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Abstract:  

Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental 
disorder, but its genetic architecture remains incompletely characterized. Rare coding variants, 
which can profoundly impact gene function, represent an underexplored dimension of ADHD 
risk. In this study, we analyzed large-scale DNA sequencing datasets from ancestrally diverse 
cohorts and observed significant enrichment of rare protein-truncating and deleterious missense 
variants in highly evolutionarily constrained genes. This analysis identified 15 high-confidence 
ADHD risk genes, including the previously implicated KDM5B. Integrating these findings with 
genome-wide association study (GWAS) data revealed nine enriched pathways, with strong 
involvement in  synapse organization, neuronal development, and chromatin regulation. 
Protein–protein interaction analyses identified chromatin regulators as central network hubs, 
and single-cell transcriptomic profiling confirmed their expression in neurons and glial cells, with 
distinct patterns in oligodendrocyte subtypes. These findings advance our understanding of the 
genetic architecture of ADHD, uncover core molecular mechanisms, and provide promising 
directions for future therapeutic development. 
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Introduction 

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder 
characterized by inattention, hyperactivity, and impulsivity. Its global prevalence ranges from 
approximately 5.6 to 11.4% in children and adolescents,1–5 depending on diagnostic criteria, 
with at least 2.6% of adults worldwide experiencing persistent symptoms.6 While the high 
prevalence and significant impact of ADHD are well appreciated, its biological underpinnings 
remain only partially understood. In general, ADHD is widely recognized as arising from a 
combination of genetic predispositions and environmental influences,7,8 with emerging research 
offering insights into its neurobiological basis.9 

ADHD exhibits high heritability, with estimates between 70 and 80%, based on findings from 
family and twin studies.7 Genome-wide association studies (GWAS) have identified numerous 
common genetic markers associated with ADHD, many of which are located within genes 
influencing neurotransmitter systems crucial for regulating attention and behavioral 
regulation.10,11 These findings emphasize the polygenic nature of the disorder, with multiple 
genetic variants of small effects collectively contributing to risk. However, the heritability 
explained by single-nucleotide polymorphisms (SNPs) is only between 14% and 22%, leaving a 
large proportion unexplained. This discrepancy, often referred to as "missing heritability,"12 likely 
reflects a combination of factors, such as gene-environment interactions, epigenetics, structural 
variations, and rare genetic variants.  

Rare variants, which are not well-captured by GWAS due to their low population frequency, 
often have larger individual effect sizes and are more likely to disrupt gene function. Whole-
exome sequencing (WES) studies have revealed a significant enrichment of rare damaging 
variants in individuals with ADHD compared to unaffected controls.13,14 Notably, lysine 
demethylase 5B (KDM5B) has recently emerged as a high-confidence risk gene, marking an 
important advance in understanding the genetic basis of ADHD.14 Additionally, rare structural 
alterations in the genome, such as copy number variants (CNVs), have also been implicated as 
contributors to ADHD risk.15–18 Taken together, these findings underscore the pivotal role of rare 
variants, particularly those that disrupt gene function, in the genetic architecture of ADHD. 
Unlike common variants, which typically exert small, cumulative effects, rare variants often 
result in substantial disruptions to protein function, gene regulation, or cellular pathways, 
providing more direct insights into the biological mechanisms underlying ADHD. Investigating 
these variants offers an opportunity to uncover key genes and pathways, facilitating the 
discovery of novel molecular mechanisms and potential therapeutic targets for the disorder. 

This study investigates the contribution of rare genetic variants to ADHD risk by analyzing 
whole-genome sequencing (WGS) and WES data from multiple cohorts with diverse genetic 
ancestries. By identifying deleterious rare variants, we aim to uncover ADHD risk genes and 
elucidate the biological pathways enriched in these genes. Additionally, we explore the 
heterogeneity of ADHD risk genes compared to those implicated in autism spectrum disorder 
(ASD), offering insights into both shared and distinct genetic architectures underlying these 
neurodevelopmental disorders. 
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Results 

We analyzed WGS and WES datasets derived from multiple sources, including the All of Us 
Research Program, the SPARK initiative, and two previously published studies (Olfson et al., 
2024; Satterstrom et al., 2019)(Supplementary Table 1).13,14,19,20 The datasets included (1) 4,854 
ADHD cases (defined using ICD-10 criteria) and 24,108 ancestry- and sex-matched controls 
from the All of Us Research Program. (2) 902 affected trios (self-reported ADHD) and 3,508 
unaffected trios from the SPARK initiative. Because SPARK is ascertained for autism spectrum 
disorder (ASD), individuals with an ASD diagnosis were excluded, and only those with self-
reported ADHD were retained as affected trios. Similarly, unaffected trios were defined as 
individuals without a diagnosis of ASD, ADHD, or any other mental disorders. (3) 3,477 ADHD 
cases (defined using ICD criteria) and 5,002 controls from Satterstrom et al. (2019). This 
dataset contains individuals with co-occurring ADHD and ASD as well as those with ADHD 
alone; we included only individuals with ADHD (defined using ICD criteria) without ASD in our 
analysis. (4) 147 affected trios (clinically diagnosed ADHD) and 780 unaffected trios from Olfson 
et al. (2024). 

In total, we included 1,049 affected trios, 4,288 unaffected trios, 8,333 cases, and 29,110 
controls in our analysis. To focus on rare coding variants, we restricted our analysis to variants 

located in exons with an allele frequency of ≤0.1% for de novo variants and an allele count ≤ 5 

for case-control variants in both our dataset and the non-psychiatric subsets of gnomAD v3.1.21 

 

Burden of rare coding variation  

Following the assembly and quality control of the datasets, we compared the burden of rare 
coding variants between affected and unaffected individuals.  Due to their high potential 
functional impact, these variants may play a critical role in the genetic architecture of ADHD. 
Specifically, we assessed the impact of rare deleterious coding variants on ADHD risk by 
analyzing protein-truncating variants (PTVs) and missense variants across all study cohorts.  

