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Vukadinović, L.; Cesar, V.; Šimić, D.
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Abstract: The multiple-stress effects on plant physiology and gene expression are being intensively
studied lately, primarily in model plants such as Arabidopsis, where the effects of six stressors have
simultaneously been documented. In maize, double and triple stress responses are obtaining more
attention, such as simultaneous drought and heat or heavy metal exposure, or drought in combination
with insect and fungal infestation. To keep up with these challenges, maize natural variation and
genetic engineering are exploited. On one hand, quantitative trait loci (QTL) associated with multiple-
stress tolerance are being identified by molecular breeding and genome-wide association studies
(GWAS), which then could be utilized for future breeding programs of more resilient maize varieties.
On the other hand, transgenic approaches in maize have already resulted in the creation of many
commercial double or triple stress resistant varieties, predominantly weed-tolerant/insect-resistant
and, additionally, also drought-resistant varieties. It is expected that first generation gene-editing
techniques, as well as recently developed base and prime editing applications, in combination with
the routine haploid induction in maize, will pave the way to pyramiding more stress tolerant alleles
in elite lines/varieties on time.

Keywords: maize; multiple-stress tolerance; quantitative genetics; genetic engineering

1. Introduction

Maize (Zea Mays L.) is, together with wheat and rice, one of the three cereals that feed
the world. As a major crop worldwide, maize is essential for industry and it is cultivated
mostly in rainfed cropping systems where changes in climate, erosion and a dwindling
water supply threaten to diminish future yields [1]. The most important trait in maize is
grain yield, a composite trait that is influenced by many stress-related traits. Research on
yield potential and stress tolerance in maize, combined with extensive phenotypic selection,
has helped achieve significant genetic gains in rain-fed yield of maize hybrids [2]. Tollenaar
and Lee [3] stated that the genetic yield improvement of North American maize varieties
during the 20th century is closely associated with enhanced stress tolerance.

The main stresses that affect maize plant in the field are being extensively studied.
They include drought [4,5], heat [6], chilling [7–9], flood [10], fungi and viruses [11,12],
parasitic plants [13], insects [14], pesticides [15], herbicides [16,17], heavy metals [18,19],
poor nutrients [20,21], soil salinity [22] and soil acidity [23,24]. Ongoing climate change is
expected to aggravate this burden. Globally, it was projected that climate change could
affect yield reduction in maize by an average of 7.4% for every 1 ◦C increase in mean
temperature [25]. Yet, percentage yield change as a function of temperature is not the
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same in tropical and temperate regions [26] and it could even be positive according to the
Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) [27].
However, if additional stress factors, such as nitrogen deficiency, are to be included,
according to the results of seven global gridded crop models, a negative percentage yield
change could be drastic, especially in tropical regions [28].

Drought, as the second most important cause of yield loss for maize after poor soil
fertility, affects 20–25% of the global maize area each year [29]. Maize is quite drought
susceptible compared to other cereals, with the exception of rice. This has considerable
consequences, as most of the maize producing areas are under rainfed conditions [30].
Moreover, if a long-term drought occurs in either a jointing or tasseling period for more
than 30 days, no plant recovery is possible, even after irrigation [31]. In order to escape
drought, the coordination of phenology with water availability can be performed choosing
maize genotypes of early maturity [32]. However, choosing early maize hybrids may not
be an optimum option, since these hybrids can be more sensitive to heat stress than late
hybrids [33]. Generally, the strategies of drought escaping or avoiding are commonly
used in maize where stress can be circumvented by earlier planting dates or planting
earlier hybrids to avoid the assumed adverse weather conditions mostly during flowering.
However, the global trends in temperature and precipitation suggest that extreme weather
events may occur at any time throughout the growing season, including a cold spring and
late spring frost, thus making an early planting date or early genotypes not worthwhile [33].
Thus, it seems that seeking for drought resistance is actually seeking for drought tolerance,
defined as a potential for plants to maintain their growth and development under drought
stress [32]. Aslam et al. [32] gave an overview of numerous adaptation mechanisms at
the physiological and molecular levels conferring drought tolerance. At the physiological
level, they include osmotic adjustment, antioxidative defense mechanism and plant growth
regulators. Molecular mechanisms comprise stress proteins and water channel proteins,
transcription factors and signal transduction pathways.

Up until recently, research on heat stress in maize is not as exhaustive as research on
drought. However, Lobell et al. [34] demonstrated that extreme heat as a stressor had a
more critical role for maize production than drought in the US, corroborating previous
statistical studies of rainfed maize yields showing a strong negative yield response to the
accumulation of extreme temperatures (>30 ◦C) and a relative weak response to seasonal
rainfall. A leaf temperature above 30 ◦C affects net photosynthesis because of rubisco inac-
tivation [35], but there is notable acclimation when the temperature increase was gradual
(2.5 ◦C h−1 from 28 to 45 ◦C) rather than abrupt (1 ◦C·min−1 for the same temperature
range) [36]. Hasanuzzaman et al. [37] listed two major effects of heat stress in maize during
flowering on plant and ear growth rates, and in the reproductive stage on ear expansion.
Similar to drought, there are several adaptation mechanisms at the physiological and molec-
ular levels conferring heat tolerance, such as the following: osmoprotectants, antioxidative
defense, expression of stress proteins, signaling cascades and transcriptional control [37].

