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Abstract

On a daily basis, humans interact with a vast range of objects and tools. A class of tasks, which can pose a serious challenge
to our motor skills, are those that involve manipulating objects with internal degrees of freedom, such as when folding
laundry or using a lasso. Here, we use the framework of optimal feedback control to make predictions of how humans
should interact with such objects. We confirm the predictions experimentally in a two-dimensional object manipulation
task, in which subjects learned to control six different objects with complex dynamics. We show that the non-intuitive
behavior observed when controlling objects with internal degrees of freedom can be accounted for by a simple cost
function representing a trade-off between effort and accuracy. In addition to using a simple linear, point-mass optimal
control model, we also used an optimal control model, which considers the non-linear dynamics of the human arm. We find
that the more realistic optimal control model captures aspects of the data that cannot be accounted for by the linear model
or other previous theories of motor control. The results suggest that our everyday interactions with objects can be
understood by optimality principles and advocate the use of more realistic optimal control models for the study of human
motor neuroscience.
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Introduction

Humans regularly interact with objects with internal degrees of

freedom from carrying a glass of water to using a cloth to polish a

table. While objects with no internal degrees of freedom can be

regarded as a fixed extension of our limbs [1,2] non-rigid objects

pose a more complex control problem. The state of the object can

often only be influenced indirectly and with a significant time

delay, and requires the acquisition of an internal model of the

object’s dynamics [3,4]. We are relatively experienced with simple

objects of this class such as carrying a cup of coffee. In contrast,

more complex objects with internal degrees of freedom can be

highly counterintuitive to manipulate and it may take a long time

to learn how to control them, for example when using a lasso.

Recently, stochastic optimal feedback control has emerged as a

normative framework for human motor coordination [5–7]. Given

the dynamics and noise characteristics of our limbs, an optimal

behavior can be computed that optimizes certain criteria such as a

trade-off between effort and positional accuracy. Optimal control

theory has been used to explain average movement trajectories as

well as trial-by-trial variability in a wide range of motor behaviors,

such as obstacle avoidance [8] and bimanual coordination [9].

General principles of human movements have since emerged from

this framework such as the minimum-intervention principle [7].

However, the interaction with objects with internal degrees of

freedom has not been investigated. We conducted a set of

experiments, in which subjects had to manipulate objects with

complex and unusual dynamics that were non-intuitive to control.

We extended the optimal control framework to such object

manipulation with internal degrees of freedom, in which both the

position of the hand and the object need to be controlled. Unlike

hand-held rigid objects, for which there is a one-to-one

correspondence between the state of the hand and the object,

for objects with internal degrees of freedom this is no longer true.

In addition to the standard optimal control model, in which the

hand is modeled simply as a point mass, we also used a more

realistic optimal control model, which included the dynamics of a

two-link arm [10–12]. We show that the trajectories and velocity

profiles we observed experimentally could be explained by a

simple cost function and that the more realistic optimal control

model captures aspects of the data that the point-mass model

cannot explain. Furthermore, we tested our model on data from a

previous study [13] and show that our optimal control model can

also account for the experimental data of a relatively simple mass-

spring object.

Results

Subjects manipulated 6 different objects with internal degrees of

freedom that were simulated in a virtual-reality setup. Subjects

held the handle of a robotic interface that was free to move in the

horizontal plane. Their hand was attached to a virtual mass (the

object) by a spring (Figure 1). The hand, mass and spring were

displayed and the task required subjects to move both their hand
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and the mass from a start position to a target region within a

certain time limit. The robotic interface was used to simulate

complex dynamics of the hand-object interaction. The position of

the object po was updated based on the hand’s position ph

according toM€ppozB _ppozK po{phð Þ~0 whereM, B and K are

the mass, damping and spring matrices (262) respectively. For a

standard physical system these would be diagonal matrices but to

examine the learning of complex objects we included off-diagonal

terms in addition to the standard diagonal terms (see Methods for

details).

The objects were non-intuitive to control and subjects had no

prior experience of their dynamics. For example, the inclusion of

off-diagonal terms in B (condition B) meant that the object

experienced an additional force that was orthogonal to its

movement direction and proportional to its speed. This is a

similar field to the standard velocity-dependent curl field [14–16]

but with the forces applied to the object rather than to the hand

directly. Inclusion of off-diagonal terms in K (condition K) meant

that the spring also applied forces orthogonally to its stretch

direction and the forces scaled in proportion to the stretch.

Inclusion of off-diagonal terms in M (condition M) meant that

forces applied to the object caused an acceleration of the object

orthogonal to the force. These three object characteristics were all

paired with either low damping (conditions B-low, K-low & M-low

with small diagonal terms in B) or with high damping (conditions

B-high, K-high & M-high large diagonal terms in B).

Subjects first received a training session with a progressively

stricter time criterion to facilitate learning and to familiarize them

with the dynamics of the objects. To assess stable performance

subjects had to continue the test session until they reached a

performance criterion of 25% trials achieved within a time

constraint. All six subjects achieved this for all objects although

some took more trials than others (Table 1).

Figure 2 shows the hand (A: red lines) and object (B: blue lines)

paths for one of the objects (condition B-low). Here the hand path

is complex and deviated substantially from the straight-line

movements characteristically observed during free reaching

[17,18]. In this condition the hand path even shows a loop mid-

movement. Moreover, rather than the normal bell-shape velocity

profiles of reaching movements we observed biphasic and triphasic

velocity profiles in the x- and y-direction respectively (Figure 2A).

