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Theoretical and computational 
validation of the Kuhn barrier 
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A long time ago, Kuhn predicted that long polymers should approach a limit where their global 
motion is controlled by solvent friction alone, with ruggedness of their energy landscapes having no 
consequences for their dynamics. In contrast, internal friction effects are important for polymers of 
modest length. Internal friction in proteins, in particular, affects how fast they fold or find their binding 
targets and, as such, has attracted much recent attention. Here we explore the molecular origins of 
internal friction in unfolded proteins using atomistic simulations, coarse-grained models and analytic 
theory. We show that the characteristic internal friction timescale is directly proportional to the 
timescale of hindered dihedral rotations within the polypeptide chain, with a proportionality coefficient 
b that is independent of the chain length. Such chain length independence of b provides experimentally 
testable evidence that internal friction arises from concerted, crankshaft-like dihedral rearrangements. 
In accord with phenomenological models of internal friction, we find the global reconfiguration 
timescale of a polypeptide to be the sum of solvent friction and internal friction timescales. At the 
same time, the time evolution of inter-monomer distances within polypeptides deviates both from the 
predictions of those models and from a simple, one-dimensional diffusion model.

Protein folding may be justifiably viewed as a finite-size first-order phase transition, with folding kinetics follow-
ing a classic nucleation mechanism1, 2. This view, however, masks the enormous complexity of folding dynamics at 
the molecular scale, where an unfolded protein chain samples a very large number of conformations before reach-
ing the native state. Yet this number of conformations actually pales compared to the astronomically large number 
of conformations that the unfolded chain can access in principle. Levinthal considered this paradox of exhaustive 
search taking longer than the age of the universe, proposing that some combination of non-equilibrium dynamics 
and locally favorable interactions lead to biologically accessible folding times3. Subsequently, Anfinsen and Go 
pursued a purely thermodynamics view, emphasizing the congruency between stabilizing local and tertiary inter-
actions, resulting in cooperative transition from the unfolded phase to the folded state4, 5. A modern statistical 
mechanical theory of protein folding has built upon these insights, suggesting that, in general, energy landscapes 
of globular proteins are globally correlated, where not only the native state is unusually low in energy compared 
to random conformations of the protein chain, but also conformations that partially resemble the native structure 
are also rather low in energy6, 7. This funnel-like organization of globular proteins’ conformational substates is 
extremely unlikely for random protein sequences, being a result of sequence evolution over billions of years6. The 
energy landscape theory of protein folding raises a new issue of local energetic ruggedness, where deep energetic 
traps might kinetically arrest the folding process8. Hence, a quantitative criterion of the ratio of the funnel depth 
to the magnitude of local energetic ruggedness determines whether a particular protein sequence will be folda-
ble at laboratory or biological timescales, with an important related energy scale controlling the coil-to-globule 
collapse temperature7, 9.
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The funnel theory is mesoscopic, leaving room for various alternative polymer theories of microscopic chain 
dynamics. Among interesting questions are whether the unfolded state is in a swollen (coiled) or molten globular 
state, and in the former case, whether folding is preceded by globular collapse or takes place concomitantly with 
it. Hence, both analytical and numerical models rooted in polymer theory can provide important insights into 
the nature of dynamics in the unfolded ensemble and into the specific collective processes driving the folding 
reaction. These approaches are particularly fruitful in addressing kinetic questions, where many prior studies 
of protein folding assumed either one-dimensional diffusion along some reaction coordinate8 (which is postu-
lated, equated to an experimental signal, or computed based on an optimality criterion10) or relied on discrete 
kinetic networks11–14, which are often deduced from all-atom simulations. One-dimensional models are attractive 
because of their direct connection to experimental data, but, because they lump all the complexity of protein 
dynamics into a few empirical parameters (such as the effective diffusion coefficient), they often lack molecular 
insight. Moreover, the assumption of one-dimensional diffusion is not always justified15–18. Discrete state models, 
on the contrary, often involve too much molecular and kinetic information to offer adequate insight.

Polymer theory models offer an attractive middle ground between all atom descriptions and low-dimensional 
models. Such models highlight certain universal properties of chain molecules that are independent of their pre-
cise chemical identity. Of course, therein lies their weakness: they ignore sequence effects or specific intrachain 
interactions; yet despite this drawback they are often remarkably successful in accounting for many structural and 
dynamical features of proteins. For example, despite sequence diversity, the radius of gyration of most chemically 
denatured proteins was found19 to scale with the chain length N as N0.6, in accord with Flory’s scaling law for ran-
dom coil20 (although this scaling may not be applicable to proteins under physiological conditions21, 22). Likewise, 
we showed that the experimental observations of the dynamics of loop formation within both unfolded proteins 
and single-stranded DNA obey simple, universal relationships derived from polymer theory23.

Polymer theory makes simple, experimentally testable predictions regarding protein dynamics in the unfolded 
state. In particular, the global relaxation time τr (or reconfiguration time, in the language adopted by the protein 
folding community) of a sufficiently long unstructured polymer chain in solution is predicted to be comparable 
to the time it takes the chain to diffuse over a length equal to its own size24:

τ τ = c R
D (1)r RZ

tr

2

Here we can take the mean-square end-to-end distance, R2 , as a measure of the size, Dtr is the translational dif-
fusion coefficient, and c is a numerical factor that depends on the specific model and on the precise definition of 
the reconfiguration time. If, for example, τr is identified with the timescale associated with the slowest relaxation 
mode in the Rouse model, then one finds25 c = π−2/3. If, as in some studies, τr is defined as the end-to-end vector 
relaxation time26, or as the end-to-end distance relaxation time, the resulting values of c differ from the above one 
by only a numerical factor of order one (see ref. 17 and the Results section). We will refer to the limit where equa-
tion (1) is satisfied as the Rouse-Zimm (RZ) regime, as it is the regime where the standard Rouse or Zimm theo-
ries of chain dynamics apply25. Equation (1) provides a reasonable order-of-magnitude estimate of the 
reconfiguration time of chemically denatured proteins, but it manifestly underestimates the reconfiguration times 
of some of the intrinsically disordered proteins or proteins that are unfolded near native conditions27, presumably 
because of intra-chain interactions or some other new effects.

The remarkable feature of equation (1) is its insensitivity to any microscopic details of protein dynamics – a 
result known as the Kuhn theorem24. Indeed, assuming that Dtr depends only on the solvent temperature, viscos-
ity, and the protein radius of gyration (as would be implied by the Stokes-Einstein formula), these parameters also 
completely determine the reconfiguration time, a characteristic of a protein’s internal dynamics.