Another abiotic, e.g., an anthropogenic stressor important for crop production, is
heavy metal excess in the soil, representing a threat on the environment due to its toxicity
to plants, animals and humans. The most important heavy metal in maize is cadmium
that induces growth inhibition, changes in the water and ion metabolism, the inhibition
of photosynthesis, changes in enzyme activities and the formation of free radicals [18,38].
Defense mechanisms comprise immobilization, synthesis of phytochelatins, as well as
similar physiological mechanisms present under drought and heat conditions, including
an accumulation of stress proteins, proline and salicylic acid [18]. Generally, responses to
heavy metal toxicity involve an accumulation of reactive oxygen species (ROS), abscisic
acid (ABA) and stomatal closure, but an antioxidant defense can be distinct in different
organs when maize plants are subjected to sub-lethal concentrations of cadmium, copper,
nickel and zinc [39]. Further, physiological implications and the toxicity of chromium,
copper and mercury in the maize plant were also assessed [40]. A special case of an
anthropogenic stressor in maize is high plant density. It is associated with nitrogen use
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stress and drought [41] due to plant competition generating multiple-stress environments
and eventually affecting plant physiology, phenology and morphology [42].

Beside European Corn Borer (Ostrinia nubilalis L.), the two most prominent biotic
stressors in maize are Diabrotica and Fusarium, which are interrelated with abiotic stres-
sors [43,44]. The western corn rootworm (Diabrotica virgifera virgifera LeConte) is one of the
major pests of maize in Europe and in the USA. Once detected, it is very difficult to eradi-
cate as well as to manage. Efforts for identifying sources of resistance to corn rootworm
within maize cultivars are crucial [45]. Apart from studying natural genetic variation via
quantitative genetics and classical breeding, several biotech companies developed the first
transgenic (genetically modified-GM) maize cultivars by transferring insecticidal protein
gene(s) from bacterium Bacillus thuringiensis, Berliner (Bt) into maize (‘Bt maize’) [46],
as an alternative to chemical control and crop rotation for insect control. However, the
development of maize hybrids with native resistance to insects would be a sustainable
management tool [45].

Climate change resulting in higher temperatures and less rainfall, largely favors the
development of fungus Fusarium sp. Fusarium verticillioides is less pathogenic and a higher
disease intensity only occurs if the plant has been previously weakened by other biotic or
abiotic stress [47]. The infection of maize with F. verticillioides can lead to a contamination of
the grain with mycotoxin fumonisin synthesized by fungi during development. Campos-
Bermudez et al. [48] presented a combination of biochemical and molecular approaches to
clarify metabolic changes following maize infection with F. verticillioides.

Due to the complex interaction among different stresses, only a tiny fraction of studies
on plant responses to stresses deals with the combinations of two or more stresses. A
closer inspection of the database search revealed that only about 1% of the original ar-
ticles had stress combination as a subject [49]. However, this could be changed due to
extensive research on climate change and its multifactorial nature affecting unpredictable
combinations of different stresses and posing an even greater threat to major crops [50].
Mittler [51] proposed a stress matrix approach to visualize the individual positive and/or
negative interactions among different stresses and their overall effect on plant growth and
yield. At this two-dimensional level, the majority of the interactions among the stresses
seem to be negative [52]. When more than two stress factors co-occur, a severe decline
in the subsequent plant growth and survival takes place. Zandalinas et al. [53] defined a
multifactorial stress combination as a combination of three or more simultaneous stress
factors grouping in the following four major threats: anthropogenic, biotic, climate and soil
threats. The four threats that include agronomically important stress factors in maize are
presented in Figure 1. They affect the supply of nutrients, water uptake, growth, respiration,
photosynthesis, transpiration, reproduction of maize plant and, eventually, yield. Once
additional stresses are presented, even at low levels, they could negatively interact with
each other and bring about substantial decreases in agricultural productivity [53].

The most investigated stress combination in maize is drought and heat, predomi-
nantly in African environments [54–59]. In a simulation study, it was demonstrated that
incorporating combined drought and heat tolerance into maize tropical varieties may
increase grain yield under both the baseline and future climate scenarios [60]. In Africa,
there is also a research interest in multiple-stress tolerance to drought and the parasitic
plant of Striga hermonthica [61], as well as to a Striga, low soil nitrogen and drought com-
bination [62]. In tropical rainfed environments in general, climate-induced stressors are
drought, heat, waterlogging, salinity, cold, diseases and insects, which frequently come
in different combinations [63]. Elsewhere, there are studies on the interactions between
insects and other stress factors such as salinity [64], flooding [65] and on the interaction
between pesticides and salinity [66]. The combined stress of flooding and infestation with
the insect pest Spodoptera frugiperda (fall armyworm) leads to an elevated production of
salicylic acid, which does not occur in the individual stresses [65]. Studies on a combination
of the three simultaneous stress factors in maize are scarce. The combination of Striga, low
soil nitrogen and drought was investigated in Nigeria [62]. Based on the multiple-trait
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selection index, the top low-N, Striga and drought tolerant/resistant maize genotypes were
recognized as vital sources of beneficial alleles for the improvement of tropical yellow
maize germplasm. The combination of drought, insect infestation and Fusarium in the
context of fumonisin contamination was examined in California [67]. The significant main
effects of hybrid, planting date, insecticide treatment and drought stress on Fusarium ear
rot symptoms and fumonisin B1 contamination were detected, and these factors also had
significant interacting effects. Recently, the combination of drought, heat and the effect
on some arthropod pests was reviewed [68] focusing on mechanisms of physiological,
biochemical and molecular responses previously given by Aslam et al. [32]. To conclude,
Chávez-Arias et al. [68] summarized the following impacts of the combination of heat and
drought on the physiological responses of maize plants: decrease in yield, increase in days
from anthesis to silking, reduction in growth parameters (height, stem diameter, leaf area,
fresh and dry weight), changing water status and nutrient content, decrease in chlorophyll
content and gas exchange parameters such as photosynthesis, stomatal conductance and
transpiration, reduction in fresh and dry weights, as well as increase in leaf temperature.

Figure 1. Most important stress factors in maize. Adapted from Zandalinas et al. [53].