We categorized genes into deciles based on loss-of-function observed/expected upper bound 
fraction (LOEUF) scores (from 0 to 2), with lower scores reflecting greater selective pressure 
against PTVs. To ensure sufficient statistical power, we combined deciles 1–3 because deciles 
1 and 2 alone contained too few variants for meaningful testing. Excluding the SPARK dataset, 
we observed significant enrichment of PTVs among ADHD cases in genes within the first-to-
third deciles in both trios and case-control cohorts, with this enrichment diminishing as selective 
constraint decreased (Fig. 1 and Extended Data Fig. 1a-d). 

We categorized deleterious missense variants by categorizing them into two subgroups based 

on their MPC (Missense badness, PolyPhen-2, and Constraint) scores: MisB (MPC ≥ 2) and 

MisA (2 > MPC ≥ 1).22 For MPC, higher scores indicate a greater probability of a variant being 
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pathogenic. Additionally, we stratified genes into deciles according to their AlphaMissense 
scores, which range from 0 to 1, with higher scores indicating stronger selective pressure 
against missense variants.23 Genes in the top three deciles of AlphaMissense score exhibited 
significant enrichment of MisB variants in ADHD cases, in both trios and case-control cohorts, 
excluding the SPARK dataset (Fig 1). In the Olfson and All of Us datasets, this enrichment 
gradually increased as selective constraints became stronger, however, it was not observed in 
the SPARK and Satterstrom datasets (Extended Data Fig. 2a-d).  

For MisA variants in genes in the top three deciles of AlphaMissense score, we observed 
significant enrichment in ADHD cases in the All of Us  case-control cohort; however, the 
enrichment pattern, while aligning consistently with the AlphaMissense score, was weaker than 
that of MisB variants (Fig. 1 and Extended Data Fig. 3a-d). Synonymous variants did not show 
any significant enrichment in ADHD cases across trios or case-control cohorts.  

These findings suggest that rare coding variants, particularly PTVs and deleterious missense 
variants in  conserved genes, represent important genetic risk factors for ADHD.  

 

Number of risk genes  

The observed enrichment of PTV and deleterious missense variants in conserved genes among 
ADHD cases suggests that these genes are likely to harbor specific genetic risk factors for the 
disorder. We applied the "unseen species problem" method to estimate the expected number of 
risk genes that could be identified through rare variant analysis.24 This approach, previously 
used in similar analyses of rare variant contributions to complex traits, infers the expected 
number of risk-associated genes, including those not yet observed, by analyzing the 
frequencies of deleterious de novo variants and estimating the likelihood that these variants 
represent a subset of the complete set of risk genes.  

Given the SPARK dataset is ascertained for ASD, and parental data are required to distinguish 
inherited variants from de novo variants, we restricted our analysis to the trios from the Olfson et 
al.(2024) dataset to minimize potential bias arising from ASD-specific ascertainment. Using this 
cohort, we examined the number of deleterious de novo PTVs and missense variants predicted 
to be damaging (MisB) (Methods). 

Our analysis estimated approximately 173 autosomal coding genes, representing 0.95% of the 
18,128 protein-coding genes analyzed, as potentially implicated in ADHD through rare 
deleterious variation. However, these estimates are provisional due to the limited sample size 
and should be refined as additional data becomes available. 

 

Identification of risk genes 

We next sought to identify specific risk genes for ADHD. The relative risk associated with 
ADHD-related variants can vary based on factors such as variant type (de novo and 
case/control), variant classification (PTV, MisB, and MisA), and evolutionary constraint (LOEUF 
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and AlphaMis scores).  Integrating these factors in association testing can improve gene 
prioritization and enhance power to detect true associations. 

To leverage this variation and identify ADHD risk genes, we applied the TADA25, an approach 
that integrates rare deleterious variants across various classes while accounting for evolutionary 
constraints, mutation rates, and prior probabilities of relative risk, as well as variant types and 
inheritance patterns. For each autosomal protein-coding gene, we calculated a Bayes factor 
(BF) and false discovery rate (FDR) to quantify the strength of evidence for an association 
(Supplementary Table 2). In accordance with the All of Us Data and Statistics Dissemination 
Policy, we are unable to display the ultra-rare variant counts per gene. 

Because the SPARK dataset is ascertained for ASD, we used the Olfson et al.(2024) dataset for 
de novo variants and the All of Us dataset for case-control variants to estimate TADA 
parameters and prior probabilities of relative risk, thus minimizing ASD-specific ascertainment 
bias. 

We assessed potential inflation in TADA results by calculating the genomic inflation factor (λGC) 
and examining a quantile-quantile (Q-Q) plot. The genomic inflation factor was 1.017, indicating 
minimal inflation and suggesting that observed p-values were not significantly confounded by 
population stratification or other biases. The Q-Q plot corroborated this finding, with observed p-
values closely aligning with the expected diagonal, apart from upward deviations for some 
genes, indicative of true associations (Extended Data Fig. 4).  

Our analysis identified 15 genes with a q value (FDR) less than 0.1, a threshold commonly used 
in rare variant studies to identify risk genes and minimize false discoveries.14,25–28 Among these 
were KDM5B, a histone demethylase enzyme involved in regulating gene transcription, cell 
differentiation, and proliferation,29 previously implicated as an ADHD risk gene by Olfson et al. 
(2024), and 14 novel risk genes (Table 1 and Fig. 2).  

As sensitivity analyses, we re-applied TADA after excluding the SPARK cohort to minimize the 
influence of ASD-specific ascertainment. In this analysis, six genes (KDM5B, CTNND2, MMP16, 
RAI1, ZMYND11, and ST8SIA2) of the originally identified 15 genes remained significant at q 
value < 0.1 (Supplementary Table 3). Furthermore, when TADA was restricted solely to the two 
case-control datasets (All of Us and Satterstrom), two genes (RAI1 and ZMYND11) continued to 
meet q value < 0.1 (Supplementary Table 4). These findings suggest that the associations for at 
least a subset of the identified genes are not wholly dependent on the inclusion of the SPARK 
cohort or signals from the de novo variants. 

 

Expression pattern of ADHD risk genes 

We next examined the expression profiles of the 15 identified ADHD risk genes using publicly 
available RNA sequencing datasets from the Gene Expression Omnibus (GEO; 
http://www.ncbi.nlm.nih.gov/geo/).30 Among the available data, we identified a whole-blood 
RNA-seq study comprising both monozygotic twin pairs and case-control samples with and 
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without ADHD.31 Differential expression analyses were performed on 16 probands and their 
unaffected siblings, as well as on 23 cases and 21 controls. 