In contrast the motion of the object (Figure 2B) showed a slightly

curved movement with a more bell-shaped velocity profile.

Similar complex hand paths were produced across the other five

conditions (Figure 3). A variety of paths were observed: Subjects

made S-shaped (condition M-low), mirror S-shaped (condition K-

low) and looped paths (condition B-low) in the low damping

conditions that required them to decelerate the mass actively. In

contrast, the subjects’ hands overshot the target in the high

damping conditions, veering to the left (condition K-high), to the

right (condition B-high) and passing through the target (condition

M-high). A way of conceptualizing the high damping conditions is

to imagine dragging the object through a very viscous fluid, hence

accelerating the mass as much as possible initially becomes crucial

for subjects to finish a trial successfully. We also found that in most

conditions the object path was not straight but slightly curved

Figure 1. Schematic of the task. Subjects were required to move
both their hand (represented by the blue circle) and object
(represented by the yellow circle) to a target (green circle) within a
time window which was reduced to 0.821.2 s over the course of the
experiment. The slack length of the spring (blue line) was zero and
subjects started each trial with both their hand and the object at the
same position within the start region (small and large grey circles
represent the initial hand and object positions). During the trial the
hand and object position differed substantially due to the complex
dynamics of the mass-spring-damper system. To finish a trial
successfully both the hand and object had to be on the target with
their speed below a threshold of 0.1 ms21 (low damping conditions)
and 0.02 ms21 (high damping conditions).
doi:10.1371/journal.pcbi.1000419.g001

Table 1. Test sessions to criterion.

B-low B-high K-low K-high M-low M-high sum

Subject 1 1 1 1 1 1 1 6

Subject 2 1 4 1 1 1 4 12

Subject 3 1 1 1 1 4 1 9

Subject 4 2 1 6 2 3 1 15

Subject 5 1 3 4 3 1 1 13

Subject 6 1 1 1 1 1 2 7

Sum 7 14 11 11 9 10 62

Number of 200 trial test sessions that subjects required to reach the criterion of
25% correct trials.
doi:10.1371/journal.pcbi.1000419.t001

Author Summary

Humans are highly skilled at tool use. Simple tools have no
internal degrees of freedom. For example, knowing the
position and orientation of a hammer allows us to, in
theory, predict the forces it will generate on our hand
when we wield it and the consequences our actions will
have on the hammer. In contrast, more complex tools can
have internal degrees of freedom, such as a glass of water
in which the motion of the fluid (the internal degree of
freedom) is not fully determined by the current position
and orientation of the glass. Such objects can be difficult
to control. Here we use a robotic interface to simulate
complex objects with internal degrees of freedom and find
that subjects are able to learn to control the objects and
that the pattern of movement found across subjects is
similar. We develop an optimal feedback control model
and explain complex object interactions as a simple trade-
off between effort and task accuracy.

Optimal Object Manipulation
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Figure 2. Actual and simulated hand and object paths and velocities for condition B-low. The actual and simulated hand and object paths
and velocities for condition B-low in which off-diagonal terms in the viscosity matrix were paired with a low-damped spring. A. The hand path and x-
and y-velocities (red lines) with 1 s.e.m. across subjects (standard error ellipse for path plots). The left and right columns show the fits (black lines) of
the linear, point-mass optimal control model, and the nonlinear, two-link arm optimal control model, respectively. For the paths R2 (variance
explained by the model), the mean movement duration (which was used in the optimal control simulations) and its standard deviation is shown. B. as
in A, but for the object motion (blue lines).
doi:10.1371/journal.pcbi.1000419.g002
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(Figure 4). In conditions K-low and K-high, we observed a slight

rightward curvature, while in conditions M-low and M-high the

object path was substantially curved to the left.

We compared the subjects’ performance to the predictions of an

optimal feedback controller. The optimal control law can be

computed given the dynamics of the system under control and a

Figure 3. Actual and simulated hand paths. The actual and simulated hand paths for the 5 conditions not shown in Figure 2 (in the same
format). A. The fits (black lines) of the linear, point-mass optimal control model, and B. the nonlinear, two-link arm optimal control model,
respectively.
doi:10.1371/journal.pcbi.1000419.g003
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cost function on the movement. We extended two existing optimal

feedback control models (see Methods for details): a Linear-

Quadratic-Gaussian controller with signal-dependent noise, in

which the hand was modeled as a simple point-mass [5], and a

non-linear optimal control model, which included the full

dynamics of a two-link arm [10–12]. We modified these two

optimal control models to include the dynamics of the different

mass-spring-damper objects in the state update equations,

assuming that by the end of learning the optimal controller had

full knowledge of the dynamics of the objects under control. We

Figure 4. Actual and simulated object paths. The actual and simulated object paths for the 5 conditions not shown in Figure 2 (in the same
format). A. The fits (black lines) of the linear, point-mass optimal control model, and B. the nonlinear, two-link arm optimal control model,
respectively.
doi:10.1371/journal.pcbi.1000419.g004

Optimal Object Manipulation
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constructed a cost function with 5 terms: effort and final positional

and velocity errors of the hand and object. This cost function has 4

parameters that change the relative weighting of the different cost

terms and based on previous studies we constrained the cost to

have only two adjustable parameters. These were fit to the data

and fixed to be the same for all object conditions (see Methods).