2. Physiological Traits for Screening Genotypes for Multiple-Stress Tolerance

While many stress responses appear to be stress-type-specific, it is clear that some
stress responses are more general and potentially confer tolerance to multiple types of
stressors [69]. As mentioned above, an accumulation of some osmoprotectants, such
as proline and other amino acids, or changing the concentrations of some antioxidants
represent a plant response on several individual stressors (e.g., drought, heat, heavy metal
toxicity). By investigating leaf metabolites and yield under drought, heat and combined
drought and heat conditions in the field, Obata et al. [70] found that drought stress evoked
the accumulation of various amino acids (isoleucine, valine, threonine, 4-aminobutanoate,
glycine, serine and myoinositol), while the combination of drought and heat evoked
relatively few specific responses. Most of the metabolic changes were predictable from
the sum of the responses to individual stresses. However, drought stress can have a
predominant effect overheat stress, although total soluble sugars, proline and total free
amino acids were increased under all the stress treatments [71].
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Abiotic stress factors produce highly reactive forms of oxygen capable of rapidly
reacting with and oxidizing numerous cellular constituents (e.g., proteins, lipids, DNA,
RNA) depending on stress severity and duration. These toxic intermediates, reactive
oxygen species (ROS), can disturb the metabolic processes of cells and, consequently,
lead to cell death. Plants have evolved efficient antioxidant mechanisms, enzymatic and
non-enzymatic, to cope with ROS overproduction. A large number of ROS detoxifying
proteins (superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), gua-
iacol peroxidase (POD), glutathione peroxidase (GPX), glutathione reductase (GR), etc.)
and non-enzymatic antioxidants such as ascorbic acid or glutathione are present in cells.
The details of ROS production and ROS defense pathway were documented and discussed
in numerous review papers [72–76]. The substantial imbalance between ROS production
and scavenging has been shown in maize and other crops dealing with cadmium toxic-
ity [77,78] or drought [79–82]. However, the antioxidative response proved to be strongly
genotype-dependent. Oxidative damage and the antioxidative response were different
in the leaves of two diverse maize inbred lines [83,84] subjected to excess cadmium in
soil, water limitation as well as to a combination of both stress factors [85]. A gradual
significant increase in POD activity was observed in one inbred line across the following
three treatments: Cd excess, water limitation and a combination of both, but not in other
one. The opposite case was with proline activity where a dramatic increase occurred only
in the second inbred line under water limitation and stress combination conditions.

The protective role of proline in osmotic adjustment is well documented [86–88].
Increased proline indicated that cadmium provoked certain genotypes to synthesize more
proline to resist osmotic stress, as also assumed by Zhao et al. [89].

These results suggest that different strategies of antioxidative mechanisms could
be present in maize inbred lines subjected to water limitation, excess cadmium and a
combination of both stress factors, indicating existing multiple-stress tolerance in some
genotypes. The same is true for the combination of drought and heat [54] to identify
combined drought and heat tolerant donors. However, there was a genotype by trial
interaction, and tolerance to combined drought and heat stress was genetically distinct
from tolerance to individual stresses, whereby tolerance to either stress alone did not confer
tolerance to its combination. Nevertheless, tolerance to drought, heat, cadmium toxicity
and other stressors under multiple stress conditions requires further extensive genetic and
physiological research in order to identify and use tolerant genotypes for breeding for an
adaptation under climate change.

All stress factors, directly or indirectly, inhibit the most important physiological
process of photosynthesis as a global sensor of environmental stress in plants [90]. In the
last few decades, chlorophyll a fluorescence measurement, as a rapid and non-destructive
method, was recognized as a useful tool for screening plant sensitivity to various stress
factors [77–79,91,92]. The illumination of dark-adapted leaves using actinic light for 1
s enables a polyphasic chlorophyll a fluorescence induction curve to be obtained (O-J-
I-P transient). An interpretation of the JIP-test, a mathematical model developed by
Strasser [93], provides exhaustive information dealing with the structure and function of
the photosynthetic apparatus [91,93].

Numerous studies have shown different responses provoked by adverse environ-
mental features, depending on the crop species, genotype, stress type and duration and
developmental stage. The fluorescence parameters are being used extensively in stress
physiology in a range of plant species under controlled conditions and it is also easily
adaptable to field conditions [94]. This is particularly important for maize, because stress
studies conducted under controlled conditions inadequately reflect natural environmental
conditions. While the impact of the following individual stress factors on maize’s photo-
synthetic efficiency has been well documented: drought [94–96], heat [35,97], chilling [98],
fungi [99], herbicides [100], herbicides and cadmium [101], cadmium alone [84,102], low
nitrogen [103], soil salinity [64,104,105] and plant density [106], there is a lack of infor-
mation dealing with the multiple stress tolerance. Qu et al. [107] have monitored the
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effect of a combination of potassium deficiency and salt stress in maize seedlings grown
in controlled conditions. The obtained results revealed that a combination of investigated
stress factors impaired the light reaction pathways of PSI and PSII and resulted in severe
photochemical damage in leaves if compared with the ones affected by individual stress
factors. Correia et al. [108] investigated the contrasting levels of tolerance to drought and
heat of two maize genotypes, B73 (heat and sensitive) and P0023 (drought-tolerant hybrid).
Limited transpiration under heat and drought allowed water savings to act as a drought
stress avoidance mechanism. A higher phosphorylated phosphoenolpyruvate carboxylase
(PEPC) and electron transport rate (ETR) in P0023 maintained the photosynthetic efficiency.
A limited transpiration rate and a synchronized carbon assimilation regulation were identi-
fied as the key traits for drought and heat tolerance in maize [108]. A combination of excess
cadmium and drought stress were tested in lines Os6-2 and B84, and in their hybrid [109]. A
decreased total performance index, PItot, a parameter that comprises the functional activity
of photosystem II, photosystem I and intersystem electron transport chain, was reported in
Os6-2 and in hybrid. The destabilization of the oxygen evolving center of PSII (OEC) and a
lower PS stability were also observed. Photoinhibition due to the stress combination also
occurred in line B84, despite an unchanged PItot, the most sensitive parameter of the JIP-test.
The results suggested that all the investigated maize genotypes have developed different
strategies to cope with a combination of excess cadmium and drought. The possibility
of obtaining exhaustive information about leaf photochemistry during real-time in situ
monitoring in field conditions, as well as the other technical advantages of chlorophyll a
fluorescence approaches, have made it a popular technique for crop phenotyping.