The Kuhn theorem is true under the assumption of sufficiently long chains, which, of course, does not nec-
essarily apply to finite-length polypeptides. It is then instructive to consider the opposite limit of a very short 
peptide, say a di-peptide. In this case, significantly different configurations of the molecule result from its ϕ− and 
ψ− dihedral angles occupying distinct regions of the Ramachandran plot. The characteristic time over which 
such a molecule significantly changes its conformation (as quantified, for example, by the fluctuation timescale 
of its end-to-end distance) is then controlled by the typical time τdih it takes the molecule to jump into a different 
Ramachandran plot region. Such jumps usually involve activated barrier crossing. In contrast, internal barriers 
do not affect the time of equation (1) (except through the relatively weak dependence of the average chain dimen-
sions on the precise shape of the dihedral energy landscape). Following de Gennes24, we will refer to the short 
chain limit, where the chain dynamics timescale is dominated by τdih, as the barrier friction limit. For notational 
brevity, we will reserve the term “barrier friction” to refer to this specific mechanism that involves overcoming 
dihedral barriers, keeping, however, in mind that many other intra-chain interactions may also give rise to micro-
scopic kinetic barriers.

Barrier friction is related to (but not necessarily identical with) the notion of internal friction in proteins. The 
most common experimental definition of internal friction is as a viscosity-independent component of the fric-
tion; that is, if the dependence of τr on the solvent viscosity η is of the form τr = τi + aη, then τi is the internal fric-
tion timescale28, 29. Since dihedral rotations within a solvated polypeptide chain are, in general, mediated by the 
hydrodynamic drag on its various parts, there is no a priori reason to expect that τi would be entirely controlled 
by dihedral rotations. Nevertheless, recent computational evidence suggests that (i) dihedral relaxation times 
are weakly dependent on solvent viscosity30, 31 and (ii) the height of the dihedral barriers controls the internal 
friction timescale30. These observations may at least partially explain why the two different definitions of friction, 
internal friction (operationally defined as solvent viscosity independent component of reconfiguration time) and 
barrier friction (stemming from hindered dihedral rotations) may coincide27. Experimental studies that probed 
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not only the slowest relaxation time but also the entire spectrum of relaxation times27, 32 further suggest that the 
dynamics of unfolded proteins can be interpreted in terms of the Rouse or Zimm models with internal friction18, 

24, 33, 34 (RIF and ZIF), whose physical foundation is the Kuhn picture of barrier friction35. RIF and ZIF provide a 
semi-phenomenological description of internal friction effects and build on the classic Rouse and Zimm models 
of polymer dynamics.

Both Rouse and Zimm models are coarse-grained descriptions of polymers, which are represented as con-
nected beads subjected to Brownian motion in solution. In addition to the solvent-induced forces, RIF and ZIF 
introduce an internal friction force, which resists deformation of inter-bead bonds. The physical mechanism of 
this force is that described by Kuhn: stretching a chain segment requires rearrangement of one or several dihedral 
angles within this segment, which is accomplished via activated barrier crossing. Bazua and Williams predicted a 
RIF/ZIF-type internal friction force using a rotational-isomeric-state model35, but even simpler arguments24 pre-
dict that the internal friction force on a chain segment must be inversely proportional to its length, l. Specifically, 
imagine that a stretching force F is applied to the ends of a segment, causing dihedral rotations that preferentially 
lead to a more extended segment state. The average velocity u at which the ends will be moving apart must be 
proportional to the number of dihedral transitions per unit time, which is proportional to the segment length l. In 
the linear response regime, it is also proportional to the force, so we have u ∝ lF or F ∝ u/l, resulting in a friction 
coefficient inversely proportional to l. Now, the relaxation time of the segment can be estimated as this friction 
coefficient divided by the segment’s effective spring constant. Since this spring constant is, likewise, inversely 
proportional to l24 (assuming a chain with Gaussian statistics), this results in a single timescale that is independ-
ent of chain length: this is the internal friction timescale τi; if, as suggested by simulations, this timescale is itself 
viscosity independent, it should coincide with the zero-viscosity intercept of τr(η).

Despite these developments there is currently little consensus about what exactly internal friction is and how 
it is related to microscopic chain dynamics. Specifically, the following questions remain open:

	(1)	 The microscopic mechanisms of internal friction in unfolded proteins (and even in simpler polymeric sys-
tems36) remain elusive. In particular, while the idea that dihedral rotations lead to internal friction effects 
is not new, no quantitative connection between the microscopic parameters describing the dynamics of 
the dihedrals and the experimental measures of the internal friction (such as the internal friction time τi 
within the RIF/ZIF picture) is known. It is tempting to equate τi with the dihedral hopping time τdih, but 
little experimental or theoretical evidence exists in support of this idea – just because the two timescales 
are related does not mean they are the same! In fact, in a series of papers by Allegra and collaborators37–39, 
an entirely different model was proposed to explain polymer relaxation in terms of dihedral dynamics; 
this model is at odds both with the relaxation spectrum predicted by RIF or ZIF and with the assertion 
that internal friction can be described in terms of a single, chain length independent timescale. Likewise, 
other models of polymer dynamics24, 36, 40, 41 postulate alternative internal friction mechanisms and do not 
necessarily lead to a single internal friction timescale.

	(2)	 A related question is concerned with the inherent limitations of the RIF/ZIF models. Despite their success 
in fitting experimental data, these models have a fundamental flaw: they fail to describe the rotational 
dynamics of a polymer chain and predict that, in the limit of high internal friction, the chain rotation 
timescale would coincide with τi. This is obviously not true: even if the chain configuration is frozen with 
all dihedrals angles fixed, it can still rotate, with solvent friction determining the rotational timescale. It 
was thus argued42 that RIF and ZIF should be viewed as one-dimensional models that are only applicable 
to the internal chain dynamics. But since the concept of a dihedral angle is meaningless in a one-dimen-
sional space, the connection between dihedral dynamics and the ZIF or RIF parameters becomes even 
more vague.

	(3)	 Most models of internal friction force postulate, without justification, additivity of internal and solvent 
friction. Yet an alternative common view of internal friction based on diffusion on rough landscapes43 
postulates multiplicativity of the two effects! Without the additivity assumption, no theory exists that 
simultaneously includes both internal and solvent friction and interpolates between the solvent friction 
dominated and internal friction dominated limits; How, then, does the reconfiguration time τr depend 
on chain parameters in the (arguably most relevant experimentally) intermediate case between these two 
limits?