In the twin dataset, CTNND2 (catenin delta 2) expression was significantly reduced in ADHD 
probands compared to their siblings. In the case-control dataset, ST8SIA2 (ST8 alpha-N-acetyl-
neuraminide alpha-2,8-sialyltransferase 2) and ANTXR1 (ANTXR cell adhesion molecule 1) 
were significantly downregulated in ADHD cases compared to controls (log fold change > |1|, P 
< 0.05) (Supplementary Table 5). Although these findings did not remain significant after 
correction for multiple testing (FDR > 0.1), The observed differentially reduced expression in 
unrelated ADHD probands may still indicate that certain rare deleterious variants disrupt protein 
production, potentially affecting critical cellular processes and contributing to ADHD 
pathophysiology. 

To further investigate the cell type-specific expression patterns of the 15 ADHD risk genes, we 
leveraged the cellxgene platform (https://cellxgene.cziscience.com/gene-expression) to analyze 
single-cell RNA sequencing data.32 All 15 ADHD risk genes were expressed across various 
neural cell types, including both neurons and glial cells (Extended Data Fig. 5).  

 

Pathway Enrichment Analysis 

To determine whether ADHD risk genes are overrepresented in specific biological pathways, we 
performed pathway enrichment analysis using the GENE2FUNC module from the Functional 
Mapping and Annotation (FUMA) platform.33 The analysis included BioCarta, KEGG, Reactome 
pathways, and Gene Ontology (GO) terms. Multiple testing correction was applied using the 
Benjamini–Hochberg method (adjusted P < 0.05). Initial analysis of the 15 risk genes identified 
in our rare variant study did not reveal significant enrichment in any pathways. 

To expand the list of ADHD risk genes, we performed gene-based annotation using MAGMA 
(Multi-marker Analysis of Genomic Annotation) with the summary statistics from the current 
ADHD GWAS.11,34 MAGMA annotated a total of 42 genes with significant P values after 
Bonferroni correction (Supplementary Table 6). Using a combined set of 57 genes (15 from the 
rare variant study and 42 from GWAS), we identified 9 Gene Ontology biological pathways with 
FDR<0.05, including 'synapse organization' and 'generation of neurons' (Supplementary Table 
7). All nine pathways included at least one gene from our rare variant study. Notably, the 
'developmental growth' and 'cell morphogenesis' pathways emerged only after incorporating the 
15 genes from the rare variant study. 

 

Protein-protein Interaction Analysis 

We next used the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) to 
examine protein-protein interactions (PPI) among the 15 ADHD risk genes identified from our 
rare variant analysis.35  Unlike pathway enrichment analysis, which focuses on the functional 
annotation of genes in broader biological contexts, STRING highlights PPI and the functional 
connectivity between encoded proteins. Among the 15 ADHD risk genes, KDM5B, CHD6, 
ZMYND11, and EP400 emerged as central hubs within the resulting PPI network. These genes 
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were connected and associated with the ‘chromatin regulator’ biological process (FDR<0.05) 
(Extended Data Fig. 6a and Supplementary Table 8). 

We then performed a PPI analysis on the combined set of 57 ADHD-associated genes (15 from 
the rare variant study and 42 from GWAS). This resulted in a PPI network comprising 160 
edges, significantly more than the 79 edges expected by chance (PPI enrichment P value = 1.1 
× 10-15). These findings indicate functionally interconnected among the input genes (Extended 
Data Fig. 6b). Functional enrichment analysis within this expanded network highlighted 
significant involvement in pathways such as ‘regulation of synapse organization’ (FDR<0.05) 
(Extended Data Fig. 6b and Supplementary Table 8). These results complement the pathway 
enrichment analysis using the GENE2FUNC module of FUMA above by identifying proteins that 
directly interact within the highlighted pathways, underscoring the functional roles of genes like 
ST8SIA2 as central connectors in synaptic processes. 

 

Ancestry Analysis 

We identified 15 genes associated with ADHD risk; however, it remains unclear whether the 
genetic architecture of ADHD, particularly involving rare damaging variants, varies across 
ancestries. While the fundamental biological constraints on damaging variants are unlikely to 
differ by ancestry, the occurrence and frequency of such variants may be shaped by historical 
demographic events, including bottlenecks, founder effects, and genetic drift. To investigate 
this, we first examined the population frequency of rare synonymous and potentially damaging 
variants (PTVs, MisB, and MisA) in these genes using data from gnomAD and the All of Us 
Research Program across ancestries [non-Finnish European (NFE), African (AFR), and 
admixed-American (AMR) populations]. This initial analysis enabled us to distinguish ordinary 
ancestral variation from potential ADHD-specific genetic signatures. We found that the genetic 
architecture of these 15 genes, including both potentially neutral (synonymous) and deleterious 
(PTV, MisB, and MisA) variants, differed markedly between ancestries (Supplementary Table 
9). While these findings do not preclude the presence of ADHD-associated rare variants, they 
underscore the importance of interpreting any observed enrichment of damaging variants within 
the context of established population-level baselines. Failure to account for such ancestral 
differences could lead to misattribution of ordinary population variation to disease risk.  

We compared the burden of rare damaging variants in the 15 ADHD risk genes among ADHD 
cases in the All of Us cohort, stratified by ancestry. The test identified CTNND2 as significantly 
different (P < 0.001) between NFE and AMR populations, and EP400 as significantly different (P 
< 0.001) between NFE and AFR populations (Supplementary Table 10). Then, we performed 
the Breslow–Day test to assess whether these differences remained significant after accounting 
for ancestry-specific baseline frequencies. For CTNND2, the Breslow–Day test indicated that 
baseline differences between ancestries explained the observed signal, as its significance 
disappeared. For EP400, the P-value increased to 3.19E-04, suggesting that part of the 
observed association was due to population-level variation (Supplementary Table 10). However, 
the association remained statistically significant, indicating that differences in variant 
frequencies for EP400 persist even after adjustment. 
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In AFR, the burden of ultra-rare variants in EP400 was higher (0.02155), and the associated OR 
> 1 (1.627) suggests a notable contribution of this gene to ADHD risk in this population. In 
contrast, in NFE, the burden of ultra-rare variants was much lower (0.00319), and the OR < 1 
(0.575) likely reflects the reduced contribution of EP400 to ADHD in this population. This finding 
does not imply that EP400 is biologically protective in NFE but rather that deleterious variants in 
this gene are less frequently observed and may not be a major contributor to ADHD risk in 
European-ancestry populations. However, these findings should be approached with caution 
due to the limited sample size for rare variant analyses.  