Introduction of a sensorimotor delay did not change the results

appreciably (see Text S1 and Figure S1).

Figure 2 shows the model fits (black lines) of the linear, point-

mass optimal control model (on the left) and the non-linear, two-

link arm optimal control model (on the right) for object condition

B-low. Both models capture the salient features of the experimen-

tal data and show bi- and triphasic velocity profiles for the hand

motion, a more bell-shaped velocity profile for the object motion

and the loop mid-movement in the hand path. The model explains

96% (linear model) and 99% (non-linear model) of the variance of

the experimental data.

Similarly, for the remaining conditions (Figure 3) both optimal

control models yield good quantitative fits to the experimental

data and overall explain 79616% (Figure 3A: linear model) and

84614% (Figure 3B: non-linear model) of the variance across

the conditions and subjects. The prominent characteristics of the

subjects’ behavior such as the S-shaped paths and overshoots are

all captured by the two models. The non-linear, two-link arm

optimal control model provides slightly better fits to the

experimental data than the linear, point-mass optimal control

model. Movement in the x-direction is usually less pronounced

due to geometrical constraints and higher control costs in the

non-linear model. For example, in condition M-high the linear

model substantially overestimates movement in the x-direction,

whereas the non-linear model captures the overshoot behind the

target seen in the subjects’ behavior. Features of the subjects’

movements such as the curvature in the hand path in condition

B-high and the asymmetry of the S-shaped path in condition M-

low are also captured by the non-linear optimal control model.

Note that the loop in the path in condition K-low is not

accounted for by either optimal control model. Three subjects

made loop-like movements whereas the others completed the

task with the mirrored S-shaped path predicted by both optimal

control models (see Discussion).

Both optimal control models fit the experimental object paths

well (Figure 4A: linear model, B: non-linear model) with near

straight predicted object paths. However, the non-linear model

also shows the correct curvature of the object path across all

conditions. For example in conditions K-low, M-low and M-high

the linear model predicts a near-straight object path, whereas the

non-linear model captures the rightward and the leftward

curvature of the object paths. Both are the result of less

pronounced hand movement in the x-direction in the non-linear

optimal control model due to geometrical constraints and higher

control costs as discussed above.

Some of the variance of the hand position signal over time is

already explained by the fact that the movement starts at the start

point and ends at the target. To provide a null-model for the

R2-analysis we used non-adaptive versions of the two optimal

control models, that is one of the hand alone, moving from the

start position to the target in the same time as subjects in the

experiment. We computed R2-values between the optimal control

predictions and the experimental data as before (see R2-values of

the non-adaptive controller in Table 2 for the linear and Table 3

for the non-linear model). Note that in principle R2-values as

defined in the Data Analysis (see Methods) can be negative if the

predictions are very different from the experimental data. All

R2-values of the non-adaptive controllers are substantially lower

than those of the optimal control models including object

dynamics. For the linear model R2-values were from 0.41

(Condition M-low) to 0.84 (Condition M-high) lower. For the

non-linear model they were from 0.4 (Condition M-low) to 1.03

(Condition M-high) lower. The R2-values for the low damping

conditions are slightly higher than those in the high damping

conditions because the movement in the y-direction is fairly similar

to the experimental data. The R2-values for the high damping

conditions are very low as the subjects’ movements are very fast in

the y-direction and the target is being overshot. In conclusion, the

optimal control models with object dynamics included are

substantially better at explaining the variance of the experimental

data.

To analyze the performance of individual subjects on the task,

the optimal control analysis was repeated on a subject-by-subject

basis for both models (see Methods for details). Table 2 shows the

Table 2. R2-values of the linear optimal control model.

B-low B-high K-low K-high M-low M-high mean6s

incl. obj. dyn. 0.96 0.76 0.84 0.69 0.95 0.52 0.7960.16

w. mod. unc. 0.97 0.90 0.94 0.79 0.97 0.72 0.8860.17

w/o obj. dyn. 0.38 20.08 0.09 20.07 0.53 20.27 0.160.3

Subject 1 0.92 0.45 0.7 0.74 0.97 0.57 0.7260.2

Subject 2 0.91 0.91 0.96 0.93 0.97 0.86 0.9260.04

Subject 3 0.93 0.82 0.75 0.63 0.88 0.42 0.7460.19

Subject 4 0.91 0.97 0.90 0.99 0.89 0.77 0.960.08

Subject 5 0.98 0.84 0.73 0.8 0.93 0.86 0.8560.09

Subject 6 0.83 0.71 0.83 0.81 0.91 0.1 0.760.3

mean6s 0.9160.05 0.7860.18 0.8160.1 0.8160.12 0.9260.04 0.5960.3 0.8160.12

The table shows R2-values and their means6standard deviations for the linear optimal control model fitted to the mean trajectory across subjects (see Figures 2–4) for
the model including the object dynamics (incl. obj. dyn.), with uncertainty about the internal model and incomplete learning (w. mod. unc. - see Figure 6) and using a
non-adaptive controller without the object dynamics (w/o obj. dyn.). In addition, R2-values for the linear optimal control model including the object dynamics are
shown fitted on an individual subject basis (see Figures S2, S3, S4, S5, S6, and S7).
doi:10.1371/journal.pcbi.1000419.t002
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R2-values of this new analysis for the linear model and Table 3 for

the non-linear model respectively. Figures S2, S3, S4, S5, S6, and

S7 show the hand paths overlaid with the optimal control

predictions for condition B-low to condition M-high respectively.