3. Strategies for Enhancing Multiple-Stress Tolerance in Maize
3.1. Natural Genetic Variation

The main genetic approach to the enhancement of multiple-stress tolerance is utilizing
the natural genetic variation of plant quantitative traits associated with stress tolerance
where quantitative genetics play a pivotal role via classical and molecular breeding. Al-
though quantitative genetics has entered the second century, it still serves as the genetic
basis of contemporary plant breeding [110,111] and maize breeding in particular [112].
Virtually all the studies on stress tolerance already mentioned in this review are directly
or indirectly related to classical maize breeding. In this chapter, the focus is on molecular
breeding, i.e., genetic mapping identifying quantitative trait loci (QTL) [113] and genome-
wide association studies (GWAS) [114] on multiple-stress tolerance traits in maize. Briefly,
maize genetics and a genomic database [115] search using the keyword “stress” within
a “Loci+QTL” data subset [116] retrieved a total of 90 genes and loci directly related to
stress factors. Among others, there are 39 genes belonging to aasr (Abscisic acid-ABA
stress-ripening) and hsftf (heat stress transcription factor) families, as well as “univer-
sal/general stress protein” genes pco103004, pco143261, pco144726 and pco152469. There
are a total of 27 retrieved quantitative trait loci: 20 associated with drought (“qgyldws”
loci), 6 “stressed-leaf ABA content” QTL (“qslaba” loci) and one “unstressed-leaf ABA
content” QTL (“qulaba” locus). Otherwise, there is a plethora of QTL experiments deal-
ing with stress in maize: according to Web of Science Core Collection Database [117],
more than 400 articles are currently to be retrieved in this regard. On the other hand,
the number of studies on molecular breeding for multiple-stress tolerance in maize is
limited, although advanced models for multi-trait QTL analysis were known for more than
a decade, (e.g., [118]).

In a field experiment including stress treatment blocks (drought, low nitrogen and
combined), Makumburage and Stapleton (2011) [119] examined phenotype uniformity and
mapped QTL in IBM94 intermated recombinant inbred lines [120]. They concluded that
phenotype uniformity, which is genetically controlled, has a different genetic architecture
in multiple-stress environments compared to single-stress blocks. In an associated article,
the genetic architecture of drought and ultraviolet radiation stresses along with their
combination was examined in two maize mapping populations, revealing the complex
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attenuating interactions among physiological signaling steps in two stress responses [121].
Recently, combined drought and heat stress tolerance was examined in the DTMA (Drought
Tolerant Maize for Africa) association-mapping panel [122], including 300 tropical and
subtropical maize inbred lines genotyped with genotyping-by-sequencing (GBS) [123]. This
GWAS mapping revealed few overlapped significant markers and candidate genes for the
same traits across different stress environments, showing the genetic divergence between
the individual stress tolerance and the combined drought and heat tolerance. Another
GWAS mapping revealed that only one GWAS-base candidate gene was associated with
each of the five of the six combined insect resistance quantitative trait nucleotides (QTNs),
thus supporting the pleiotropy hypothesis [124]. Nevertheless, the delivered multiple
insect resistance physical map should contribute to the possible enhancement of combined
insect resistance in maize. Hou et al. [125] used an IBM Syn10 DH population [126] to
detect the quantitative trait loci (QTL) for a combined lead and cadmium tolerance by
linkage mapping in maize seedlings contributing to functional gene identification and
molecular breeding for improving heavy metal tolerance.

Quantitative genetic studies have identified genetic correlations among stress-resistance
traits, such that the selection of tolerance to one type of stress has been associated with
tolerance to another type of stress as a correlated selection response [127]. However, due
to a significant genotype by environment interaction, these associations are generally not
clear. Furthermore, genetic correlations for grain yield between the means under drought
and combined drought and heat conditions, as well as under heat and combined drought
and heat conditions were negligible (0.08 and −0.07, respectively) [54]. At the molecular
level, certain heat-shock proteins are commonly elicited in response to various stress condi-
tions [128]. The Putative pleiotropic candidate gene for the quantitative trait locus (QTL)
detected on maize chromosome 7, associated with several chlorophyll fluorescence param-
eters, seemed to be gst23 [94]. It belongs to the large glutathione transferase gene family
that encodes glutathione transferase, which have an important role in plant responses to
abiotic and biotic stresses [73]. Mullineaux and Karpinski [129] stated that in Arabidopsis,
some compounds (oxylipins) during abiotic and biotic stresses may induce the expression
of a gst gene. The pleiotropy of a gst gene was identified for three maize diseases [130],
suggesting the importance of glutathione transferase in response of maize to biotic stress.
However, Wallace et al. [112] stated that the majority of QTLs are not pleiotropic and
the presumed correlation between quantitative traits seems to be due to the population
structure. The putative association of the gst23 gene with five chlorophyll fluorescence
parameters might suggest that glutathione transferase is linked with the regulation of
photon absorbance and exciton dissipation, as well as in the trapping/dissipation ratio and,
therefore, provides biological and biochemical plausibility that this member of the maize
gst family is associated with photosynthetic efficiency in general, and eventually with
multiple-stress tolerance. The same might be true for maize Mitogen-Activated Protein
Kinase Kinase Kinase (MAPKKK) [131]. In transgenic Arabidopsis, NDP kinase interacts
with two MAPKs enhancing the multiple-stress tolerance [132].

