereas proteins did not reach steady state at that time. Our
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most recent study suggests that the cell might implement
such discordance observed between the transcriptome and
the proteome in different ways, e.g. through gene specific
increase in translation via short regulatory elements despite
no transcription change or an increase in transcription but
delayed translation (12).

Another possible explanation for the disparity between
transcript and protein levels has been discussed for yeast
undergoing meiosis (13). When comparing protein expression
levels with those of transcripts and parallel ribosome foot-
printing data, the authors noticed impaired translation of sev-
eral genes through new isoforms which they named “long
undecoded transcript isoforms” (LUTIs)1. They proposed that
a single transcription factor can active the canonical transcript
for some genes and LUTI for others.

Finally, several theoretical studies highlighted the unex-
pected conservation of protein-RNA ratios across tissues (14,
15), and the fact that protein concentrations of orthologs

appear to be more conserved across organisms than mRNA
concentrations (16–18). However, some of these observa-
tions are because of an effect like Simpson’s paradox (19):
some relationships may become reversed or masked by the
opposing effects of other data types. Therefore, orthologous
protein concentrations might be correlated across genes, but
not as much as some studies suggest (20, 21).

In addition to these insights into the relationship between
protein and mRNA concentrations, the future might bring
more integration of these paired data sets with additional
information, such as the temporal changes in response to a
stimulus, physical interactions between proteins, or measure-
ments of synthesis and turnover rates. Examples of such new
directions include the time-resolved studies described above,
or recent work involving Down Syndrome patients (22). The
study analyzed protein and mRNA concentrations in samples
from identical twins where one twin is healthy and one has
Down Syndrome. Thanks to careful integration of these data
with protein stability measurements, the authors demon-
strated the major role of degradation in maintaining stoichi-
ometry in protein complexes, despite minor effects on overall
mRNA or protein levels.

Proteoforms and Alternative Splice Variants—Another fac-
tor lowering RNA and protein correlations arises from alter-
native splicing and the production of protein isoforms, and
many efforts in integrative proteomics concern the complete
mapping of the resulting proteome diversity (13, 15, 23–25).
Integrating data from mRNA sequencing and proteomics, Liu
et al. attempted to map the entire human proteome with
respect to its variants (26). The authors identified a significant
contribution of alternative splicing to proteome composition
and diversity, with respect to alternative translation initiation,
alternative splicing, and post-translational modifications.
However, these estimates are not uncontended - other stud-
ies suggest that the number of functional variants per protein
might be very small (27–29). The reason for these discrepan-
cies may lie in technical challenges to identify critical peptides
that mark variants and isoforms (29) or in the fact that most
proteins get expressed only one isoform per tissue (23).
Therefore, identification of functional proteoforms and alter-
native splice variants remains a daunting task.

Combining Proteomics with other ’Omics Data

Measurements of Translation—Several recent studies have
moved beyond simple assessment of the relationships be-
tween concentrations and toward identification of the under-
lying processes that determine concentrations and concen-
tration changes. One example is the twin study mentioned
above that included examination of protein degradation
through use of dynamic proteomics (22).

Other examples arise from the inclusion of sequencing data
that identifies ribosome footprint positions along mRNAs, es-
timating translation efficiency and regulatory elements (30).

1 The abbreviations used are: LUTI, long undecoded transcript
isoforms; SILAC, stable isotope labeling of amino acids; QTL, quan-
titative tract loci; CETSA, cellular thermal shift assays; MKGI, meta-
dimensional knowledge-driven genomic interactions; PECA, protein
expression control analysis.
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Several such studies exist and examined meiosis or the re-
sponse to environmental stress (13, 15, 23–25, 31, 32). For
example, when comparing genome-wide transcriptome, pro-
teome, and ribosome profiles across diverse stresses, Ho et
al. found that ribosomes appeared to dissociate from some
transcripts, delaying their translation into the corresponding
proteins (32). The authors suggested that this process frees
ribosomes which could then be used toward the synthesis of
stress response proteins.