 

Relationship between ADHD and ASD  

Of the 15 ADHD risk genes identified through our rare variant analysis, we found that three 
genes have also been implicated as risk genes for ASD: KDM5B, RAI1 (retinoic acid induced 1), 
and ZMYND11 (zinc finger MYND domain-containing protein 11).25 To investigate whether the 
burden of deleterious rare coding variants differs between ADHD and ASD, we performed 
heterogeneity analyses using de novo and case-control variant data from 15,036 ASD probands 
and 5,591 ASD cases.25  

Finally, we counted PTVs, MisB, and MisA variants within the 15 ADHD risk genes and the 
remaining genes (18,128 genes excluding the 15). We performed heterogeneity analyses using 
Fisher’s exact test between ADHD and ASD (Supplementary Table 11). Deleterious de novo 
variants were significantly more enriched in ADHD probands compared to ASD probands in four 
genes: CHST15 (carbohydrate sulfotransferase 15), CHD6 (chromodomain helicase DNA 
binding protein 6), CTNND2, and TNFAIP3 (tumor necrosis factor alpha-induced protein 3) 
(FDR<0.05). Five additional genes (EP400, AGFG1, ANTXR1, MMP16, and SNX17) showed 
nominally significant heterogeneity in variant enrichment. 

 

Discussion 

Our study aimed to elucidate the genetic risk architecture of ADHD through an in-depth analysis 
of rare coding variants. We observed significant enrichment of PTVs and deleterious missense 
variants in genes under strong evolutionary constraint, as reflected by top decile rankings in 
LOEUF and AlphaMissense scores among individuals with ADHD. Building on these findings, 
we identified 14 novel risk genes for ADHD and replicated previous findings associated with 
KDM5B. We identified additional de novo PTV in the SPARK dataset and significant enrichment 
of PTVs and deleterious missense variants in case-control analyses in KDM5B. KDM5B plays a 
vital role in regulating gene expression and synaptic plasticity in the adult hippocampus.36 

The second significant gene, CTNND2, encodes delta-catenin, which is expressed in 
proliferating neuronal progenitor cells of the neuroepithelium and the dendritic compartments of 
postmitotic neurons.37 CTNND2 plays a critical role in regulating synaptic maturation, neural 
excitability, and the accumulation of SYNGAP1, with SRGAP2 proteins modulating its synaptic 
function and contributing to human synaptic neoteny.38 A study has implicated in CTNND2 in 
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ADHD pathophysiology through chromosomal translocation and disruption, linking it to severe 
ADHD phenotypes and potential genetic mechanisms.39 

Haploinsufficiency of RAI1, which encodes a nuclear protein, leads to Smith-Magenis syndrome, 
a condition presenting a range of neurodevelopmental and behavioral characteristics.40,41 RAI1 
predominantly associates with DNA regions proximal to active promoters, enhancing the 
transcription of genes involved in neural circuit formation and neuronal communication.42  

MMP16, a member of the matrix metalloproteinase which is involved in various physiological 
and pathological processes, including morphogenesis, wound healing, tissue repair, and tissue 
remodeling, was identified as a genetic locus associated with schizophrenia.43 Furthermore, rare 
copy-number variation in MMP16 was observed in individuals with ADHD.44  

The role of EP400, a critical chromatin remodeling factor, in regulating gene expression relevant 
to neuronal development and synaptic function has been identified as a causative factor for 
epilepsy and neurodevelopmental disorders.45 

Overall, these results suggest that genes under evolutionary constraint are more likely to harbor 
rare variants that impact ADHD risk, emphasizing their critical importance as targets for genetic 
and functional research. This observation aligns with prior research implicating constrained 
genes in the pathogenesis of various psychiatric disorders.25–28,46–48 Interestingly, a few risk 
genes like KDM5B, SNX17, CHST15, ST8SIA2 and PIK3R2 exhibited less constrained LOEUF 
scores compared to other genes, highlighting the need to investigate how these types of genes 
contribute to ADHD pathophysiology. 

Gene expression analyses in unrelated ADHD probands further revealed reduced expression of 
several risk genes identified by rare variants, including CTNND2, ST8SIA2, and ANTXR1, 
pointing to potential disruptions in protein production and cellular function. To gain deeper 
insights into how these genes function within specific cell types, we analyzed single-cell RNA 
sequencing data using the CellxGene platform. We found that all 15 ADHD risk genes that we 
identified were expressed in both neurons and glial cells, indicating their broad involvement in 
brain function. Additionally, transcriptomic profiles from adult human brain tissue revealed that 
five ADHD risk genes (CTNND2, MMP16, AGFG1, RAI1, and EP400) display distinct 
expression patterns across two oligodendrocyte subtypes—OPALIN+ and RBFOX1+ cells—that 
differ in maturation state.49 Notably, CTNND2, MMP16, RAI1, and EP400 were enriched in 
OPALIN+ oligodendrocytes associated with active myelination, while AGFG1 was more highly 
expressed in RBFOX1+ oligodendrocytes indicative of a more mature lineage. 
Oligodendrocytes play a pivotal role in cognitive function.50,51 The evolutionary changes in 
oligodendrocyte gene expression may influence cognitive disorders, including ADHD.52 These 
findings suggest that these genes may influence oligodendrocyte differentiation and function, 
potentially shaping the development and maintenance of neural circuits implicated in ADHD. 

To further explore the biological implications of these findings, we conducted pathway 
enrichment and PPI analyses. These complementary methods provided a more comprehensive 
view of the underlying biological mechanisms. Pathway enrichment analysis primarily highlights 
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functionally enriched sets of genes within known biological pathways, while PPI analysis 
uncovers the physical and functional interactions among proteins encoded by these genes, 
revealing how they coalesce into interconnected networks. By integrating these approaches, our 
study identified core developmental processes, such as neurogenesis, neuronal differentiation, 
synapse organization, regulation of synapse activity, and chromatin regulation that are closely 
linked to the ADHD risk genes that we identified.   