	(4)	 While the Rouse or Zimm models provide a reasonable view of polymer dynamics in the absence of 
internal friction effects, a mechanistic description of the chain dynamics in the internal-friction-dominat-
ed regime is lacking. In particular, although it is reasonable to view chain reconfiguration in this limit as 
resulting from dihedral rotations, whether such rotations must occur in a concerted fashion or can be in-
dependent of one another is an unsettled issue. Independent dihedral rotations require large motions of the 
entire polymer chain and, therefore, they must entail high solvent friction, but concerted rotations, while 
reducing the friction, involve higher activation energies44. Simulations indicated that dihedral rotations 
are concerted, involve simultaneous dihedral hops, and lead to localized, crankshaft-like movements of the 
chain30; however, whether such correlations are essential to explaining internal friction remains an open 
issue – if all the dihedrals changed independently, would that also lead to internal friction? Are there any 
experimentally measurable consequences of correlated dihedral motions?

In this paper, our aim is to address these questions, first for simpler, peptide-like model homopolymers, and 
then to extend the analysis to atomistic models. Our simulations show additivity of the Kuhn-type barrier friction 
and the Rouse/Zimm friction effects; moreover, when the barrier friction component of the protein reconfigura-
tion time is equated with the RIF/ZIF internal friction time τi, it is found to coincide, within a numerical, chain 
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length independent factor, with the dihedral hopping time τdih. This establishes a relationship between a phenom-
enological internal friction timescale postulated by RIF or ZIF and the microscopic chain dynamics. We further 
show that this relationship is only possible if dihedral angles change in a correlated fashion. Given the earlier 
findings that the dihedral relaxation timescale only shows weak viscosity dependence30, 31, our results further 
reconcile the experimental definition of internal friction as the zero-viscosity intercept of the reconfiguration 
time with the concept of Kuhn-type barrier friction. Finally, although the ZIF and RIF models correctly repro-
duce many qualitative features of reconfiguration dynamics, our results suggest that their utility for the analysis 
of experimental data has limitations. In particular, in contrast to the prediction of diffusive end-to-end distance 
dynamics in the high internal friction limit, all of the peptides studied here show subdiffusive dynamics.

Methods
Three types of simulations were used in this work: atomistic simulations of short polypeptides, Langevin dynam-
ics simulations of coarse-grained, Cα-only peptide models, and kinetic Monte Carlo simulations of a rotational 
isomeric state models (RISM).

Atomistic simulations.  Molecular dynamics simulations were performed using the GROMACS software 
package, version 4.5.545, using the Amber03 parameter set46 and an extended simple point charge (SPC/E) explicit 
water model. Starting from the NMR structure of the 66-residue Thermotoga maritima CSP (pdb access code 
1G6P), the initial peptide models were built by cutting the protein into six equal 11-residue peptide fragments. 
Since studying shorter peptide fragments amplifies sequence effects (which may otherwise be averaged out in 
longer polypeptides), we have also performed simulations of an 11-residue peptide fragment with the Gly-Ser 
repeat, which is often viewed as a model polypeptide with properties close to those of a random coil42, 47. Finally, 
to assess the role of dihedral rotations on the reconfiguration timescale, we have studied a Gly-Ser repeat of the 
same length but with a reduced dihedral-barrier. After initial minimization and equilibration, production runs of 
2 μs were performed, as in an earlier study30, at T = 300 K and P = 0.138 atm using the modified Berendsen ther-
mostat48 and the Parrinello-Rahman barostat49. Further details are described in the Supplementary Information 
(SI).

Coarse-grained model.  Our random-coil, Cα-only homopeptide model is similar to those described ear-
lier26, 50–52 and represents each amino acid residue as a single bead; the model generally employs a 3-letter alpha-
bet for the amino acid sequence, consisting of hydrophobic, neutral, and polar beads; however, to describe the 
unfolded polypeptide, sequences of various lengths consisting entirely of neutral beads were used. The potential 
energy of the chain included a harmonic spring potential describing the chain connectivity, a harmonic bending 
potential imposing the constraints inherent to peptide geometry, and a repulsive r−12 potential that accounts 
for the excluded volume interactions. As in the original studies where this type of model was introduced52, the 
dependence of the energy on the dihedral angles ϕ is described by a potential of the form Vdih = ε(1 − cos3ϕ)/2, 
where the dihedral barrier height ε was varied to study how the dynamics of hindered rotations affects the pep-
tide’s global relaxation timescale. The chain dynamics was governed by a Langevin equation. See the SI for further 
details.

RISM simulations.  In the (alpha-carbon only, coarse-grained) rotational isomeric state model (RISM), the 
configuration of the polypeptide chain is entirely specified by its dihedral angles, {ϕ1, ϕ2, …, ϕN−2}, where N is 
the number of monomers. Same geometry (i.e. same bending angles) was assumed as in Langevin dynamics 
of the coarse-grained model described above, but the dihedrals were the only degrees of freedom in the RISM. 
Each dihedral was assumed to undergo jumps between three equivalent states 1, 2, 3, with the same value of the 
jumping rate coefficients, k12 = k21 = k23 = k32 = k13 = k31 = k. The stochastic time evolution of each dihedral was 
computed using the standard kinetic Monte Carlo scheme. Further details are given in the SI.

Results
The transition from the barrier friction limit to the Rouse/Zimm regime.  In Kuhn’s original argu-
ment, the effect of barrier friction on the global relaxation dynamics will become increasingly small as the chain 
becomes longer, because the barrier friction decreases with the increasing chain length (see Introduction) while 
the hydrodynamic friction increases. As a result, the global reconfiguration time τr approaches the limit where it 
obeys the Rouse or Zimm model and, accordingly, grows as a power law with the chain length N (cf. equation (1)), 
while the internal friction characteristic time τi remains independent of N. The transition between these limits 
can also be observed by studying the solvent viscosity dependence of τr; however simulations of proteins31 indi-
cate that the dihedral relaxation times show a weak, but non-negligible solvent viscosity dependence thus compli-
cating deconvolution of the two effects. In a computational (as opposed to real) experiment, there is an alternative 
(and often easier) approach: keep the chain length fixed but vary the height of the hindered rotation barrier to 
control the dihedral rotation time. This latter approach was used in ref. 30 to prove that reduced dihedral angle 
barriers lead to enhanced conformational mobility of an unfolded protein under poor solvent conditions.