What becomes apparent from this analysis is that some subjects,

on average, performed closer to the optimal control predictions

than others (e.g. subject 2 vs subject 6). In addition, although the

hand paths of subjects are overall very similar, in some conditions

one subject performed slightly differently from the rest (e.g. subject

1 in conditon B-high, subject 3 in condition B-high and subject 1

in condition M-high). It is these conditions that have the lowest

R2-values and the individual subject fits slightly improve the

model fits for these conditions suggesting that between-subject

differences in we and wo partially account for the lower R2-values.

Overall this analysis does not change the main result. The

individual subject fits are, on average across conditions, as least as

good as those fitted to the mean trajectory (see Tables 2 and 3).

Furthermore, the non-linear model still fits the data slightly better

than the linear model.

We performed a sensitivity analysis of both optimal control

models to the particular weighting used in the cost function.

Varying the velocity, effort and object weight over a ten fold range

(either smaller or larger) had little effect on the percentage of

variance explained (see Text S1 and Figures S8, S9, S10, S11, S12,

and S13 for details).

To assess learning across the course of the first 600 trials to the

0u target alone (that was the minimum that all subjects were

required to perform), we analyzed the movement trial duration

averaged across batches of 20 trials (Figure 5A). With time subjects

became faster and adapted to the progressively stricter time

criterion that was imposed during the experimental sessions. A

paired t-test shows a significant difference between the movement

duration of the first and the last batch of the experiment

t5~5:04, pv0:01ð Þ.
We also analyzed the way that subjects’ trajectories changed

throughout learning. In particular we wished to assess whether

subjects all showed similar patterns of adaptation at intermediate

stages of learning that is whether their trajectories were similar

during the learning process. To assess this we developed a measure

of the between-subject variability. For each batch of 20 trials we

computed the average Euclidian distance between the hand and

object trajectories (averaged over the batch) of all pairs of subjects.

Low values indicate that all subjects produce similar trajectories

and high values represent dissimilar trajectories (see Methods).

Subjects started out with very different hand and object

trajectories at the beginning of the experiment and their behavior

became more similar as they improved their performance

(Figure 5B and 5C). A paired t-test between the first and the last

batch of the experiment shows a significant difference in the

variability measure (hand trajectory: t5~2:63, pv0:05; object

trajectory: t5~4:54, pv0:01ð Þ suggesting that the improved

performance was due to subjects converging to similar trajectories.

Therefore although the final movements were similar across

subjects the pattern of trajectory change during learning was

idiosyncratic. Analysis of individual conditions (see Figure S14)

shows that this is true for all conditions except K-low and K-high.

In condition K-low, three subjects made looped movements rather

than the inverted S-shape performed by the remaining subjects.

The fact that not all subjects converged to the same solution is

reflected in the slightly increasing variability measure. Similarly in

condition K-high, subject 3 (see Figure S5) performed the task

differently from the rest. When subject 3 is removed from the

analysis (see Figure S14), convergence of behavior for the

remaining subjects is found as before.

Even after the long exposure that subjects had to the dynamics

of the objects during the experiment, they failed to finish the task

successfully within the time limit in some trials. Besides the effects

of motor noise, another factor that might have contributed is that

subjects did not fully learn the objects’ dynamics and that a

residual uncertainty about the internal model remained. To

investigate the effects of model uncertainty and incomplete

learning, we adapted the linear optimal control model above in

accordance with [19]. In Izawa et al. 2008 incomplete learning

was modelled as uncertainty with regard to the internal model.

The internal model was represented as D̂D~aDzsD. The

parameter a expresses incomplete learning, e.g. a~0:5 indicates

that only 50% of the internal model is learnt. The parameter c is a

Gaussian random variable with standard deviation s that captures

the uncertainty about the internal model. We adapted the linear

optimal control model to include model uncertainty (s~0:2) and

incomplete learning (a~0:8), which are the same values used by

Izawa et al. (see Text S1 for details). The R2-values of the

simulations are shown in Table 2 and the hand and object path in

Figure 6. The model fits are considerably better than for the linear

model without model uncertainty (an average R2 of 88% versus

79%) suggesting that subjects remained to some degree uncertain

Table 3. R2-values of the non-linear optimal control model.

B-low B-high K-low K-high M-low M-high mean6s

incl. obj. dyn. 0.99 0.83 0.92 0.7 0.95 0.63 0.8460.14

w/o obj. dyn. 0.47 20.15 0.14 20.22 0.55 20.4 0.0760.39

Subject 1 0.94 0.6 0.88 0.80 0.93 0.58 0.7960.16

Subject 2 0.93 0.97 0.95 0.90 0.96 0.81 0.9260.06

Subject 3 0.95 0.88 0.78 0.69 0.89 0.52 0.7960.16

Subject 4 0.95 0.98 0.97 0.94 0.91 0.74 0.9160.09

Subject 5 0.97 0.94 0.86 0.89 0.92 0.8 0.8960.06

Subject 6 0.89 0.75 0.85 0.83 0.94 0.27 0.7560.25

mean6s 0.9460.03 0.8560.15 0.8860.07 0.8460.09 0.9260.02 0.6260.2 0.8460.11

The table shows R2-values and their means6standard deviations for the non-linear optimal control model fitted to the mean trajectory across subjects (see Figures 2–4)
for the model including the object dynamics (incl. obj. dyn.) and using a non-adaptive controller without the object dynamics (w/o obj. dyn.). In addition, R2-values for
the non-linear optimal control model including the object dynamics are shown fitted on an individual subject basis (see Figures S2, S3, S4, S5, S6, and S7).
doi:10.1371/journal.pcbi.1000419.t003
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how to predict the consequences of their actions on the object and

that they adjusted their movement strategy accordingly.