These core processes encompass essential aspects of brain organization and function, offering 
insights into how disruptions in these pathways may contribute to ADHD. Developmental and 
neuron-related pathways form the foundation for brain organization, encompassing 
neurogenesis, neuronal specialization, and the formation of functional networks critical for 
cognitive and behavioral regulation. Disruptions in these processes are often implicated in 
ADHD.53–56 Impairments in synaptic organization and adaptability may disrupt neurotransmitter 
signaling, limiting the brain's capacity for flexible responses in individuals with ADHD.57–59 
Furthermore, chromatin regulation integrates epigenetic processes that modulate gene 
expression during brain development. Dysregulation in these pathways may result in improper 
activation or silencing of genes essential for neural function, thereby contributing to ADHD 
pathophysiology.60–62 Through the integration of pathway enrichment and PPI analyses, we 
identified enriched biological processes while uncovering the molecular architecture and 
interconnectedness of gene networks that underpin the pathophysiology of ADHD. 

The substantial involvement of chromatin regulation and developmental pathways in ADHD 
raises intriguing questions about its genetic and neurobiological overlap with ASD. Studies have 
shown that 15% to 25% of children with ADHD exhibit traits and symptoms of ASD, with 12.4% 
meeting the diagnostic criteria for ASD.63–65 Conversely, ADHD is one of the most frequently 
observed comorbidities in children with ASD, with reported rates ranging from 40% to 70%.66–69 
This significant clinical overlap highlights the potential for shared genetic mechanisms between 
these conditions. Supporting this hypothesis, a previous study has demonstrated a similar 
burden of rare PTVs in evolutionarily constrained genes among individuals with ADHD and 
ASD.13 Among 15 ADHD risk genes we identified, KDM5B, RAI1, and ZMYND11 have also 
been reported as ASD risk genes.25 Notably, these genes are involved in transcriptional 
regulation via chromatin modification,70–74 suggesting that disruptions in these processes may 
contribute to the co-occurrence of ASD and ADHD.  

At the same time, four genes (CHST15, CHD6, CTNND2, and TNFAIP3) exhibited significant 
enrichment for deleterious rare de novo variants in ADHD compared to ASD, suggesting 
disorder-specific genetic contributions. Of particular interest, TNFAIP3, an immune-related 
gene, serves as a negative regulator of TLR immune response pathways and has been 
associated with major depressive disorder.75–77 Loss of one copy of TNFAIP3 (A20) can lead to 
cognitive symptoms and neuroinflammation,78 suggesting potential immune system involvement 
in ADHD pathophysiology.79 These findings indicate that while ADHD and ASD share genetic 
risk factors, they also exhibit distinct genetic profiles.  

Our analysis of ultra-rare damaging variants in 15 ADHD-associated genes revealed ancestry-
specific differences in EP400. In AFR populations, EP400 showed a higher burden of ultra-rare 
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variants (0.02155) and an OR > 1 (1.627), indicating a significant contribution to ADHD risk. In 
contrast, the much lower burden in NFE (0.00319) and OR < 1 (0.575) likely reflects a reduced 
role of this gene in ADHD risk rather than true biological protection. This finding should be 
interpreted cautiously, as low variant counts and limited sample sizes may produce statistical 
artifacts. These results highlight the importance of ancestry-specific analyses in understanding 
rare variants' contributions to ADHD risk.  

This study has several notable strengths. One of its key strengths is the integration of rare 
variant analyses with functional data, including gene expression and pathway-level insights. 
This approach enabled the identification of both shared and distinct genetic mechanisms 
underlying ADHD and ASD. Additionally, the use of complementary methods, such as single-
cell RNA sequencing and transcriptomic profiling, allowed for a detailed exploration of the 
cellular contexts in which these risk genes are expressed, shedding light on their potential roles 
in neurodevelopment. Together, these strategies provided a comprehensive framework for 
understanding the genetic and molecular basis of ADHD. 

However, this study also has limitations. One major limitation is the lack of experimental 
validation for the identified risk genes, which leaves uncertainty about their precise functional 
roles. Future research should prioritize functional assays, such as CRISPR-based models or 
other in vitro and in vivo approaches, to clarify the biological effects of these variants. 
Additionally, while the study identified key pathways involved in ADHD, the broader interactions 
between genetic, epigenetic, and environmental factors remain unexplored. Another notable 
limitation is the heterogeneity of ADHD itself. By categorizing all participants under a single 
ADHD diagnosis, this study may have overlooked genetic contributions specific to subtypes or 
symptom dimensions, such as inattentiveness, hyperactivity, or impulsivity. Future research 
should aim to integrate genetic insights with detailed clinical phenotyping to address this 
heterogeneity, enabling a more nuanced understanding of how genetic factors contribute to 
distinct presentations of ADHD. Additionally, a notable limitation of our study is the use of 
unaffected siblings from ASD trios in the SSC and SPARK cohorts as controls. While these 
individuals are considered unaffected by ASD, it is important to acknowledge that both cohorts 
are derived from ASD-enriched populations, which may introduce potential biases. Moreover, 
there are differences in the depth of phenotypic assessment for psychiatric disorders between 
these cohorts. While diagnoses in the SPARK cohort were based on self-reports, the SSC 
cohort, as used in the Olfson cohort, underwent more thorough evaluations for psychiatric 
disorders. Consequently, we utilized the Olfson cohort to calculate the number of risk genes and 
parameters for TADA. By using these controls in an ADHD-focused study, we acknowledge that 
this limitation could bias the results toward the null hypothesis, potentially reducing the ability to 
detect significant associations. 

In summary, this study provides critical insights into the genetic architecture of ADHD, 
identifying 14 novel risk genes and uncovering key biological pathways, including chromatin 
regulation, neurogenesis, and synapse organization, that contribute to its pathophysiology. Our 
findings demonstrate both shared and distinct genetic contributions with ASD, highlighting the 
overlapping yet divergent molecular mechanisms underlying these neurodevelopmental 
disorders. Importantly, the identification of chromatin-regulating genes and immune-related 
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factors, such as TNFAIP3, points to novel avenues for therapeutic exploration. Understanding 
how these pathways interact may enable precision medicine approaches, facilitating targeted 
interventions for individuals with ADHD, particularly those with overlapping features of ASD or 
immune dysregulation. Future research should integrate genetic insights with detailed clinical 
phenotyping to better predict outcomes and tailor treatment strategies, ultimately improving care 
for individuals affected by ADHD and related neurodevelopmental conditions. 