However, importantly, the association of ribosomes with
mRNAs may not always reflect actual translation output, as
can be measured by proteomics methods such as pulsed
SILAC (stable isotope labeling of amino acids) (33). Ribo-
somes might attach to mRNAs leading to reported footprints,
but not actively translate and produce protein. Such discrep-
ancy was observed for data from multiple myeloma cells
(34). Under unperturbed conditions, ribosome footprinting
and pulsed-SILAC translation measurements largely corre-
lated across genes. However, when the cells were perturbed
through inhibition of protein degradation, the correlation van-
ished: pulsed-SILAC was able to detect global alterations in
translation rates across genes, whereas ribosome footprinting
failed to do so. Therefore, albeit proteomics methods often
pose technical challenges and result in smaller coverage than
sequencing methods, some biological questions might de-
mand the use of proteomics for translation measurements
over assessment of ribosome footprints.

Genetic Association and Quantitative Trait Loci—An entirely
orthogonal area of proteomic data integration lies in their use
as molecular phenotypes that are then associated with spe-
cific genomic regions to discover Quantitative Trait Loci (QTL).
Associations with mRNA expression phenotypes are typically
called eQTLs, whereas associations with protein expression
render pQTLs. The relationship between eQTLs and pQTLs is
complex and still only incompletely understood (35, 36). For
example, in yeast, the genomic position of eQTLs and pQTLs
seems to overlap only little (37), and cis regulation is common
for eQTLs but not at the level of the proteome (38). One
important role of pQTLs appear to be maintenance of the
stoichiometry of protein complexes and pathways (39).

More recent studies in blood plasma cells confirmed the
complexity of the relationship between pQTLs and eQTLs. For
example, they detected several pQTLs that affected protein
levels in trans, illustrating how pQTLs can identify effects
hidden at the mRNA level (40). Other studies found several
pQTLs acting in cis and reported substantial overlap between
pQTLs and cis-eQTLs—contrasting what had been observed
before (41–43).

Post-translational Modifications—Protocols to measure
post-translational modifications such as phosphorylation,
ubiquitination, and SUMOylation are now readily available for
routine use. Recent work integrated such measurements with
other ’omics data, i.e. protein concentrations. For example, a
study in mice showed substantial overlap between protein

abundance and phosphorylation levels but revealed differ-
ences in the temporal patterns upon induction of a high-fat
diet (44). A similar observation was made in samples from
breast cancer patients: the phosphoproteome grouped into
clusters that were undetectable at the mRNA or protein level,
illustrating the need for collecting multiple data types (45).

However, it is crucial to move beyond simple parallel anal-
ysis to models that attempt to reveal and exploit relationships
between the data (46, 47). Such analyses are necessary to
understand causal relationships, e.g. the role of multiple, of-
ten successive protein modifications in signal transduction
cascades. A step toward such analyses arises from a study of
phosphorylation, acetylation, and methylation events across
45 untreated and treated lung cancer cell lines (48). Using
machine learning and a comprehensive protein-protein inter-
action network, the authors found many multimodification
events that acted in a mutually exclusive pattern: the protein
had either one type of modification or the other, but not both.
Such pattern suggests that protein modifications are used to
direct signaling pathways into different routes with an “exclu-
sive OR” gate depending on the type of modification.

Integrating Proteomics with Other Technologies—Another
type of integrative developments uses mass spectrometry in
conjunction with other technologies in form of a new method.
Such analyses might not be strictly “integrative” yet, as they
typically acquire only one data type. However, they might
inspire and encourage proteomicists to venture more fre-
quently into new territory to map novel aspects of biology.

For example, recent work combined proteomics with poly-
some profiling, a technique that exploits differential sedimen-
tation of ribosome-bound mRNAs and the unbound the small
and large subunits in a sucrose density gradient (49). The
analyses examined mammalian cells during mitosis to identify
changes in ribosome composition and function (50), as well as
phosphorylation changes (51). Although the authors could not
confirm earlier findings on varying composition of the ribo-
some core (52), they found extensive differential protein phos-
phorylation across the polysome profile leading to identifica-
tion of a new regulatory phosphorylation event on a ribosome
subunit.