To systematically study this transition in the absence of complications resulting from sequence effects and 
to avoid the high computational cost of simulating long polypeptide chains at high solvent viscosities, we first 
resorted to coarse-grained simulations. Specifically, we used Langevin dynamics simulations of a Cα-only 
coarse-grained model of a random-coil homopeptide, as described earlier26, 50–53. Explicit treatment of water mol-
ecules is, however, required in order to reproduce the correct viscosity dependence of the dihedral dynamics31;  
thus solvent viscosity effects cannot be adequately captured in this treatment. Nevertheless, the relationship 
between the overall reconfiguration time and τdih is easily investigated in this approach by varying chain length 
and the magnitude of the dihedral barrier.
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The dihedral energy landscape of our model peptide is controlled by a force-field term Vdih = ε(1 − cos3ϕ)/2, 
which has a 3-fold symmetry, and whose minima are separated by barriers equal to ε. For chains with N = 10, 20, 
33, and 66 monomers, we computed the relaxation times of the end-to-end vector R, end-to-end distance R = |R|, 
and each dihedral angle as a function of ε (Fig. 1). The relaxation time of each of these quantities was defined as

∫τ =
∞

C t dt C( ) (0),
0

where C(t) is the autocorrelation function given by

= ∆ ∆ ∆ = −C t X X t X X X( ) (0) ( ) ,

for X = R or R and

ϕ ϕ= −C t t( ) cos[ ( ) (0)]

for a dihedral ϕ. Note that, unless C(t) is an exponentially decaying function, there is no unique definition of the 
associated characteristic time τ - the above heuristic definition is, however, commonly used. We further note that 
the dihedral relaxation time depends on the location of the dihedral within the chain, with the dihedrals belong-
ing to the chain extremities moving faster than those in the middle (see SI, Fig. S2); however, the difference was 
always less than a factor of two. Figure 1 reports the average dihedral relaxation times, with the dihedrals belong-
ing to the chain extremities (2 outer dihedrals at each chain end) excluded from the average.

Consistent with the picture of activated barrier crossing, the dihedral relaxation time τdih increases exponen-
tially with ε (Fig. 1, green); it is further found to be independent of chain length N. The end-to-end distance relax-
ation time τEE (Fig. 1, red) is greater than τdih (except for the shortest peptide considered) and nearly independent 
of the dihedral barrier at low values of ε. In contrast, at high values of ε, τEE becomes shorter than τdih; moreover, 
we observe direct proportionality between the two quantities, τEE ∝ τdih (i.e., the green and the red lines become 
parallel in the logarithmic plot of Fig. 1). This indicates that the barrier friction limit is attained, where the chain 
remains essentially frozen until a dihedral changes, and where, as a result, the timescale τdih controls the global 
relaxation dynamics as measured by τEE.

Conversely, the low ε limit is associated with the Rouse model behavior (note that, since our Langevin dynam-
ics simulations did not include hydrodynamic interactions, we are comparing the results with the Rouse rather 
than the Zimm model). In support of this conclusion, the end-to-end vector relaxation time τV measured in this 
limit (Fig. 1, black) is close to the slowest relaxation time estimated using the Rouse model (given by equation 
(1), where the translational diffusion coefficient is given by Dtr = kBT/(Nξ0) and ξ0 is the monomer friction coeffi-
cient), as expected to be the case for the Rouse model25, 42 – see SI, Table S1.

Figure 1.  The end-to-end distance (EE), end-to-end vector (V), and dihedral angle relaxation times (D) as a 
function of the dihedral barrier in coarse-grained peptides of varied length N.
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Moreover, at low values of ε, the vector relaxation time τV is longer than τEE by a factor of ~3 (see SI, Table S1), 
a result consistent with previous theoretical predictions for the Rouse chain17. However, as the dihedral barrier 
increases, τV shows only a weak increase and eventually becomes shorter than τEE. This result is easy to under-
stand: even if all the dihedral angles are frozen, the chain can still rotate, with its rotational relaxation controlled 
by the solvent friction (while the end-to-end distance does not significantly fluctuate). We note that the Rouse 
model with internal friction fails to properly account for the rotational dynamics of the chain and predicts the 
end-to-end vector relaxation to be determined by internal friction in this limit42.

Since most experimental measurements of internal chain dynamics probe absolute distances between different 
chain segments and are insensitive to orientational dynamics, we now focus on the end-to-end distance relaxation 
time τEE. We have discussed above that this time is proportional to the Rouse time τR (defined here as the longest 
relaxation time of a Rouse chain, equation (1)) at low values of the barrier to hindered rotations or for long chains; 
it is proportional to the dihedral relaxation time τdih in the opposite limit. Hence, it is natural to try the simple 
linear combination of the form

τ τ τ= +a b , (2)EE R dih

to interpolate between the two limits. Indeed, equation (2) is found to globally fit the data well for all chain 
lengths and dihedral barriers, as shown in Fig. 2. Here the optimal values of the parameters, a = 0.26 and b = 0.15, 
describe the data for all peptide lengths and all dihedral barriers. Note that the value of a is comparable to the 
value expected using analytic estimates for a Rouse chain. Indeed, an analytic approximation due to Portman17 
predicts that, in the long-time limit, the end-to-end distance autocorrelation function for a Gaussian chain 
reaches its asymptotic limit at twice the rate at which the end-to-end vector autocorrelation function decays, 
implying τEE ≈ 0.5 τV. Combined with the relationship42 τV ≈ 0.8 τR, this yields τEE ≈ 0.4 τR. Given nonexponenti-
ality of the correlation functions, however, the precise definition of the relaxation time affects the expected value 
of the proportionality coefficient between the two timescales.

Implications for experimental studies of internal friction.  While here we have been able to observe 
the transition from the Rouse regime to a barrier-controlled regime by varying chain length and the magnitude 
of the dihedral barrier, those are not common experimental variables. Rather, two most common ways to observe 
deviations from solvent-dominated dynamics are to study how the protein reconfiguration time depends on the 
solvent viscosity η27 and how the reconfiguration time of a shorter segment of the entire protein depends on its 
length26.