 

 

 

Methods 

Study population: All of Us 

The All of Us Research Program, led by the National Institutes of Health (NIH), is a landmark 
precision medicine initiative aimed at accelerating health research and medical breakthroughs 
by gathering a diverse set of data from one million or more participants across the United 
States.20 In the current All of Us Research Program (controlled tier, version 7) workspace, we 
identified 7,198 samples diagnosed with attention-deficit/hyperactivity disorder (ADHD). Of 
these, 5,063 samples had available whole-genome sequencing (WGS) data. For our case-
control matching analysis, we selected these 5,063 ADHD samples and 153,678 samples 
without mental disorders (F01-F99 defined using ICD-10 criteria) from the WGS dataset. Using 
the R package optmatch, we performed 1:5 case-control matching based on sex and principal 
components (PCs) 1–5, which were calculated from the WGS data and provided by the All of Us 
Research Program. We confirmed that the resulting 5,063 cases and 25,315 controls were well 
matched, as shown by scatter plots (Extended Data Fig. 7).  

 

Study population: SPARK 

The Simons Foundation Powering Autism Research for Knowledge (SPARK) project is a large-
scale research initiative designed to enhance our understanding of autism spectrum disorder 
(ASD) by building a comprehensive database containing genetic, behavioral, and medical 
information from individuals with ASD and their families.19 The third data release (August 2024) 
from SPARK, which integrated whole exome sequencing (WES), included 142,357 samples, 
comprising 40,193 complete trios—28,159 with ASD and 12,034 unaffected trios. Among the 
unaffected trios, 1,241 included a child diagnosed with ADHD. We utilized the remaining 10,793 
unaffected trios without a child diagnosed with ADHD as controls. The diagnoses in the SPARK 
cohort were based on self-reports. 

 

Study population: Summary statistics from other studies 

We incorporated 150 and 662 rare de novo variants from 147 ADHD trios and 780 unaffected 
trios, respectively, as reported in Olfson et al., 2024 (Supplementary Table 12).14 We used the 
liftOver tool to convert the genomic positions of the de novo variants to the GRCh38 assembly.80 
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We also used the gene-level rare variant count data from 3,477 cases and 5,002 controls, as 
reported in Satterstrom et al., 2019.13  

 

Identification of rare coding variants - All of Us 

We analyzed short-read whole-genome sequencing (WGS) data from 5,063 cases and 25,315 
controls without mental disorders (F01-F99 defined using ICD-10 criteria) obtained from the All 
of Us Research Program. Following the All of Us guidelines (All of Us Genomic Quality Report 
[ARCHIVED C2022Q4R9 CDR v7], n.d.), we excluded 43 individuals who had fewer than 2.4 
million or more than 5.0 million total variants, over 100,000 variants not present in gnomAD 
v3.1,21 or a heterozygous-to-homozygous variant ratio greater than 3.3. 

We removed 1,043,732 low-quality variants defined by genotype quality (GQ) ≤ 20, read depth 

(DP) ≤ 10, allele balance (AB) ≤ 0.2 for heterozygotes, ExcessHet < 54.69, and quality scores 

(QUAL) < 60 for single nucleotide variants (SNVs) and < 69 for short insertions and deletions 

(InDels), as well as variants located in low-complexity regions. Our quality control process 

further excluded 235 samples with call rates more than three standard deviations below the 

mean, 426 individuals with close genetic relatedness (kinship coefficient > 0.1) as determined 

by Kinship-based INference for Genome-wide association studies (KING),81 and 710 individuals 

with sex discrepancies. 

After filtering, we retained 4,856 cases and 24,108 controls. We further excluded homozygous 

reference calls with less than 90% read depth supporting the reference allele or GQ < 25; 

heterozygous calls with an allele balance < 30%, GQ < 25, or a probability greater than 1×10⁻⁹ 

for the observed allele balance based on a binomial distribution centered at 0.5; and 

homozygous alternate calls with less than 90% read depth supporting the alternate allele or GQ 

< 25. Variants with a call rate ≤ 90% and Hardy-Weinberg equilibrium P < 1×10�¹² were also 

removed. After all filtering steps, 32,687,442 variants were retained. 

We utilized the Variant Effect Predictor (VEP) to predict the potential functional effects of the 

variants.82 Variants were classified into protein-truncating variants (PTVs)—including frameshift, 

stop-gained, splice donor, and splice acceptor variants—missense variants, and synonymous 

variants. For PTVs, we applied the Loss-Of-Function Transcript Effect Estimator (LOFTEE), 

requiring a "high-confidence" (HC) designation and excluding LOFTEE flags except 

"SINGLE_EXON." Missense variants were categorized based on MPC scores into MisB (MPC ≥ 

2), MisA (1 ≤ MPC < 2), and Mis0 (0 ≤ MPC < 1).22 To filter rare variants, we included those with 
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an allele count of ≤ 5 in both our case-control cohort and the non-psychiatric subset of the 

gnomAD database v3.1.21 

 

Identification of rare de novo coding variants - SPARK 

The most current WES data (iWES v3) was released in August 2024, consisting of 1-9 
batches.19 Comprehensive quality control (QC) of batch 5-9 was conducted for both genotypes 
and samples. For genotype QC, we applied several filters to remove certain genotype calls. We 
excluded genotype calls with a depth below 10 or above 1,000 and removed genotype calls 
from the Y chromosome in female samples. Homozygous reference calls were excluded if less 
than 90% of the read depth supported the reference allele or if the genotype quality (GQ) was 
less than 25. 

Heterozygous calls were removed under several conditions: if the Phred-scaled likelihood of 
being homozygous reference (PL[HomRef]) < 25; if the call rate (the read depth supporting 
either the reference or alternate allele) was less than 90%; if the allele balance (the number of 
mapped reads supporting the alternate allele divided by the read depth) was less than 25%; if 
the probability of the allele balance, based on a binomial distribution centered on 0.5, was less 
than 1×10-9 ; or if they were located on the X or Y chromosome (excluding pseudoautosomal 
regions) of male samples. Homozygous alternate calls were excluded if less than 90% of the 
read depth supported the alternate allele or if PL[HomRef] < 25. 