Proteomics has also been combined with cellular thermal
shift assays (CETSA) to monitor the thermal stability of the
proteome (53). The method exploits the fact that, depending
on their structural properties, proteins “melt” at higher tem-
peratures and collapse (54). Integrating such stability meas-
urements with estimates of protein abundance and solubility,
the study found that many intrinsically disordered and mitot-
ically phosphorylated proteins were stabilized and more sol-
ubilized during mitosis, suggesting a fundamental remodeling
of the biophysical environment during the cell cycle. A more
recent study using CETSA examined a similar system and
found very little proteome remodeling during mitosis, but sub-
stantial changes in protein-protein interactions (55)—empha-
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sizing the importance to look beyond simple concentration
measurements for new discoveries.

A third expansion of traditional proteomics employs limited
proteolytic digest prior to mass spectrometry, providing an
indirect readout of a protein’s structural stability through iden-
tification of peptides that are accessible to the protease (56,
57). Leuenberger et al. used this technique with samples
processed at different temperatures to estimate thermal melt-
ing points of proteins from Escherichia coli, Saccharomyces
cerevisiae, Thermus thermophilus, and human cells (58). Their
results confirmed the complexity of the relationship between
protein concentrations and stability and the need for a multi-
faceted analysis: although highly expressed proteins were
particularly stable, a specific subset of proteins was destabi-
lized by higher temperatures leading to cellular collapse.

Metabolomics and Lipid Measurements—Besides nucleic
acids, the cell contains many other molecules with various
functions—and proteomic data integration has made big
strides toward understanding them. Such studies have, for
example, combined limited proteolysis-based proteomics
with screening of small molecules for their effect on protein
folding (59). The authors found �140 new proteins that ap-
peared to bind ATP, and many cases in which ATP or other
metabolites affected the structure and protease accessibility
of the protein. The role of ATP beyond being an energy source
was also confirmed by use of CETSA in combination with
proteomics: ATP-binding membrane proteins shifted in their
sensitivity to detergents, suggesting that the molecule stabi-
lizes the protein structure and increases solubility (60).

Other examples support this relationship between metab-
olism and the proteome. In Drosophila cells, measurements
and calculations of phase differences revealed a link between
oscillations of protein concentrations and their downstream
metabolites (61). In other studies, integration of proteome,
metabolome, and lipidome measurements revealed new func-
tions of genes in mitochondrial coenzyme Q biosynthesis and
regulation (62, 63). Finally, combining such measurements
with genomic data defined lipid-QTLs like those discussed for
mRNAs, protein, and translation discussed above. Indeed,
lipid-QTLs differed substantially from protein QTLs as dis-
covered by analysis of a BXD mouse population (64, 65).
These findings were enabled through combination of multi-
ple ‘omics measurements, but analysis is currently re-
stricted to mostly correlative observations. The next and
exciting challenge lies in identifying causal relationships
behind molecules and pathways.

New Tools and Techniques for Integrative Analysis

General Tools—The growing demand for effective data in-
tegration has spurred the development of numerous compu-
tational tools and approaches. Several recent reviews com-
prehensively summarized these advances (66, 67). In addition,
integrative tools have begun to emerge to model multiomics

data including proteomics data (68). From a biologist’s point
of view, the major challenge in integrating multiple ’omics data
may lie not in lacking availability, but rather in the selection of
appropriate tools for a given research question. As the prin-
cipal aims of the tools are diverse, ranging from the discovery
of a sparse set of data features associated with a phenotype
of interest to the integrated clustering of samples, finding the
right tool can be demanding (Fig. 2). Therefore, no single
computational tool can provide solutions for every problem,
and successful application depends on the user’s proper
understanding of the biological question and the functional-
ities of each tool.

Visualization—An important starting point for successful
integration is the visualization of integrated data to provide a
holistic view of merged data. In the past, multiomics analyses
typically used a series of heatmaps. However, heatmaps lose
their merit with increasing data size, and they fail to show the
connections between different types of molecules. Therefore,
several tools have been designed to show networks of inter-
feature relationships. One example is the 3Omics tool in which
biological networks are created based on a coexpression
analysis of multiomics data and the resulting networks are
displayed (69). More recently, OmicsNet has been developed
to simultaneously map multiple ’omics data onto a network
consisting of protein-protein interactions, metabolic relation-
ships and co-expression information (70). The tool creates a
global view of the network ensemble with flexible options for
customization. Its visualization is unique as it not only pre-
serves a modular network layout within each ’omics data but
also shows the connections between different layers.