We also tested our model on previous experimental data [13] of

a relatively simple mass-spring object. The task was to transport a

mass-on-a-spring to a target (for details see [13]). Effects of varying

movement distance, movement duration and resonant frequency

of a simple mass-spring object on human object manipulation

were examined. However, in contrast to the current study, there

were no off-diagonal terms in the object dynamics. Dingwell et al.

used a smoothness criterion on the object path to explain their

data. In their study they set out to model the effects of changing

the movement distance and movement duration for a fixed

resonant frequency of the spring (Experiment B). Our point-mass

optimal control model predicts a transition from approximately

uniphasic velocity profiles of the hand for slow movements to

triphasic velocity profiles for faster movements. In addition, the

model predicts that the effect of increasing the movement distance

results in scaling the velocity profiles without changing its shape.

Both these predictions were observed experimentally (Figure S15

shows experimental data with optimal control model predictions).

In an additional experiment Dingwell et al., examined the

influence of the resonant frequency of the spring on the velocity

profiles of both object and hand (Experiment C). Our point-mass

optimal control model yields the same velocity profiles when the

resonant frequency is kept constant, independent of how the values

of the spring constant and object mass are chosen. High resonant

frequencies predict triphasic velocity profiles whereas low resonant

frequencies predict uniphasic velocity profiles for the same

movement time as the optimal control solution. The optimal

control model always yields uniphasic velocity profiles for the

object. All these features were observed experimentally (Figure

S16 shows experimental data with optimal control model

predictions).

Discussion

Our study suggests that the framework of optimal feedback

control in motor neuroscience can be extended to the control of

objects with internal degrees of freedom and our results underline

the generality of the optimal control framework as a basis of motor

coordination. The strength of this theory has been to show that the

redundancy inherent in biological motor systems is exploited in a

goal directed way and that the variability patterns that emerge are

in fact optimal given the noise characteristics of biological systems.

Optimal control theory has been able to incorporate competing

task goals [8] and explain task-dependent behavior [9] that other

theories of motor control such as the desired trajectory hypothesis

[20,21] cannot account for. Previously, optimal control theory has

been applied to movements of the arm alone. In this study, we

extend the linear point-mass optimal control model by incorpo-

rating the dynamical system equations of the different spring-mass-

damper systems into the state update equations and by adding end

position and velocity of the object to the overall movement cost.

We show that complex behavior can be understood with a simple

cost function.

Across the six different object conditions, the final hand paths

were quite dissimilar and all deviated substantially from the near

straight hand paths seen during normal reaching movements. The

object path shows a slight curvature in most conditions. Our

adapted version of the simple point-mass optimal control model

provided a good fit to the data explaining 79616% of the variance

across all cases. However, there were some notable failures of the

simple model: for example it often overestimated the hand

movement in the x-direction (Figure 3) and also did not show

the right curvature of the object path (Figure 4). In most optimal

control models in the literature the dynamics of the arm are

neglected and the hand is simply modeled as a point mass

[5,8,9,19]. Numerous phenomena of human movements have

been explained using this simple model [5–7] and often it has not

been necessary to include the full dynamics of the arm. Rather

than having been a matter of deliberate model choice, the Linear-

Quadratic-Gaussian (LQG) case is the only one for which there

exists a closed-form solution. In contrast, iterative LQG algorithms

can find approximate solutions to non-linear optimal control

problems such as those including realistic dynamics of the arm

[10–12]. We built on this previous work and in addition included

the dynamics of the different spring-mass-damper systems. In this

study, in five out of six cases the two-joint arm model predicted the

data better than the simple point-mass model for the same number

of free parameters. In addition, it predicts the curved object paths

seen in the experimental data, some of which are not predicted by

the simply point mass model (Figure 4) and none of which could be

predicted by a smoothness criterion on the object trajectory. Our

results lend weight to using such models for experiments where

geometry and dynamics of the arm matter. In the future, it will be

interesting to apply the optimal control framework to increasingly

more complex situations and also attempt to include facets of

human movements that are traditionally not captured by optimal

control models such as impedance control.

We also set out to model behavioral data from a previous

experiment [13], in which subjects moved simple two-dimensional

Figure 5. Learning object dynamics. A. Mean movement duration across subjects and conditions as a function of batches of 20 trials. Shaded
area shows one s.e.m. across subjects. B. Mean Euclidian distance between subjects’ hand trajectories averaged across subjects and conditions.
Shaded area shows one s.e.m. across subjects. C. as in B, but for the object trajectory.
doi:10.1371/journal.pcbi.1000419.g005
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Figure 6. Predictions of the linear optimal control model with model uncertainty and incomplete learning. A. The actual and simulated
hand paths for all 6 conditions (in the same format as Figure 2). The fits (black lines) of the linear, point-mass optimal control model with model
uncertainty and incomplete learning. B. as in A, but for the object motion (blue lines).
doi:10.1371/journal.pcbi.1000419.g006
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mass-spring objects whose dynamics were intuitive and possibly