Empirically, experimental viscosity dependence of τEE(η) is often close to linear27, and so the zero viscosity 
intercept of this dependence provides an operational definition of internal friction. Moreover, this linear depend-
ence suggests additivity of the contributions from internal friction (equal to the zero-viscosity intercept) and the 
solvent controlled friction (which is directly proportional to viscosity). This is consistent with the additivity of the 

Figure 2.  End-to-end distance relaxation time (EE), as a function of the dihedral barrier, for chains of different 
length. Lines represent the global fit of the data by equation (2), with a = 0.26 and b = 0.15.

http://S1
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barrier friction and the Rouse-Zimm-type friction effects predicted by Equation (2). It is, however, not possible 
to directly compare the experiments with coarse simulations for two reasons. First, since Langevin dynamics 
simulations in the overdamped regime were used to obtain Eq. 2, both τR and τdih are proportional to the solvent 
friction within the coarse model employed here. Second, if the dihedral relaxation time τdih is viscosity dependent, 
the zero viscosity intercept of τEE(η) predicted by Eq. 2 cannot be simply equated with the term bτdih.

Indirect comparison between predictions of Eq. 2 and experimental studies is still possible if we consider addi-
tional information coming from atomistic studies. Specifically, atomistic simulations from the Best group31 and 
our own work30 show only a weak solvent viscosity dependence of τdih. Assuming the validity of equation (2) as 
applied to real proteins, then, the viscosity dependence of the observed reconfiguration time should mostly result 
from its first term. In contrast, the internal friction time τi, identified with the second term of equation (2), should 
not show significant viscosity dependence, which is consistent with experimental observations27.

Identification of the dihedral relaxation time with the internal friction time τi is further supported by a more 
detailed analysis of intra-chain dynamics. For example, while at low values of the dihedral barrier the reconfig-
uration time between the mid-segment of the chain and its end is shorter than that between the chain ends, in 
accord with the predictions of the Rouse and Zimm models26, the two times converge as the dihedral barrier 
increases (See SI, Fig. S3). This observation agrees with the prediction of RIF that, at high internal friction, relaxa-
tion modes of different wavelengths have approximately the same relaxation time τi

27. Likewise, it agrees with the 
argument (see the Introduction) that a chain whose dynamics is dominated by barrier friction exhibits a single, 
segment-length-independent timescale.

Concerted or uncorrelated dihedral rotations?.  Having described the transition between the solvent- 
and barrier-friction dominated regimes, we now focus on the barrier friction limit and try to further elucidate 
the microscopic origins of equation (2). In particular, we would like to know whether the rotations of different 
dihedrals tend to occur independently of one another or are correlated, and whether such correlations (or their 
lack) can be deduced from the observed end-to-end dynamics. Independent dihedral rotations (particularly those 
occurring near the middle of the polypeptide chain) would involve large swinging motion of two parts of the 
chain, thereby entailing both steric clashes and high solvent friction. But while this argument is often used to 
justify correlated dihedral hops that result in more localized, crankshaft-type motions of the polymer, such con-
certed changes of the dihedrals must require higher activation barriers44 – the outcome of this tradeoff between 
lower friction but higher activation barrier is unclear in advance and may depend on chain length and the mag-
nitude of the dihedral barrier.

To understand the connection between local dihedral changes and the global dynamics, it is helpful to first 
consider the one-dimensional toy model introduced by Hall and Helfand54. In this model, the polymer is a 
one-dimensional chain of N bonds, with each bond having a length jumping between two possible values, l− and 
l+. These jumps mimic the dihedral rotations in 1D; the result of each jump is a change of the total end-to-end 
distance by ±Δl ≡ ± |l+ − l−|. Let us further assume that the jumps of each bond can be described by a first-order 
kinetic scheme, − +l k l

k
. The total chain length undergoes a one-dimensional random walk with a step Δl and 

with an average frequency v = kN, since N bonds are each jumping independently. At short enough times, the 
mean square displacement of such a random walker is given by ν∆ = ∆ = ∆R t l t l kNt( )2 2 2 . Equating this with 
2Dt defines an effective end-to-end diffusion coefficient D = NΔl2k/2 = (1/4)NΔl2/τbond, where τbond = (2k)−1 is 
the relaxation time of a single bond. Importantly, this diffusion coefficient is proportional to chain length N.

After a sufficiently long time, the chain length will adopt a Gaussian distribution with a mean N(l+ + l−)/2 and 
a variance ρ2 = NΔl2/4. The relaxation time of the end-to-end distance can then be estimated as a time it takes the 
random walk to travel the distance ρ:

τ ρ τ= =
D2

2 (3)r bond

2


This result is a one-dimensional analog of the barrier friction limit, with the bond relaxation time being analogous 
to τdih. Since this argument can be applied not only to the entire chain but also to any of its segments, this simple 
calculation provides yet another explanation of why single, segment independent relaxation timescale emerges 
from microscopic conformational dynamics in this limit.

Extension of these arguments to 3D is somewhat tricky. Unlike the 1D case, where the step size Δl along the 
end-to-end distance direction is fixed, the change of this distance as a result of a change in a particular dihedral 
depends both on the dihedral and on the current chain configuration. To make progress, let us assume that one 
can characterize the random walk along R by an average value of the step size Δl instead. The frequency of indi-
vidual dihedral hopping v is equal to the inverse of the mean dwell time in one of the dihedral states. If we repre-
sent the kinetics of an individual dihedral by a 3-state system, with a rate of jumping between adjacent states equal 
to k, then this mean dwell time is (2k)−1 and so v = 2k (the factor of two comes from the fact that there are two 
possible states that a dihedral can jump to). The effective diffusion coefficient is then given by D = NΔl2 × (2k/2). 
The dihedral relaxation time τdih for our 3-state model can be estimated as the inverse of the lowest eigenvalue of 
the corresponding 3 × 3 rate matrix and is equal to τdih = (3k)−1. This gives D ≃ (1/3)NΔl2/τdih. The relaxation time 
of the entire chain can now be estimated as the time to diffuse the distance comparable to the root-mean-square 
end-to-end distance, equal to ρ =~ Ll n l( )k k k

1 2 1 2  , where L is the polypeptide contour length, lk is the length of 
its Kuhn segment, and nk = L/lk is the number of the Kuhn segments in the chain. This gives

http://S3
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τ ρ σ
τ=

∆


D
l

l2
3
2

,
(4)r

k
dih

2

2

where σ is the peptide bond length. There are two possibilities now. In the case of crankshaft-type moves where 
a pair of dihedrals change simultaneously such that only a local chain segment is affected while there is no global 
rearrangement of the entire chain, Δl is a geometry dependent number that would be typically much smaller than 
ρ and comparable to the Kuhn length. For example, assuming Δl = lk we find τr = (3/2)τdih(σ/lk). The ratio lk/σ is 
the number of peptide bonds within one Kuhn segment, whose value is ~3 for the peptides studied (see the SI, 
Table S1). Thus the fact that τr is shorter than τdih and so the factor b in equation (2) is less than one is naturally 
explained within this picture.