Generally, stress tolerance is a polygenic trait controlled by many genes, and most
of these genes have minor effects [133]. Therefore, classical linkage or QTL analysis in
maize achieved limited success in improving polygenic complex traits due to the low
power of detecting minor effects, coarse mapping and capturing limited genetic diversity
in mostly biparental populations. However, some stress-related traits such as cadmium
accumulation seem to be controlled by only a few major genes [83] reconsidering the
classical marker assisted selection as a tool for contemporary plant breeding [134]. On
the other hand, GWAS was more successful in the identification of thousands of genomic
regions associated with many stressors, revealing a natural variation for stress tolerance
and physiological traits in the diverse genetic material of maize [135]. GWAS has also some
disadvantages though, including providing false positive/false negative associations and
a weak identification of rare allelic variants [135]. Nevertheless, the ultimate dissection
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of a phenotype can only be completed with a direct connection with a DNA sequence
variation [136], which the QTL/GWAS framework has not been able to provide thus far.

3.2. Genetic Engineering

In addition to traditional breeding and molecular breeding approaches, in the last
two decades, we have witnessed a global expansion of genetically engineered (genetically
modified—GM), i.e., transgenic, maize varieties. Since the approval of the first transgenic
maize varieties such as MON 809 and MON810 in the USA in 1996, the numbers of autho-
rized and cultivated GM maize varieties are steadily rising. Currently, three comprehensive
databases of cultivated GM crops hold the following entries for GM maize: the International
Service for the Acquisition of Agri-biotech Applications (ISAAA) lists 240 [137], the Biosafety
Clearing House (BCH) 298 [138] and the Food and Agriculture Organization GM Foods Plat-
form (FAO), 179 entries [139]. A recent extensive meta-analysis showed that GM maize
varieties, during their two decades of cultivation (1996–2016), resulted in multiple benefits
for the farmers, consumers and the environment by increasing the grain yield, reducing
the mycotoxin content and sparing non-target organisms, respectively [140]. The same
study reports that GM maize represents one-third of all the planted maize globally. In
the context of multiple-stress tolerance, the first GM maize varieties, e.g., MON809, was
already designed to fight the following two biotic stressors simultaneously: weeds, via
its herbicide (glyphosate) tolerance trait [120], and lepidopteran insect resistance, via the
encoded Bt toxin family protein, Cry1Ab endotoxin. MON809 was produced by biolistic
cotransformation and the cointegration of a plasmid harboring the Cry1Ab gene and a
second plasmid harboring C4 EPSPS and gox genes for glyphosate tolerance. However,
in this particular case, the glyphosate tolerance trait was not efficient in field conditions.
Therefore, the desired trait combination of insect resistance and herbicide tolerance was
added by conventionally breeding two single-trait varieties, generating one of the first
two-stacked events MON810 × MON88017 [120]. In principle, the term stacking means
to combine several traits in a single maize variety. It can be achieved in the following
ways: (a) by the cotransformation/cointegration of two or more T-DNA plasmids/linear
DNA fragments [141] such as in the case MON809; (b) by transgene design, where all
the traits/genes are cloned into one T-DNA or biolistic DNA fragment the like in the
case of “Golden rice” harboring three genes on a single T-DNA [142]; (c) by conventional
crossbreeding of different thoroughly characterized single-trait GM varieties, the so-called
events. Stacking by crossbreeding is favored over the cotransformation or retransformation
approaches [141] for regulatory reasons: national authorities tend to fast track breeding
stacks generated by single-trait GM varieties that have been previously characterized and
approved. On the other hand, the retransformation of an approved GM maize variety with
another T-DNA construct would have to be evaluated de novo.

Additionally, a point to consider is that stacked events have, in principle, a hem-
izygous genotype, i.e., they have just one and not two T-DNA copy per locus. This is
because commercial stacked events are F1 hybrids of elite inbred lines. As new traits are
added, the generation of corresponding parental lines becomes more time-consuming.
Fortunately, maize breeders have a genetic tool to make this problem easier to tackle:
haploid inducer lines. The Stock6 haploid inducer was described decades ago [143] and
was used commercially without the understanding of the molecular mechanism. Recently,
it was shown that a mutation in MATRILINEAL (MTL), a pollen-specific phospholipase, is
responsible for the HI phenotype of Stock6 [144,145]. In addition, another haploid inducing
approach was established in maize, which is based on the previously CENH3-mediated
haploid induction [146,147]. In maize, the haploid inducing capacity is provided by the
heterozygous (+/cenh3) genotype. These HI lines will have an important role in increasing
the breeding speed of maize multiple-stress tolerant stacks in the future.

Today, maize breeding stacked events are the most represented multi-stress tolerant
commercial varieties. For example, 79% of the maize acres in the USA were planted with
stacked varieties in 2020 [148]. Thus far, the following three stress-related traits have been
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successfully stacked in maize: insect resistance, herbicide tolerance and drought tolerance.
Currently, the most complex maize stacks in cultivation are constituted of up to six different
GM varieties (Table 1).

The six-stacked varieties were produced by the classical cross-pollination of six in-
dependent single-trait varieties, which were previously approved for cultivation [149].
However, the number of expression cassettes per variety is higher: some of the six-stacked
varieties have up to three different herbicide resistance genes, up to six different natural or
chimeric Cry proteins as well as one dsRNA expression cassette conferring insect resistance
via the RNA interference pathway. Concerning possible interactions of individual trans-
genes in multi-stacked events, it is possible in theory, but highly unlikely, because the stacks
were generated by the crosspollination of single events. Each single event was inserted
in the maize genome randomly and independently. Therefore, the chance of inter-event
recombination is not significant.