known to subjects by experience. The velocity profiles of the hand

differed substantially from the classic bell-shaped velocity profiles

observed during normal reaching movements and in some

instances the velocity profiles were triphasic. Previously, Dingwell

et al. modeled the data by applying a smoothness criterion to the

object trajectory rather than the hand trajectory as in past models

of trajectory planning [20,21]. In this case, for mathematical

reasons, smoothness was defined as minimum-crackle (i.e. the fifth

derivative of position) rather than minimum-jerk (i.e. the third

derivative of position) as in previous studies. The model provided

good fits to the experimental data and made reliable predictions

regarding the shape and scaling of the velocity profiles and their

dependence on movement time, movement distance and reso-

nance frequency of the mass-spring object. Our adapted optimal

control model is also able to predict the same data by simply

specifying as task requirements that both hand and object be

moved to the target and come to a complete stop in a certain time

and that the effort of the movement be minimized. The model

makes no assumptions about the particular shape of either the

hand or the object trajectory and it provides a normative

explanation of the subjects’ behavior. The complex hand velocity

profiles and the nearly smooth object trajectory are simply a result

of an effort-accuracy trade-off given the dynamics of the different

systems to be controlled.

Although both optimal control models provide very good

quantitative fits to the data, they do not account for some aspects

of the behavioral results. For example, in condition K-low three

subjects chose to make looped movements rather than the inverted

S-shape predicted by the optimal control model and performed by

the remaining subjects (see Figure S4). First, in the model we

assume identical dynamics and kinematics for all subjects whereas

clearly subjects have arms with different properties and variation

in the dynamics will lead to some variation in the optimal

trajectories. Second, a key strength of our model is that all the six

object conditions were fit using the same cost function parameter

settings. This assumes that the weighting of effort efficiency and

the importance of the object remains the same and that these two

terms are traded-off in the same manner across subjects and

conditions. In accordance with this explanation, we find that

fitting on an individual subject basis slightly improved the average

variance explained slightly for the linear optimal control model. In

the future, it will be interesting to investigate the task-dependency

of these parameters when object dynamics and task goals are

varied.

Another observation is that although subjects had extensive

training manipulating the objects, they were not successful at

finishing the task in the time limit on every trial. Our optimal

control models assume complete knowledge of the system

dynamics and that the subjects’ learning process was complete at

the end of the experiment. A recent paper modeled uncertainty

about the internal model of the system under control in a force-

field experiment [19] and using their approach we show, that the

subjects’ behavior can be better accounted for when taking model

uncertainty into account. This suggests that subjects were to some

degree uncertain of how to predict the consequences of their

actions on the object and that they adjusted their movement

strategy accordingly. Initially the object dynamics of the mass-

spring objects were completely unknown to the subjects and the

task required subjects to learn a new mapping between their

motor commands and their consequences, i.e to acquire an

internal model of the object’s dynamics [3,4]. Note that in all

optimal control models described above, the system’s dynamics

were incorporated into the model by including the dynamical

system equations of the different spring-mass-damper objects

into the state update equations. Hence, the current study does

not attempt to model learning in an optimal control framework

but rather looks at the end point of learning assuming that the

dynamics of the system are already known. Recently, studies

have started to shed light on adaptation in an optimal control

framework [22] and in the future, it will be interesting to

investigate the adaptation processes that occur during learning of

novel object dynamics.

Methods

Experimental Setup
After providing written informed consent 6 right-handed

subjects (3 male, 3 female, age 19–28) participated in the study.

The experimental protocol was approved by a local ethics

committee. Subjects were naive to the purpose of the experiment

and none of the subjects reported any sensory or motor deficits.

While seated, subjects used their right hand to grasp the handle of

a vBOT force-generating robotic manipulandum, which could be

moved in the horizontal plane (for details, see [23]). The position

and velocity of both hand and the virtual object were computed

online at 1000 Hz. Subjects could not see their arm but the

positions of the object and hand were displayed in the plane of the

arm using a reflected rear-projection system. The position of the

object was displayed as a circular disk (yellow; 1 cm radius) which

was connected by a yellow virtual rubber band to the position of

the hand, also represented as a circular disk (blue; 0.5 cm radius).

The vBOT could apply forces to the hand and this was used to

simulate objects with different mass-spring-damper properties.

Simulation of Object Dynamics
As a prototypical object with internal degrees of freedom in two

dimensions we simulated a damped point mass, attached to the

hand by a spring with an equilibrium position identical to the

position of the hand. Let po be the position of the object, ph be the

position of the hand, K[R2|2 be a spring constant matrix,

B[R2|2 define a damping (viscosity) matrix for the system and

M[R2|2 be the mass matrix of the object (all these parameters

are specified in Cartesian coordinates). The differential equation

describing the motion of the object can be written as:

M€ppozB _ppozK po{phð Þ~0:

We also applied complex forces to the hand that depended on

both the position of the hand and position and velocity of the object

(the combination is similar to a spring which has stiff hinges at each

end so that the damping on the object plays through to the hand):

Fh~B _ppozK po{phð Þ:

The matrices used for the standard two-dimensional mass-

spring-damper were:

K~
120 0

0 120

" #
Nm{1, B~

1 0

0 1

" #
Nsm{1,

M~
6 0

0 6

" #
Ns2m{1:
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However, the dynamics of such a standard spring are relatively

simple and most probably known to the subjects. We were

interested in the control of objects with complex dynamics for

which subjects are unlikely to have had prior experience and for

which there would not be an intuitive way of controlling them.