We also removed samples based on specific criteria. Samples with a high proportion of 
contaminated reads > 5%. Additionally, we excluded samples with a call rate more than three 
standard deviations below the mean of each cohort, and duplicated samples. We verified 
reported pedigrees of family data using the genetic relatedness matrix calculated by KING 
(kinship coefficient: 0.177-0.354 for 1st-degree relationship).81 We removed all samples from 
incomplete trios. For the final variant QC, we removed variants with a call rate < 10%, or with a 
Hardy-Weinberg equilibrium (HWE) P value < 10-12. 

The de_novo() function in Hail v0.2.60 (https://hail.is) was used to identify de novo variants from 
the QC-ed joint-genotyped data (removing variants with a GQ < 25). The population allele 
frequency of the non-neuro subset from the gnomAD database was used as the input priors of 
the de_novo() function.21 We also used “max_parent_ab = 0.03”, “min_child_ab = 0.3”, and 
“min_dp_ratio = 0.3” as parameters of the de_novo() function to exclude de novo candidates if 
the allele balance in a parent is above 3%, if the allele balance of proband is lower than 30%, or 
if the ratio of read depth between the proband and parents is lower than 30%. This process 
yielded 214,942 putative de novo variants from a total of 12,887 probands.  

Quality Control on De Novo Variants: From the initial 214,942 variants, we kept 56,881 variants 
with “HIGH” or “MEDIUM” confidence indicated by the calling algorithm (the “MEDIUM” 
confidence calls are limited to a singleton). We further removed 4,892 and 1,101 variants with 
allele frequency > 0.1% in the QC-ed joint-genotyped data and non-neuro subset from the 
gnomAD database, respectively. Then, 4,148 variants were excluded as they appeared more 
than twice, and an additional 19,567 variants were removed to retain one variant with the most 
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severe effect in the same gene for each sample. Finally, 5,047 variants identified from 49 
children with >7 de novo variants were removed. After QC, a total of 22,127 high confidence de 
novo variants of 12,838 trios remained. After adding the SPARK batch 1–4 data from the 
existing paper to our dataset,25 we retained a total of 9,592 sibling trios without ASD. This 
combined dataset included 983 unaffected siblings diagnosed with ADHD and 6,331 unaffected 
siblings without any mental disorders (self-reports from the basic medical screening file). We 
then excluded all unaffected siblings younger than six years of age, removing 76 siblings with 
ADHD and 2,812 siblings without any mental disorders. In addition, we removed 16 unaffected 
siblings who carried more than seven de novo variants (5 with ADHD and 11 without mental 
disorders). After these steps, the final sample consisted of 902 unaffected siblings with ADHD 
and 3,508 unaffected siblings without any mental disorders (Supplementary Table 13). High-
quality de novo variants from the final sample were listed in Supplementary Table 12. 

Calculating the number of risk genes 

We examined the number of deleterious de novo variants (PTVs and MisB variants) among 147 
ADHD and 780 unaffected trios from the Olfson dataset.14 We proceeded under the assumption 
that the number of deleterious variants in cases minus those in controls (d) contributes to the 
risk of ADHD, and genes exhibiting recurrent variants (x) were regarded as indicative of risk-
associated events. We applied the formula to calculate the number of risk genes in each 
permutation (C): C = c/u + g^2 * d * (1-u)/u, in which: c as the total number of distinct genes with 
a de novo (d - x), c1 as the count of singleton genes (d - 2x), g as the coefficient of variation in 
the fractions of genes of each type, and u as 1 – c1/d.24,83 For our calculations, we assume g to 
be 1 due to the limited number of observations. 

Identification of risk genes 

We employed the Transmission and De Novo Association Test (TADA) to pinpoint genes 

associated with ADHD.84 We categorized deleterious missense variants by categorizing them 

into two subgroups based on their MPC (Missense badness, PolyPhen-2, and Constraint) 

scores: MisB (MPC ≥ 2) and MisA (2 > MPC ≥ 1).22 Additionally, we added both loss-of-function 

observed/expected upper bound fraction (LOEUF) and AlphaMissense scores to each gene. 
Then, we incorporated rare coding variants (PTVs, MisB, MisA, and synonymous variants) to 
each gene (Supplementary Table 2). Due to the All of Us Data and Statistics Dissemination 
Policy, we were unable to display the individual ultra-rare variant counts per gene. 

The extended version of TADA calculated a Bayes Factor (BF) to measure the statistical 
strength of the gene-level association.25,26 This calculation draws on several inputs, including 
the number of variant events, sample sizes, the proportion of risk genes, and a prior parameter 
(gamma) reflecting the variant risk within each gene. For each gene, the gamma values for 
PTVs, MisB variants, and MisA variants were derived by dividing the variant’s relative risk by the 
estimated proportion of genes that significantly contribute to ADHD, then smoothing these 
values over the LOEUF score for PTVs and AlphaMissense score for missense variants. We 
organized the data into LOEUF- or AlphaMissense-ranked bins, fitted a logistic curve, and 
calculated a rolling average gamma for PTV, MisB, and MisA variants to represent their relative 
enrichment in cases versus controls (Supplementary Table 2). 
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To obtain the total gene-level BF, we multiplied the BFs from the three variant classes. We then 
imposed a lower bound of 1 for each variant class’s BF to prevent one class from weakening the 
association evidence provided by another. These BFs were transformed into posterior 
probabilities, which served as the basis for calculating P values and q values for multiple-testing 
correction, ultimately generating a list of candidate risk genes. We defined genes with an FDR 
under 0.1 were considered “high-confidence” risk genes, a stringent threshold commonly used 
in similar rare variant studies to reduce false discoveries.14,26–28 

 

Differential expression analysis 

Total RNA sequencing data of ADHD cases and controls were obtained from publicly available 
datasets on the Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo).30 We 
utilized ‘GSE159104’ study, which had whole-blood RNA-seq dataset composed of both 
monozygotic twin pairs (affected proband and unaffected sibling) and unrelated case-control 
samples, all characterized for ADHD status.31 Using the edgeR package,85,86 normalized gene 
expression matrix was analyzed to compare gene expression levels between 16 probands and 
their unaffected siblings, as well as between 23 ADHD cases and 21 controls. Gene-level 
statistical significance was determined using both unadjusted P values and multiple-testing 
corrected false discovery rates (FDR).  