Moreover, stacking multiple insect resistance genes not only helps to improve yields
due to warding off more insect types, but also due to the reduction in the mandatory non-
GM refuge area proposed by the regulatory agencies, e.g., the Environmental Protection
Agency (EPA). In the USA, a reduction in the non-Bt corn area from 20 to 5% [150,151] is
allowed for stacked maize varieties.

The evolution of Bt resistance was slowed down and is still under control in countries
that promote the mandatory planting of non-GM maize refuge areas. On the contrary,
herbicide-resistant weeds appeared soon after the beginning of a mass application of
glyphosate. There are the following strategies for controlling weed resistance: 1. increasing
the herbicide concentration to the maximum a GM plant can tolerate; 2. increasing the copy
number of herbicide-resistance genes by stacking (see Table 1); and 3. combining different
herbicide resistance genes. Although immediately effective, none of these strategies is a
sound long-term solution. In retrospect, it would have been reasonable that mandatory
yearly crop rotation was promoted, or that a yearly exchange of different herbicides in
combination with the corresponding resistance genes were applied.

The number of traits and genes that will need to be transformed or crossed into elite
maize lines will grow in the future. Besides the current crossbreeding strategy, other
advanced techniques for introducing large number of genes are in the pipeline, including
the following: polycistronic expression in chloroplast [152], Binary Bacterial Artificial
Chromosomes [153] or mini chromosomes [154,155]. However, all of these approaches still
await routine use.

Apart from the classical transgenic approach, genome editing is the next breeding
advancement that will enable new multiple-stress tolerant variety development [156,157].
The first use of the sequence-directed endonucleases such as TALEN and CRISPR/Cas9
in maize was demonstrated in protoplasts [158]. In addition, gene editing in planta was
demonstrated on immature maize embryos, which were targeted by biolistic transformation.
Maize monoallelic and biallelic mutations were successfully identified at ASL2 (acetolactate
synthase), LIG1 (liguleless1) and two fertility loci, Ms26 and Ms45 [159]. Importantly, some
edited plants were not transgenic, indicating only a transient expression of the Cas9-gRNA
plasmid. This is important in respect to the negative public perception of transgenic plants.
Svitashev et al. (2016) [160] further demonstrated the use of pre-assembled Cas9-RNA
ribonucleoproteins (RNPs) for successfully mutating the same four loci and eliminating
the possibility of binary vector genomic integration. In addition, RNP’s editing efficiency
was approximately equal to the plasmid approach, whereas the off-target editing was not
detectable. A more detailed study measuring off-target mutations in maize showed that
the frequency of imprecise edits is negligible in comparison to the existing variation being
naturally generated in the genome during the conventional breeding [161].
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Table 1. Transgenic six-stacked maize varieties in commercial use *.

ISAAA Event Code (Unique Identifier) Trade Name Herbicide Tolerance Insect Resistance Drought Tolerance Modified Starch Selectable Marker

3272 × Bt11 ×
59,122 × MIR604 ×

TC1507 × GA21

SYN-E3272-5 × SYN-BTØ11-1 ×
DAS-59122-7 × SYN-IR6Ø4-5 ×

DAS-Ø15Ø7-1 × MON-ØØØ21-9
not available 1. glyphosate (mepsps)

2. glufosinate (pat)

1. Cry1Ab delta-endotoxin (cry1Ab)
2. Cry34Ab1 delta-endotoxin (cry34Ab1)
3. Cry35Ab1 delta-endotoxin (cry35Ab1)

4. modified Cry3A delta-endotoxin (mcry3A)
5. modified Cry1F protein (cry1Fa2)

none
1. thermostable

α-amylase
aa(amy797E)

1. phosphomannose
aaisomerase (pmi)

3272 × Bt11 ×
MIR604 × TC1507
× 5307 × GA21

SYN-E3272-5 × SYN-BTØ11-1 ×
SYN-IR6Ø4-5 × DAS-Ø15Ø7-1 ×
SYN-Ø53Ø7-1 × MON-ØØØ21-9

not available 1. glyphosate (mepsps)
2. glufosinate (pat)

1. Cry1Ab delta-endotoxin (cry1Ab)
2. modified Cry3A delta-endotoxin (mcry3A)

3. modified Cry1F protein (cry1Fa2)
4. synthetic form of Cry3A and Cry1Ab

(ecry3.1Ab)

none
1. thermostable

α-amylase
aa(amy797E)

1. phosphomannose
ccisomerase (pmi)

5307 × MIR604 ×
Bt11 × TC1507 ×
GA21 × MIR162

SYN-Ø53Ø7-1 × SYN-IR6Ø4-5 ×
SYN-BTØ11-1 × DAS-Ø15Ø7-1 ×
MON-ØØØ21-9 × SYN-IR162-4

Agrisure® Duracade™
5222

1. glyphosate (mepsps)
2. glufosinate (pat)

1. Cry1Ab delta-endotoxin (cry1Ab)
2. modified Cry3A delta-endotoxin (mcry3A)

3. modified Cry1F protein (cry1Fa2)
4. chimeric Cry3A-Cry1Ab delta (ecry3.1Ab)
5. vegetative insecticidal protein (vip3Aa20)

none 1. phosphomannose
aaisomerase (pmi)

Bt11 × MIR162 ×
MIR604 ×

MON89034 × 5307
× GA21

SYN-BTØ11-1 × SYN-IR162-4 ×
SYN-IR6Ø4-5 × MON-89Ø34-3 ×
SYN-Ø53Ø7-1 × MON-ØØØ21-9

not available 1. glyphosate (mepsps)
2. glufosinate (pat)

1. Cry1Ab delta-endotoxin (cry1Ab)
2. modified Cry3A delta-endotoxin (mcry3A)
3. vegetative insecticidal protein (vip3Aa20)