Data Interpretation—Another key to successful data inte-
gration is finding tools that can effectively harmonize the
biological information across heterogeneous platforms and
facilitate biological interpretation of merged findings. Many
statistical methods already exist that can integrate multiple
data sets to perform sample clustering or classification (71). In
many cases, however, these tools treat different ’omics data
as equally contributing features and ignore biological relation-
ships between different types of molecules. For example, a
recently published MultiOmics Factor Analysis tool (MOFA) is
an unsupervised method for inference of a set of latent factors
which can best capture sources of variabilities across the
different ’omics data sets using a probabilistic Bayesian
framework (72). However, as there may be no biological rela-
tionship between the features from different data types with
high loading scores, the latent factors identified may not
always necessarily be interpretable.

In contrast, computational methods that directly derive mo-
lecular interactions or communities of molecules from the
correlation structures often yield more biological interpretable
results. For example, a tool called Meta-dimensional Knowl-
edge-driven Genomic Interactions (MKGI) maps molecular
abundance measurements in each ’omics data set to the
dimension of pathways and builds an ensemble of models to
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predict a phenotypic outcome via a neural network algorithm
(73). Another tool called the OmicsIntegrator finds putative
pathways using a network optimization algorithm and derives
a subnetwork of the multiomics signature that best explains
the expression data sets (74). Using a similar approach, the
inteGREAT tool discovers co-expression networks within the

transcriptome and the proteome and performs network anal-
ysis of differentially abundant genes, e.g. clinical biomarkers,
incorporating network topology information for each gene
from both ‘omics levels (75).

Accounting for Specific Properties of Proteomic Data—
Many integration tools treat proteomics data as if it is just
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another dimension in the ‘omics repertoire, ignoring the fact
that protein abundance and other quantitative features, e.g.
post-translational modifications, are the ultimate output in
gene expression regulation. Nevertheless, those tools do not
necessarily inform on the underlying processes and determi-
nants of the output, such as translation or degradation. Ex-
amining changes in protein numbers in a static condition does
not necessarily stem from a shift in translation, as such a
change could also be caused by altered protein degradation,
localization or even formation of isoforms. Although some
tools such as PARADIGM reflect the hierarchical nature and
directionality among data from different ‘omics platforms (76),
incorporation of inter-omics relationships in statistical model-
ing has been mostly overlooked. In addition, parallel meas-
urements of concentration changes and the underlying pro-
cesses are still very rare, restricted to the few examples
described above.

Further, as illustrated above for mammalian cells respond-
ing to an outside stimulus (10–12), gene expression control
often results in large fold-changes in the transcriptome, but
only small changes in the proteins. Such properties can skew
joint analysis of the data in favor of the part of the data
showing changes of a greater magnitude, e.g. mRNA expres-
sion. As such, integration of data across different experimen-
tal platforms requires appropriate normalization of data, e.g.
transformation of data into scores on a standardized scale
before performing joint analysis. Also, one can consider
weighting the data sources with quality or informativity scores
so that each ’omics data type can contribute to the analysis in
equal proportions.

For some specific biological questions, such tools and
techniques already exist and enable the user to normalize the
data, estimate statistical parameters of interest, and interpret
the results. For example, we and others have developed
models to estimate protein synthesis and degradation from
dynamic data, e.g. for the response to lipopolysaccharide or
ER stress (10–12). In these cases, the relationship between
the two paired data types, protein and mRNA concentrations,
is a direct result of the central dogma of biology, and rate
equations serve to quantify the parameters. The analyses
provide precise estimates of significant regulatory events and
time points.

We recently expanded this approach to provide a compre-
hensive tool to infer different regulatory parameters from any
dual-omics time series experiment (77). The tool is called
Protein Expression Control Analysis (PECA) and consists of
autoregressive sub-models, each mimicking a first-order or-
dinary differential equation of abundance dynamics for a pro-
tein. The key integrative aspect of the approach comes from
the incorporation of time series measurements and a flexible
statistical method to estimate time-varying rate parameters
with assessment of the noise in the data (false discovery
rates). Indeed, we successfully used PECA to parse time-
series transcriptomics measurements or even evaluate ribo-

some binding and dissociation with mRNA (12). In this case,
significant changes in association of ribosomes with mRNAs
as reported by PECA served as a readout for changes in
translation of the respective gene. PECA is easily accessible
as a plugin for the PERSEUS toolbox which allows for visu-
alization, normalization, and interpretation of proteomics and
other large-scale data (78).