Additionally, to explore cell type-specific gene expression patterns in neural tissue, we 
leveraged single-cell RNA sequencing data accessed through the CELLxGENE platform 
(https://cellxgene.cziscience.com/gene-expression).32 All 15 ADHD risk genes were profiled 
across diverse neural cell populations, including neurons and glial cells, to provide insight into 
their potential roles in ADHD pathophysiology.  

 

Pathway enrichment analysis 

To identify biological pathways enriched in ADHD risk genes, we performed pathway 
enrichment analysis using FUMA GWAS.33 The input consisted of a list of risk genes identified 
from the rare variant study or GWAS. To annotate risk genes from the current ADHD GWAS,11 
we used MAGMA (Multi-marker Analysis of Genomic Annotation), a tool used for annotating 
GWAS results to identify genes associated with traits or diseases.34 It links SNPs to genes by 
mapping variants within a defined window around each gene, typically 10 kb upstream and 
downstream. MAGMA then aggregates SNP-level association signals into gene-level scores 
using statistical models that account for linkage disequilibrium (LD). We utilized the gene 
location files and European LD reference panel from MAGMA website 
(https://ctg.cncr.nl/software/magma). We kept annotated genes with P value < 2.83E-06 
(0.05/17,635 genes). The merged gene lists were mapped to predefined pathways from 
curated databases, including Reactome, KEGG, and Gene Ontology biological processes 
(MsigDB c5). A statistical test was employed to assess whether the genes were significantly 
overrepresented in any pathways compared to the background gene set. Pathways with 
adjusted P values below the significance threshold (FDR < 0.05, Benjamini–Hochberg 
correction) were considered enriched. 
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Protein-protein interaction analysis 

To examine the protein-protein interactions (PPI) among the identified ADHD risk genes, we 
utilized the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING; http://string-

db.org).35 STRING calculates an enrichment P value by comparing the observed number of 

edges (i.e., protein-protein interactions) to the number expected by chance, given the size and 

composition of the input gene set. Additionally, functional enrichment analyses of the resulting 

networks were subsequently performed within STRING, applying Benjamini-Hochberg 

corrections for multiple testing to identify significantly enriched biological processes, pathways, 

and protein classes. We first generated a PPI network using the subset of 15 ADHD risk genes 

identified from our rare variant analysis, and then performed a similar analysis on an expanded 

set of 57 ADHD-associated genes (including the 15 rare variant genes and an additional 42 

genes identified through GWAS). Network construction and analysis were carried out using 

default STRING parameters, with confidence interaction scores ≥0.15. 

 

Ancestry Analysis 

We analyzed the 15 genes associated with ADHD risk to evaluate whether the genetic 
architecture involving rare damaging variants differs across ancestries. This study utilized data 
from the gnomAD database (version 4.1.0) and the All of Us Research Program (version 7, 
individuals without ADHD) to examine ancestry-specific differences in the frequency and burden 
of rare genetic variants. We focused on three major ancestry groups: non-Finnish European 
(NFE; 622,057 individuals in gnomAD and 129,532 in All of Us), African (AFR; 37,545 
individuals in gnomAD and 47,631 in All of Us), and admixed-American (AMR; 30,019 
individuals in gnomAD and 44,329 in All of Us). For the ADHD cases, we included 3,756 NFE, 
464 AFR, and 518 AMR samples from the All of Us Research Program.  

Rare variants were defined as those with a minor allele frequency (MAF) < 0.01% in at least one 
population. Population-level frequencies of rare PTV, MisB, MisA and SYN variants were 
obtained from the merged gnomAD and All of Us datasets. For PTVs, we used LOFTEE, 
retaining variants labeled as "high-confidence" (HC) and excluding those flagged by LOFTEE, 
except for the "SINGLE_EXON" category. 

Comparisons of variant burdens between populations were performed using Fisher’s exact test. 
Additionally, comparisons of ADHD cases and population-level data between ancestry groups 
were adjusted for baseline frequency differences using the Breslow–Day test for homogeneity of 
odds ratios. Statistical significance was defined as a P value below 0.001, applying Bonferroni 
correction for multiple testing (0.05/45). 
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Relation between ADHD and ASD 

To assess whether the burden of deleterious rare coding variants differed between ADHD and 
ASD, we utilized variant data from a large ASD whole-exome sequencing (WES) dataset 
comprising 15,036 ASD probands and 5,591 ASD cases.25 We first kept de novo and case-
control variants in the 15 ADHD risk genes, identified in our rare variant analysis, from the ASD 
WES study. We then classified them into PTVs, MisB, and MisA and merged the counts of the 
deleterious variants. We also quantified the number of those deleterious variants within the 15 
ADHD risk genes and compared these counts to those observed across all other genes in the 
exome (18,128 genes, excluding the 15 ADHD risk genes). To test for heterogeneity in variant 
enrichment between ADHD and ASD, we conducted Fisher’s exact tests, evaluating whether 
the observed frequencies of deleterious variants in ADHD-related genes differed significantly 
from those in ASD cohorts. Multiple testing corrections were performed using the Benjamini-
Hochberg procedure. 
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Fig. 1: Enrichment of rare autosomal protein-coding variants in ADHD. Frequencies of

protein-truncating variants (PTVs) and deleterious missense variants in ADHD case and

unaffected control cohorts across LOEUF (Loss-of-function observed/expected upper bound

fraction) and AlphaMissense score deciles. Missense variants were classified based on MPC

(Missense badness, PolyPhen-2, and Constraint) scores into MisB (MPC ≥ 2) and MisA (2 >

MPC ≥ 1) categories. MisA variants were not available in the Satterstrom dataset, so orange

bars are omitted from the last graph. *P<0.05 using a binomial test between ADHD cases and

unaffected controls. 
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Fig. 2: Association of protein-coding genes with ADHD risk. Each point represents the -
log10(P value) for the association of individual protein-coding genes in the ADHD TADA result.
Genes with a q value < 0.1 (red points and dotted line) are labeled. 
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