4. Cry2Ab delta-endotoxin (cry2Ab2)
5. chimeric Cry1Ab-Cry1F-Cry1Ac

(cry1A.105)
6. chimeric Cry3A-Cry1Ab delta (ecry3.1Ab)

none none

MON87427 ×
MON89034 ×

MON810 × MIR162
× MON87411 ×

MON87419

MON-87427-7 × MON-89Ø34-3 ×
MON-ØØ81Ø-6 × SYN-IR162-4
× MON-87411-9 × MON87419-8

not available
1. glyphosate (cp4 epsps)

2. glufosinate (pat)
3. dicamba (dmo)

1. Cry1Ab delta-endotoxin (cry1Ab)
2. vegetative insecticidal protein (vip3Aa20)

3. Cry2Ab delta-endotoxin (Cry2Ab2)
4. chimeric Cry1Ab-Cry1F-Cry1Ac

(cry1A.105)
5. Cry3Bb1 delta endotoxin (cry3Bb1)

none

1. glyphosate oxidase
aa(gox247)

2. neomycin
phosphotransferase

aa(nptII)
3. phosphomannose

aaisomerase (pmi)

MON87427 ×
MON87460 ×
MON89034 ×

TC1507 ×
MON87411 × 59122

MON-87427-7 × MON-8746Ø-4 ×
MON-89Ø34-3 × DAS-Ø15Ø7-1
× MON-87411-9 × DAS-59122-7

not available 1. glyphosate (cp4 epsps)
2. glufosinate (pat)

1. Cry1F delta-endotoxin (cry1F)
2. Cry34Ab1 delta-endotoxin (cry34Ab1)
3. Cry3Bb1 delta endotoxin (cry34Bb1)
4. Cry2Ab delta-endotoxin (cry2Ab2)
5. chimeric Cry1Ab-Cry1F-Cry1Ac

(cry1A.105)
6. Cry3Bb1 delta endotoxin (cry3Bb1)

7. ds RNA (dvsn7)

1. cold shock
protein B (cspB) none

MON87427 ×
MON89034 ×

TC1507 ×
MON87411 ×

59,122 × DAS40278

MON-87427-7 × MON-89Ø34-3 ×
DAS-Ø15Ø7-1 × MON-87411-9 ×

DAS-59122-7 × DAS-4Ø278-9
SmartStax™ Pro x

Enlist™

1. glyphosate (cp4 epsps)
2. glufosinate (pat)

3. 2,4-D (aad-1)

1. Cry1F delta-endotoxin (cry1F)
2. Cry34Ab1 delta-endotoxin (cry34Ab1)
3. Cry35Ab1 delta endotoxin (cry35Ab1)

4. Cry2Ab delta-endotoxin (cry2Ab2)
5. chimeric Cry1Ab-Cry1F-Cry1Ac

(cry1A.105)
6. Cry3Bb1 delta endotoxin (cry3Bb1)

7. ds RNA (dvsnf7)

none none
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Table 1. Cont.

ISAAA Event Code (Unique Identifier) Trade Name Herbicide Tolerance Insect Resistance Drought Tolerance Modified Starch Selectable Marker

MON87427 ×
MON89034 ×

TC1507 ×
MON87411 ×

59,122 ×
MON87419

MON-87427-7 × MON-89Ø34-3 ×
DAS-Ø15Ø7-1 × MON-87411-9 ×

DAS-59122-7 × MON87419-8
not available

1. glyphosate (cp4 epsps),
2 cassettes

2. glufosinate (pat),
3 cassettes

3. dicamba (dmo)

1. modified Cry1F protein (cry1Fa2)
2. Cry34Ab1 delta-endotoxin (cry34Ab1)
3. Cry35Ab1 delta endotoxin (cry35Ab1)

4. Cry2Ab delta-endotoxin (cry2Ab2)
5. chimeric Cry1Ab-Cry1F-Cry1Ac

(cry1A.105)
6. Cry3Bb1 delta endotoxin (cry3Bb1)

7. ds RNA (dvsnf7)

none none

* Information was obtained from the ISSSA GM Approval Database: https://www.isaaa.org/gmapprovaldatabase/crop/default.asp? accessed on 9 September 2021. CropID=6&Crop=Maize. Code acronyms:
MON—Monsanto, SYN—Syngenta, DAS—Dow AgroSciences.

https://www.isaaa.org/gmapprovaldatabase/crop/default.asp?
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Another example was the editing of ARGOS8, a negative regulator of the ethylene
response, which was sufficient to increase the maize grain yield under drought stress
conditions [162]. By using a CRISPR/Cas9 homology-directed repair (HDR), the maize
promoter GOS2 was inserted downstream of the native ARGOS8 promoter, leading to
moderate levels of constitutive expression and leading to better performance under drought
conditions. Genome editing also enables the easy manipulation of elite hybrid parental
lines, bypassing backcross breeding during the introgression of recessive mutant alleles.
In particular, a recent study demonstrated successful editing of the waxy (Wx) locus,
leading to high endosperm amylopectin content, which is necessary for industrial starch
production [163]. Another example is the inactivation of two aldehyde dehydrogenase
genes in maize (ZmBADH2a and ZmBADH2b), leading to the creation of the world’s
first aromatic maize [147]. Besides inducing a small modification at single loci, it was
recently demonstrated that big chromosomal rearrangements in maize are also possible
with the CRISPR/Cas9 system. A targeted 75.5-Mb pericentric inversion was performed
on maize chromosome 2 in order to re-open previously inaccessible chromosome regions
for recombination [164].