Future Directions: How to Exploit the Synergy of
Productive Integrative Work

Steps Toward Productive Integromics—“Integromics” is an
emerging form of proteomic analysis that exploits large-scale
measurements of concentrations, modifications, and interac-
tions of proteins with themselves and other molecules. The
new challenges lie in experts from individual disciplines to
become “multilingual” to understand the properties, informa-
tion types, and limitations of data from other domains. Such
multidirectional understanding is necessary to model the re-
lationships between the data and exploit the information
gained (Fig. 1).

What might be crucial steps toward such integrative work?
As for all research, the first step should lie in defining the
biological question, and all subsequent steps should always
go back to this question (Fig. 2). As an integrative systems
biologist, it will be important to step outside one’s comfort
zone and specific research field. True discovery might lie in
exploration of new areas and techniques, such as the com-
bination of proteomics with genetic information, the metabo-
lome, the lipidome, translation measures or cellular melting,
as discussed with the examples above.

The second step involves consideration as to what type of
information is needed and what are the appropriate technol-
ogies (Fig. 2). If a question can be answered by studying just
one molecular type, then there is no use in acquiring other
data. For example, it is tempting to combine genome-wide
analysis of RNA concentrations with the measurements of
corresponding proteins. However, proteomics is typically
more labor-intensive, assesses only a fraction of the ex-
pressed genome, and delivers noisier measurements. There-
fore, mapping the proteome might only be worthwhile if there
is evidence for regulation beyond what is captured by the
transcriptome—warranting integrative analyses that involve
multiple data types. For example, the response to protein
misfolding stress is well-known to affect not only transcrip-
tion, but also translation and RNA and protein degradation,
therefore such integrative analyses are warranted.

Further, the choice of technique should involve consider-
ation of the type of information to be gained. For example,
proteomics techniques that provide absolute concentration
estimates, such as parts-per-million or molecules per cell, are
different from those estimating fold-changes in a specific
condition versus a control. The former can be obtained by
label-free quantitation or use of tags such as iTRAQ or TMT,
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the latter can be obtained from SILAC experiments. For ex-
ample, when discussing the correlation between mRNA and
protein concentrations, one needs to acquire absolute con-
centration estimates (1). When aiming to analyze rates of
synthesis and degradation, time-resolved measurements of
either absolute concentrations or fold-changes work, but the
two different data types require different modeling (7, 10, 77).

In addition, the choice of adequate technique depends on
the method’s limitations. Proteomics is always biased toward
peptides that are amenable to proteolytic digestion, solubility,
and mass spectrometry. Therefore, a hunt for new splice
variants may require use of alternative proteases to increase
the proteome space. Further, ribosome footprinting provides
genome-scale estimates of ribosome locations along mRNAs,
but only indirect measures of translation efficiency. If the
biological question asks for translation rates or evidence exist
for extensive stalling of ribosomes without producing pro-
teins, like for example during inhibition of the proteasome (79),
ribosome footprinting may not be the method of choice.

A third step in integrative analyses lies in the careful plan-
ning of the experiment, keeping the anticipated statistical
model in mind (Fig. 2). It should include considerations as to
the number of genes that are involved and the number of
biological or technical replicates to ensure enough statistical
power. For multiomics experiments, it is important to ensure
that the measurements are matched between techniques with
respect to time points, conditions, and genes. If not, then how
can the differences in experimental conditions be accounted
for in the statistical model?

After data acquisition and normalization, the fourth step
warrants the appropriate modeling of the relationship be-
tween the proteomics data and the other data types (Fig. 2).
These relationships are the key to extracting information be-
yond what is gained from parallel analysis of individual data
sets. As discussed above for tools, such modeling should
include the hierarchical relationship between proteomic and
other information, reflecting the proteins’ position in the cel-
lular system. Because “integromics” is a new field, there is no
one type of recommendation yet to model such relationships;
many different tools exist.