The second possibility arises where all dihedrals change independently. When a single dihedral changes its 
value (and assuming no other relaxation mechanisms present), the ensuing large-scale pivoting motion results in 
a distance change Δl that is comparable to the dimensions of the chain itself. In this case, of course, the motion 
of end-to-end distance cannot be viewed as diffusion. A better model would be one where each dihedral rotation 
causes the chain to completely lose the memory of its end-to-end distance (over the time of a pivoting motion). 
The effective reconfiguration time, therefore, is comparable with the inverse frequency of dihedral transitions, 
which is equal to

τ τ= =−kN N(2 ) 3 (2 ) (5)r dih
1 

The heuristic prediction that the barrier friction time is inversely proportional to the chain length in this case 
is verified explicitly in the SI (see Fig. S6) using a rotational isomeric state model of a polypeptide with inde-
pendently changing dihedrals.

Since no such chain length dependence is observed in our simulations, we conclude that concerted dihedral 
motions dominate the barrier friction time, in accord with ref. 30. Similar analysis based on atomistic simulations 
leads to the same conclusion - see the following discussion.

We have also observed temporal correlations between sequence distant dihedrals directly in the following way. 
Consider a pair of dihedrals labeled, say, i and j. If the flipping of each dihedral is an independent Poisson process 
with a characteristic time τdih

i j( , ), then the distribution of the time lag t between the flip of i and subsequent flip of j 

is exponential55, τ τ= 

 + 




τ τ− − − 




+ 




− −

p t e( ) ( ) ( )ij dih
i

dih
j t( ) 1 ( ) 1 ( ) ( )dih

i
dih
j( ) 1 ( ) 1

. In contrast, correlation between the two events will 
lead to deviations from this exponential distribution. Indeed, while the dynamics of each individual dihedral is 
well described by a Poisson process, the lag time distributions for the pairs of dihedrals that are close to one 
another in sequence deviates from exponential, showing positive correlation between their jump times (see the 
SI, Fig. S5). The correlation disappears at large sequence separation. This behavior is similar to the earlier findings 
of a finite correlation length in atomistic simulations of the cold-shock protein30.

Dihedral dynamics vs. global dynamics in the cold shock protein and its short fragments.  Having 
developed insights about the connection between global peptide dynamics and microscopic timescales associated 
with dihedral rearrangements, we next examine whether any of these carry over to atomistic models of proteins 
and polypeptides. To this end, we have used the already published data on the dynamics of the cold shock protein 
(CSP), simulated, at a fully atomistic level in explicit solvent, using two different force fields. One simulation30 uses a 
conventional force field, as described in the Methods section. This simulation will be referred to as CSP1. Recently, 
Piana et al.56 proposed to modify water dispersion interactions in order to achieve better agreement with experimen-
tal estimates of protein dimensions– we use one of their trajectories from ref. 56 (specifically, the one displaying the 
best agreement with the experimental single-molecule FRET data27) – we will refer to this as CSP2. In addition, we 
have performed explicit-solvent atomistic simulations of 8 short polypeptides, each 11 residues long. The first 6 were 
fragments of the cold-shock protein previously studied experimentally27 and via molecular dynamics simulations30. 
Our rationale for choosing these fragments of a well studied protein is to examine how changing the length of a pol-
ypeptide (from N = 66, which is the full length of CSP, to N = 11) affects the dynamics. In particular, the arguments 
presented in the Introduction and leading to the Kuhn barrier friction picture as well as to the ZIF/RIF models pre-
dict that the internal friction timescale τi would remain unchanged as a result of this length change; these predictions 
are, however, based on the idealized picture of highly localized conformational changes within homopolymer chains 
and are not rigorously justified. At the opposite extreme, a model where all the dihedrals change independently and 
where, consequently, a single dihedral jump may lead to a global rearrangement of the entire chain predicts that 
τi would become longer for such shorter peptides (see equation (5)), provided that the dihedral relaxation times 
stay the same. Of course, polypeptides of only a few Kuhn segments in length may not be adequately described by 
simple polymer models. Moreover, sequence-dependent effects should be significant if not dominant for such short 
peptides. In order to assess the role of such effects, we also performed all-atom simulations of an 11-residue peptide 
with the Gly-Ser repeat, a system that is often deemed to be a model random coil polypeptide. Finally, to study how 
the height of the dihedral barrier affects the dynamics, we studied the same Gly-Ser repeat sequence with its dihedral 
barrier reduced by a factor of 2. The simulation results are summarized in Table 1.

Each of the polypeptides showed a spectrum of dihedral relaxation times, with dihedral autocorrelation functions 
decaying on timescales from ~0.1 ns to hundreds or even thousands of nanoseconds (See the SI, Fig. S41). Some 
of the dihedrals within the CSP fragments either stayed unchanged during the course of a 2-microsecond-long 
simulation or exhibited very few rotations, preventing us from getting a converged autocorrelation function and 
estimating the resultant relaxation time. As a result, estimation of individual dihedral relaxation times for all 
the angles is not possible even with a trajectory as long as 60 microseconds, let alone the 2-microsecond-long 
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simulations of the shorter peptides. To improve the statistics in estimating autocorrelation functions of the dihe-
dral angles, we have computed the mean autocorrelation function by averaging it over all dihedrals, as in ref. 30. 
From this function, a single, average dihedral relaxation time was estimated. These results are reported in Table 1.

The average dihedral relaxation times for CSP fragments were typically shorter (but of the same order of magni-
tude) than the full CSP1 simulated with the same force field.  The longer timescales of rotational dynamics in 
the longer peptide presumably originate from stronger steric interactions30. The mean dihedral relaxation time 
for the modified Gly-Ser repeat with a lower dihedral barrier was a factor of ~4 faster, supporting the view that 
activated crossing of the dihedral barrier controls the timescale of dihedral dynamics. Somewhat unexpectedly, 
the dihedral relaxation time for CSP2 was found to be nearly an order of magnitude longer than for CSP1, despite 
the less compact CSP2 conformational ensemble56. This difference is presumably due to the difference in the force 
fields used in the two simulations.