Base editing and prime editing [165,166] are two novel gene editing techniques that
do not induce DNA double strand brakes (DSB) and INDELs (insertions/deletions). Both
have been applied in maize recently. For example, maize protoplast and immature maize
embryos were transformed with a cytidine deaminase attached to an inactive nCas9
variant targeting the ZmCENH3 locus in order to obtain edits necessary to generate a
haploid-inducing phenotype. Monoallelic or biallelic C to T conversions were reported
in both protoplasts and immature embryos [167]. Another example was the generation
of sulfonylurea-resistant maize plants using a CRISPR/Cas9 nickase-cytidine deaminase
(CT-nCas9) fused to an uracil DNA glycosylase inhibitor (UGI). The nickase induces one
DNA nick and deaminates C to U, whereas a UGI prevents the repair of the newly gen-
erated uracil. Two loci, ZmALS1 (acetoacetate synthase) and ZmALS2, were successfully
edited, though with somewhat lower efficiencies for ZmALS2. Nevertheless, sulfonylurea
resistant plants were obtained and the transgene itself was crossed out. The edited plants
could withstand sulfonylurea concentrations 5–15 times the recommended upper limit.
Another group achieved double mutants in the same two ALS genes, but this time using
prime editing and reported an improvement in the editing efficiencies compared to the
published pioneering work in rice [168]. Recently, to test the precision of prime editing in
plants, off-target modifications or genomic pegRNA integrations (prime editing gRNA)
were measured. Such events were reported to be negligible or nonexistent [169].

Another important development in improving the breeding speed of multi-stress
tolerant maize variants in the future will be the combination of the genome editing and
haploid induction. In this approach, named HI-Edit (haploid induction editing technology)
or IMGE (Haploid-Inducer Mediated Genome Editing), the haploid inducer line is also the
editor line with an integrated Cas9-gRNA expression cassette. After the HI inducer cross,
the desired genome edit takes place in the zygote, followed by a uniparental genome
elimination (haploidization). The product is a genome edited haploid that can be converted
to a double haploid (DH) after cytostatic, i.e., colchicine, application [170,171]. This strategy
is faster at generating edits to elite breeding lines, circumventing selfing or backcrossing if
necessary for eliminating the transgene encoding the editing machinery.

To conclude, the multiple-stress tolerant maize varieties already in use are designed to
primarily be weed protected (herbicide tolerance) and insect resistant (Bt toxins and RNAi).
Only a minority of these varieties are also drought resistant, but this trait is expected to be
introduced more frequently in new elite varieties. Nevertheless, a lot of other stress types
have to be addressed in order to make agriculture more resilient to the consequences of
climate change. Molecular tools and breeding techniques for achieving this goal seem to be
at hand. A far more unpredictable challenge in reaching these goals will be public mistrust
and politics [172].
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4. Conclusions and Prospects for the Future

Understanding the genetic mechanism on individual and multiple stress tolerance will
be limited unless physiological and molecular mechanisms of plant responses to individual
stresses and stress combinations, consisting of both shared and unique responses [173,174],
can be elucidated. Thus, an integrated framework is needed for this challenging task.
Bailey-Serres et al. (2019) [175] presented the integrative potential of plant sciences ex-
ploring emerging strategies for enhancing sustainable crop production that could be also
applied on multiple-stress tolerance. In this paper, we focus on a quantitative genetic
approach based on naturally occurring variation and genetic engineering, as a result of
integrating the meta-analysis of existing plant omics data [49]. However, the opportunities
for enhancing multiple-stress tolerance in crops are much broader, comprising an inves-
tigation of beneficial soil and leaf microbiome, small-molecule delivery and the use of
sensors (cellular, organ canopy and remote) [175], indicating the complexity of the topic.
Research in Arabidopsis shows that six stress combinations [176], but already two stress
combinations [177], are lethal, even when each single stress is relatively mild. This makes
multiple stress tolerance a rather difficult goal to achieve. Nevertheless, systemic ROS sig-
naling was identified as the crucial switch for integrating responses to at least abiotic stress
combinations. Altogether, modern research on the genetic improvement of multiple stress
tolerance should be more connected to molecular phenotype modeling by using classical
crop modeling [178] or machine learning approaches [179,180]. Machine learning is applied
in studies of plant–pathogen interaction including disease monitoring, the discovery of
gene regulatory networks and genomic selection for disease resistance [181]. The category
of unsupervised machine learning is of special interest, whereas there is no specification
about the outcome in the data set with clustering and “feature” extraction [182]. It is a
new paradigm where traditional stress-related traits could be substituted by synthetic
features possibly more related to multiple-stress conditions that could be important for
investigating crop resilience under climate change.
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40. Franić, M.; Galić, V. As, Cd, Cr, Cu, Hg: Physiological Implications and Toxicity in Plants. Plant Met. Funct. Omics 2019, 209–253.
[CrossRef]

41. Ciampitti, I.A.; Vyn, T.J. A Comprehensive Study of Plant Density Consequences on Nitrogen Uptake Dynamics of Maize Plants
from Vegetative to Reproductive Stages. Field Crops Res. 2011, 121, 2–18. [CrossRef]

42. Sher, A.; Khan, A.; Cai, L.J.; Irfan Ahmad, M.; Asharf, U.; Jamoro, S.A. Response of Maize Grown Under High Plant Density;
Performance, Issues and Management—A Critical Review. Adv. Crop Sci. Technol. 2017. [CrossRef]

43. Nguyen, D.; Rieu, I.; Mariani, C.; van Dam, N.M. How Plants Handle Multiple Stresses: Hormonal Interactions Underlying
Responses to Abiotic Stress and Insect Herbivory. Plant Mol. Biol. 2016, 91, 727–740. [CrossRef] [PubMed]

44. Parsons, M. Biotic and Abiotic Factors Associated with Fusarium Ear Rot of Maize Caused by Fusarium Verticillioides. Grad.
Theses Diss. 2008. [CrossRef]
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