Hence, we created six different complex dynamic objects by

introducing x-y dependencies for the spring constant, viscosity and

mass matrices. These three conditions were paired with low and

with high damping (i.e. diagonal terms in the viscosity matrix). In

conditions B-low & B-high, we included off-diagonal terms for the

viscosity matrix. This is similar to a velocity-dependent curl field

that is often used in studies of dynamics learning [14–16], except

the field is applied to the object mass rather than the hand. We

only specify the parameters that were changed from the standard

diagonal mass-spring-damper system:

B~
1 25

{25 1

� �
, ðCondition B-lowÞ

B~
50 25

{25 50

� �
: ðCondition B-highÞ

In conditions K-low & K-high we introduced off-diagonal terms

in the spring constant matrix. This can be conceptualized as

introducing an x-y dependency, in which a movement along one

axis will result in a restoring force in both x- and y-direction:

K~
120 60

60 120

� �
, ðCondition K-lowÞ

K~
120 60

60 120

� �
, B~

50 0

0 50

� �
: ðCondition K-highÞ

In conditions M-low & M-high, we introduced off-diagonal

terms in the mass matrix of the object. This can be thought of as

an acceleration along one axis simultaneously resulting in

acceleration along the orthogonal axis:

M~
6 3

3 6

� �
, ðCondition M-lowÞ

M~
6 3

3 6

� �
, B~

50 0

0 50

� �
: ðCondition M-highÞ

Overall the simulation of these dynamics provided a complex,

non-intuitive, yet learnable environment that is highly unlikely to

have been experienced in the real world. Each of the six

conditions was performed in a block of trials and subjects

performed the different blocks on consecutive days. The order of

the six blocks was counterbalanced as much as possible to avoid

systematic training effects and biases. Subjects performed

condition B, K and M in a different order (that is, subjects 1

& 4 started with condition B, subject 2 & 5 with condition K

and subject 3 & 6 with condition M). In addition, half of the

subjects (subject 1, 2 & 3) always started with a low-damped

spring (‘‘low’’) for a given condition, whereas the other half

(subject 4, 5 & 6) always started with a high-damped spring

(‘‘high’’) (see Table S1 for details).

Experimental Protocol
Subjects started with both hand and object aligned in the

starting position and were required to move both the hand and

object to the target position (see Figure 1). The target was always

15 cm from the start position and in a direction of either 222.5u,
0u or +22.5u (first training session) or only 0u (second training

session and test sessions) from straight ahead. Based on a pilot

experiment we varied the target size and speed criteria so that the

task difficulty (number of sessions to reach the 25% correct trials

criterion) was roughly similar across objects (see Table 1). Thus,

the radius of the target was 2 cm for low damping conditions B-

low, K-low and M-low and 1.5 cm for the high damping

conditions B-high, K-high and M-high respectively. To expose

subjects to the full dynamics of the object and to encourage

exploration, subjects completed a training session of 180 trials with

three different training directions (60 trials in each direction). One

of the three targets was displayed at random and the target had to

be reached within 1.560.2 s. To succeed in the task, the hand and

object both had to be within the target with a speed below

0.1 ms21 (low damping) and 0.02 ms21 (high damping) within the

duration limits. Feedback about success was given after every trial.

Every successful trial was rewarded by a point and for unsuccessful

trials the time above criterion was displayed. The first training

session was followed by a second training session in which only the

0u target was presented and the time window was reduced to

160.2 s over the course of 400 trials. Finally, subjects completed

the actual test session of 200 trials to the 0u target, which was

repeated until they reached 25% correct trials.

Optimal Feedback Control Models
Linear control model (point mass). In the first instance, we

used an optimal control model based on [5] and included the

dynamics of the different mass-spring-damper systems. The hand

was modeled as a mh~1 kg point mass, controlled by a pair of

orthogonal actuators along the x- and y-axes of the horizontal

plane. The two actuators were modeled as second order linear

muscle filters, with time constants t1~t2~40 ms.

Let po tð Þ, _ppo tð Þ, €ppo tð Þ, ph tð Þ, _pph tð Þ, €pph tð Þ be the two-dimensional

position, velocity, and acceleration of the object and hand

respectively, gh tð Þ, _ggh tð Þ, €ggh tð Þ be the second-order linear muscle

filters and its derivatives, and u tð Þ be the control signal. The time

variable runs from 0 to the final time T , which was chosen in

accordance with the experimental data (see Data Analysis). For

simulations in discrete time we used a time step of 10 ms. The

differential equations describing the dynamical system were as

follows:

mh€pph tð Þ~g tð Þ,

t1t2€ggh tð Þz t1zt2ð Þ _ggh tð Þ~u tð ÞzN u tð Þð Þdw tð Þ,

M€ppo tð ÞzB _ppo tð ÞzK po tð Þ{ph tð Þð Þ~0:

The control signal in the human motor system is contaminated

by signal-dependent noise [24–26], which was implemented using

w tð Þ corresponding to Gaussian noise variable and N u tð Þð Þ
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corresponding to control-multiplicative noise as follows:

N u tð Þð Þ~
s1u1 tð Þ s2u2 tð Þ

{s2u1 tð Þ s1u2 tð Þ

� �
:

The noise term s1~0:15 corresponds to noise in the same

direction as the control signal, whereas s2~0:05 corresponds to

noise in the direction orthogonal to the control signal.