The simulated peptides are in the barrier friction regime.  The end-to-end vector relaxation times τV for all of the 
short peptides are much (3–10 times) shorter than their end-to-end distance relaxation times τEE. At the same 
time, all values of τV are further within a factor of 3 from the time τRZ estimated from equation (1), where the 
translational diffusion coefficients Dtr for each peptide were inferred directly from the simulations (Table 1). 
Recall from the above discussion that we expect τV to be a factor of ~3 longer than τEE in the limit where Rouse/
Zimm-type friction dominates. These observations show that all of the peptides are far away from this limit and 
that internal dynamics of dihedrals controls the relaxation of their end-to-end distance.

The end-to-end distance relaxation is comparable to (and correlated with) the dihedral relaxation 
time.  Furthermore, both τdih and τEE are proportionally shorter for the CSP fragments as compared with CSP1 
(Fig. 3). Let us recall that the Kuhn barrier friction model and the related RIF/ZIF models (in the limit of high 
internal friction) predict independence of the global relaxation timescale on chain length; this prediction, how-
ever, is contingent on the independence of the dihedral barrier crossing time on chain length, which is not the 
case here. Since both τdih and τEE increase when chain length increases from N = 11 to 66, this, in fact, is consistent 
with Kuhn’s barrier friction picture. Moreover, this behavior implicates concerted dihedral motions as controlling 

Peptide

End-to-End 
Distance 
Relaxation Time 
(ns)

End-to-End Vector 
Relaxation Time 
(ns)

Average Dihedral 
Angle Relaxation 
Time (ns)

Dtr (cm2/s) 
(From MSD)

1–11 44.8 1.78 22.3 2.32e-6

12–22 52.1 1.57 20.6 2.62e-6

23–33 29.0 1.98 17.8 2.46e-6

34–44 10.3 2.12 21.2 2.23e-6

45–55 24.0 2.11 17.0 2.38e-6

56–66 76.0 1.66 44.9 2.71e-6

Gly-Ser 11.6 0.77 13.7 3.72e-6

Modified Gly-Ser 2.91 0.76 3.60 3.78e-6

CSP130 38.2 29.1

CSP256 127 281

Table 1.  Summary of the relaxation times measured for 8 short peptides and the cold shock protein (CSP) 
simulated using two different force fields.

Figure 3.  Dihedral relaxation time vs. end-to-end distance relaxation time.
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the end-to-end distance dynamics, since τEE is expected to become shorter with increasing N in the case where 
dihedrals change independently (cf. equation (5)).

Consistent with our coarse-grained simulations, which predict proportionality between τdih and τEE in the 
barrier friction limit (equation (2)), peptides simulated atomistically also show direct proportionality between 
these two timescales (Fig. 3). The proportionality factor b is, however, different, being close to 1 (Fig. 3), as 
opposed to b = 0.15 found in coarse-grained simulations. This difference between atomistic and coarse-grained 
models may be purely geometrical in nature: recall that the coarse model employed in our work (see the Methods 
section) consists of alpha-carbons only and thus has only one dihedral angle per amino acid residue. In contrast, 
microscopic description of a real polypeptide involves two dihedrals (ϕ and ψ) per residue. Notwithstanding this 
difference, the proportionality factor between τdih and τEE is found to be independent of the length of the chain in 
both cases. This key observation supports the Kuhn-type barrier friction view, with a single, chain length inde-
pendent reconfiguration timescale (see Introduction).

End-to-end dynamics of polypeptides is subdiffusive, reflecting memory effects and deviations from RIF/ZIF predic-
tions.  A common description adopted by most experimental studies that probe relative motion of polypeptide 
chain segments is that of one-dimensional diffusion in an effective potential, which is determined by the entropic 
elasticity of the chain8, 57–61. Although it is known that the monomer motion of a polymer chain is not simple 
diffusion15, 25, 62, an effective diffusion coefficient that depends on the time and/or length scale of the process of 
interest still can sometimes be introduced to describe this process15, 58, 62–64. The monomer motion of a Rouse 
chain, in particular, is subdiffusive at intermediate timescales that are longer than the monomer relaxation times-
cale but shorter than the Rouse time, with the mean square monomer displacement scaling as ∆ ∝ .R t t( )2 0 5. In 
the high internal friction limit, in contrast, the Rouse model with internal friction predicts simple diffusive 
dynamics42.

The possibility of dihedral rotations associated with large-amplitude monomer displacements introduces 
a different kind of non-diffusive dynamics. Consider, for example, the (already discussed) model where the 
end-to-end distance R loses the memory of its previous value every time a dihedral rotation occurs. The statistics 
of dihedral jumps is Poisson, with the average number of jumps per unit time equal to ν. Given no memory of the 
previous configuration after a jump, the new value of R is simply a random number drawn from the equilibrium 
probability distribution p(R). Let R1 be the end-to-end distance at time t = 0 and R2 at time t. The probability that 
R2 = R1 is equal to the probability that a jump did not happen during the time interval t, which is e−vt for a Poisson 
process. The probability that R2 is different from R1 is thus (1 − e−vt). Averaging over these two possibilities (the 
jump did not or did happen) and taking advantage of the statistical independence of R1 and R2 in the case where 
the jump did happen, one obtains

∆ = − + − − = − − ∝ν ν ν− − −R t e R R e R R e R R t( ) ( ) (1 ) ( ) (1 )[ ]t t t2
1 1

2
2 1

2 2 2

at short times. Therefore, the dynamics of R appears to be simple diffusion. Examination of higher-order 
moments, however, reveals that it is not! Indeed, the value of any moment ∆R t( )n2  is proportional to the prob-
ability (1 − e−vt) of at least one dihedral transition during the time t and, therefore, exhibits exactly the same time 
dependence. In contrast, for the simple diffusion we have ∆ = − ∆ ∝R t n R t t( ) (2 1)!! ( )n n n2 2 , so that the ratio 
∆ ∆R t R t( ) ( )n n2 2  stays constant.

Examination of the end-to-end trajectories yields, at t → 0, ∆ = αR t t( )n n2  with α ≃ 0.4–0.7 for both the 
atomistic and coarse-grained simulations (Fig. 4; only atomistic data are shown). This, again, supports the picture 
where independent dihedral rotations leading to large changes in the end-to-end distance are improbable.

A more surprising finding is that the values of α are significantly less than the value (of 1) expected for sim-
ple diffusion both in the Rouse limit (where this is expected) and in the barrier friction limit. This indicates a 

Figure 4.  The end-to-end dynamics of all of the peptides studied here is subdiffusive, with mean square 
displacement ∆R2  scaling as . − .t0 4 0 7 at short times t. For comparison, the dashed line shows the behavior 
expected for normal diffusion.
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subdiffusive, and, therefore, non-Markov process with prominent memory effects and contradicts the RIF or ZIF, 
which predict subdiffusion in the Rouse/Zimm limit but diffusive dynamics in the barrier friction limit42.