For example, in some cases the relationships can be ex-
pressed by rate equations, such as has been done for dy-
namic analyses of protein and RNA concentration changes in
response to treatment with lipopolysaccharide or ER stres-
sors (10, 12) (Fig. 2): changes in protein concentrations are
expressed as a function of translation based on the mRNA
concentration and protein degradation. In other cases, the
relationships can be modeled in form of a network. An exam-
ple of such studies examines oligodendrocytes in the context
of Alzheimer’s disease (80). Using transcriptomic and pro-
teomic data, genome-wide association data, a protein-protein
interaction network, and Bayesian analysis, the study identi-
fied Cnp as a main regulator that control the aspects of myelin
and mitochondrial gene expression dysregulation. The rela-

tionship between proteins was modeled through known phys-
ical interactions that are part of signaling pathways.

A fifth and perhaps most enjoyable step of integrative anal-
ysis lies in letting go of all the restrictions mentioned above
and play (Fig. 2). The benefit of large-scale studies lies in
unbiased description of connections that can discover entirely
unexpected and new patterns. Key to such exploration is
visualization of the data in various ways, and several helpful
techniques and tools are discussed above. Of course, an
analysis should be guided with the original biological question
in mind - but because the data commonly covers hundreds to
thousands of genes, and because the relationships are usu-
ally based on general models and not manually curated infor-
mation, it is quite possible to move beyond what is known and
unravel new links. For example, in our own work, a large
number of translationally upregulated genes during the ER
stress response had been observed before, but after mapping
these changes to different pathways of the mitochondrial
energy metabolism, we discovered an entirely new trend:
translation upregulation seemed to support a shift in energy
metabolism from the tricarboxylic acid cycle to one-carbon
metabolism (12).

Future Directions—Proteomic analysis and systems biology
in general have exciting times ahead. We predict that future
work will expand existing approaches in multiple ways (Fig. 1).
Such studies might include actual experimental measure-
ments of rates of transcription, translation, RNA and protein
degradation all in parallel—to complement what has been
modeled based on concentration measurements. Methods to
measure these processes exist already, but their integration is
still rare. Apart from computational models (81) or steady-
state analysis (7), there is no study in which all four major
synthesis and degradation rates have been measured simul-
taneously in one dynamic system. Results from such work
would inform us on the relationship between the different
processes, feedback and coupling between them, or different
regulatory goals for different genes.

Future work might also involve more analyses of multiple
modifications per protein or peptide—moving away from
studying one post-translational modification at a time. When
including temporal information, it will be possible to extract
hypotheses on causal relationships, e.g. resolve which phos-
phorylation might trigger subsequent SUMOylation or ubiq-
uitination on a specific protein. Such sequential modifications
have been described for individual pathways, e.g. FEN1 (82)
but are unknown with respect to the global cellular role.

Future integrative proteomics may also involve increased
integration with other molecule types, such as those of the
metabolome. Like the examples described above, such anal-
yses will expand our knowledge of both binding sites in pro-
tein structures but also the impact of metabolites on protein
stability and function (40, 54). To help such new analyses, we
foresee more and more studies in which proteomics is com-
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bined with other technologies, such as the thermal profiling or
polysome profiling mentioned above (52, 54).

And finally, future integrative proteomics might transcend
into entirely new areas, e.g. the analysis of very small samples
or single cells (83–87). Small sample analyses can reveal local
relationships between cells in a tissue, as has been shown for
HeLa cells (88). Such information could open many new ap-
plications ranging from analysis of rare cell populations to
those of limited clinical specimens. Single cell analysis will
also expand our views on the relationship between protein
and mRNA concentrations (83), as has been discussed for
bacteria many years ago (89).

In our view, the essential components to such integrative
work will remain not only in combination of proteomics with
other techniques and data types, but also the careful and
quantitative modeling of the relationships between data as
new findings lie in these relationships. Nothing in biology
works in an isolated manner: protein changes are both im-
pacted by various processes, but also affect multiple pro-
cesses in the cell. The time is ripe to move toward the next
level of systems biology and consider processes in combina-
tion, gaining new insights at their interface.
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