To gain further insight into peptide dynamics in the barrier friction regime, we computed the mean square 
displacements of the end monomers of the Gly-Ser construct as ∆ tR ( )i

2 , where Ri(t) is now a vector describing 
the position of the first (i = 1) or last (i = 11) alpha-carbon of the peptide (Fig. 5). At short time t it is found to 
grow slightly slower than linearly (α ≈ 0.9), while approaching a strictly diffusive behavior and converging with 
the linear dependence for the mean square displacement of the peptide’s centroid. In other words, the movement 
of the end monomers is nearly diffusive even at short times, in contrast to the predictions of the Rouse or Zimm 
models but consistent with those of RIF and ZIF in the high internal friction limit.

Since the relative distance measured between two statistically uncorrelated diffusing particles also undergoes 
simple diffusion, the much stronger deviation from simple diffusion observed for the end-to-end distance indi-
cates that the displacements of the peptide ends are strongly correlated at short times. The source of such correla-
tions is easily understood (albeit not explaining the subdiffusive behavior per se): when the time t is much shorter 
than the dihedral relaxation times, the displacements of the peptide atoms are mostly due to its overall rotation. 
Indeed, at short times, the mean square change in the end-to-end distance, ∆R2 , is much smaller than the cor-
responding changes in the positions of its end monomers. Moreover, the mean square change in the end-to-end 
vector, ∆R2 , is much greater than ∆R2 , again indicating that, at short times, the end-to-end vector mostly 
rotates without changing its magnitude. It is important to note that RIF and ZIF do not describe this rotational 
dynamics correctly42 in the internal friction dominated limit: they make the unphysical prediction that the rota-
tional relaxation time is independent of solvent hydrodynamics and equal to τi.

Discussion
The subject of internal friction or viscosity has been extensively debated and never satisfactorily settled in the 
polymer physics of 1970–90’s24, 35–37, 40, 41, even for relatively simple polymeric systems such as hydrocarbons. 
Different physical mechanisms were invoked to explain internal friction effects and a number of distinct polymer 
models were proposed. In light of these complications one may wonder if a simple polymer-theoretical descrip-
tion is at all possible, especially in the case of unfolded proteins, whose energetics, involving hydrogen bonding, 
hydrophobic interactions, and other mechanisms65 is more complicated. Our study, while revealing limitations of 
simple models, also points toward near universal features exhibited by protein dynamics. One surprising finding 
is the subdiffusive, rather than diffusive monomer motion. While such breakdown of the simple diffusion model 
has been predicted, e.g., on the basis of the Rouse model15, 62, 64, internal friction effects treated using the Rouse 
model with internal friction (RIF) were expected to restore diffusive dynamics42 in the high internal friction 
limit, a prediction that is at odds with the present study. A possible explanation of this discrepancy is the fact that 
RIF, being essentially a one-dimensional model, does not adequately describe bond rotation. Indeed, it predicts 
internal friction effects, when they are dominant in the global reconfiguration dynamics, to dominate the rota-
tional dynamics of the chain as well – this prediction is clearly absurd as even when all the internal degrees of 
freedom of the chain are frozen (i.e., infinite internal friction) it can still undergo rotational relaxation entirely 
controlled by the solvent hydrodynamic friction. Since the end-to-end distance of the chain changes in response 
to three-dimensional motion of the internal chain segments, it is conceivable that RIF would be inaccurate in 
describing the dynamics of the chain’s end-to-end distance.

At the same time, RIF (and the related ZIF) captures other aspects of protein dynamics. For example, consist-
ent with these models, high internal friction leads to near-degeneracy of the relaxation timescales, where internal 
chain segments reconfigure on the same time scale as the entire chain27, 30 (see Fig. S3).

Figure 5.  Mean square displacement of the end monomers of the Gly-Ser repeat construct grows nearly linearly 
at short times (α ≈ 0.9), approaching the strictly linear dependence and converging with the mean-square 
displacement of the peptide’s centroid (defined as the average position of the peptide’s alpha carbons) at long 
times. Despite this almost purely diffusive motion of the peptide’s ends, the relative distance R between them 
undergoes subdiffusive motion. The much lower values of ∆R2 , as compared to the monomer mean square 
displacements, indicates that, at short times, the latter are dominated by rotations of the polymer chain.
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Moreover, in the case of protein dynamics within a coarse-grained model we see that the global reconfigu-
ration obeys a simple RIF-like relationship, equation (2), provided that the internal friction time τi is identified, 
to within a chain-length-independent proportionality factor, with the dihedral relaxation time τdih. Equation (2) 
provides a simple interpolation between the regime where the solvent friction dominates, achieved when the 
chain is sufficiently long, and the barrier friction regime, where the reconfiguration dynamics is controlled by 
dihedral rotations. Equation (2) is also consistent with atomistic simulations of peptides and proteins, although 
in the latter case we have only been able to explore the barrier friction limit.

Our study further supports the view that dihedral rotations in a polypeptide are concerted30. The most direct 
evidence of this comes from the correlation between the times at which the dihedrals that are close in sequence 
undergo rotations – see Fig. S5. Note that similar correlation was found in atomistic studies30. Further, indirect 
(but experimentally testable) evidence comes from the weak chain length dependence of the reconfiguration time 
(in the barrier friction limit), which contradicts chain-length dependent reconfiguration times predicted by a 
model where the dihedrals change independently. Finally, the subdiffusive character of the end-to-end distance 
dynamics observed in all of our simulations also contradicts the independent dihedral jump picture.

Our study shows that measurements of internal friction (such as the ones reported in ref. 27) provide infor-
mation about the timescales of microscopic motion within the chain, specifically, its dihedral relaxation. But a key 
question remains to be answered: what properties of the polypeptide chain determine those timescales? Why do 
different proteins of comparable length and at the same conditions display different values of the internal friction 
time τi and, hence, different timescales of dihedral dynamics? Furthermore, what determines the length scale over 
which dihedral flips are correlated? A parallel can be made here with the problem of first-principles prediction 
of the dry friction coefficients, which is still an open issue. Experiments, atomistic simulations, and theoretical 
efforts will be required to further elucidate the microscopic basis of internal friction.
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