The target location, which is the same for both object and hand,

is denoted by p� and hence the state of the system can be fully

captured by a fourteen-dimensional state vector:

x tð Þ~ po tð Þ; _ppo tð Þ; ph tð Þ; _pph tð Þ; gh tð Þ; _ggh tð Þ; p� tð Þ½ �:

In accordance with previous optimal control models, we used a

mixed cost function with weights defining the relative importance

of the different cost terms and added position and velocity

requirements for the object:

J~wo p� Tð Þ{po Tð Þk k2
zwv _ppo Tð Þk k2

� �
zwh p� Tð Þ{ph Tð Þk k2

zwv _pph Tð Þk k2
� �

zwe

ðT

0

u tð Þk k2
dt:

The five cost terms correspond to positional accuracy and

stopping at the target of both object and hand, respectively, and to

effort. wo and wh determine the relative importance of object and

hand. In the simulations, wh was set to 1 and wh~0:05 was used as

an overall fit to the data. The weight wv determines the

importance of coming to a complete stop relative to reaching

the target and wv~0:1 was used as in previous studies [5]. The

weighting for effort is a free parameter and we~10{8 was used for

all conditions as an overall fit to the data.

Note that values for mh, t1, t2, s1, s2 were chosen to be

compatible with the biomechanics of the arm and were not fit to

the data. They are the same as in previous optimal control models

[5].

Nonlinear control model (2-joint arm). We used an

adapted version of an iterative LQG method for locally-optimal

feedback control, which can solve optimal control problems for

non-linear systems [10,11,12]. We adapted the Matlab

implementation of the algorithm that is available at www.cogsci.

ucsd.edu/,todorov. The arm was modeled as a two-joint arm,

including the shoulder and the elbow.

Let h[R2 be the joint angle vector (h1: shoulder angle, h2: elbow

angle), M hð Þ[R2|2 the positive definite inertia matrix,

C h, _hh
� �

[R2 a vector representing centripetal and Coriolis forces,

B[R2|2 the joint friction matrix, and t[R2 the joint torque. As

before, 10 ms was used as the discrete time step. The differential

equations describing the dynamical system were as follows:

M h tð Þð Þ€hh tð ÞzC h tð Þ, _hh tð Þ
� �

zB _hh tð Þ~t tð Þ,

M€ppo tð ÞzB _ppo tð ÞzK po tð Þ{e h tð Þð Þð Þ~0:

where e hð Þ is the forward kinematic transformation of joint

angles to the position of the arm’s endpoint in Cartesian

coordinates. The joint angles at the beginning of the movement

were h1~h2~
p
2
. The same parameters for the arm model were

used as in [11].

The eight-dimensional state vector can be written as

x~ h, _hh, po, _ppo

h i
and the target position in joint coordinates is

denoted by h� tð Þ and in Cartesian coordinates by e h� tð Þð Þ
respectively.

Similar to the first model, we used a mixed cost function and

added position and velocity requirements for the object:

J~wo e h� Tð Þð Þ{po Tð Þk k2
zwv _ppo Tð Þk k2

� �
zwh h� Tð Þ{h Tð Þk k2

zwv
_hh Tð Þ
�� ��2

� �

zwe

ðT

0

u tð Þk k2
dt:

As before, the five cost terms correspond to positional accuracy

and stopping at the target for both object and hand, respectively and

to effort. wv~0:1 and wh~1 was used as in the previous model.

wo~10 and we~2|10{3 was used as an overall fit to the data.

For more details on the two optimal control models, see Text

S1.

Data Analysis
The last 25 successful trials for each condition and subject were

analyzed (that is a total of 150 trials for every condition). The start

of a trial was defined as the subject crossing a speed threshold of

0.01 ms21 and the data was aligned accordingly. Data was

recorded for at least 1.2 s, which was the slowest permissible

correct trial. The velocity data was filtered using a fifth order low-

pass Butterworth filter with a cut-off frequency of 8 Hz. For every

condition, positional and velocity data of the 150 trials (i.e. the last

correct 25 trials of each subject) were averaged and resampled at

100 Hz. This is acceptable as the movement durations of the 150

trials were very similar (see Figure 2 and 3). The final movement

time T of the mean trajectory was defined as the moment when all

four task criteria were fulfilled (i.e. when both hand and object

were within the target region with a speed below 0.1 ms21 (low

damping conditions) and 0.02 ms21 (high damping conditions))

and used in the optimal control simulations. The mean start and

end positions of the hand from the experiment were used in the

optimal control simulations. The linear optimal control simulation

was run 150 times and the average trajectory was computed. The

non-linear optimal control simulation is not stochastic and hence

was run only once. The mean hand trajectory (averaged across

subjects and trials) was calculated and R2-values for the average

position signal in x and y over time were computed for both

optimal control simulations (note that this variance measure does

neither assess subject-by-subject nor trial-by-trial variance):

R2~1{
VAR pexperiment

x {poptimal
x

� �
zVAR pexperiment

y {poptimal
y

� �
VAR p

experiment
x

� �
zVAR p

experiment
y

� �

To provide a null-model for the R2-analysis, we computed

optimal trajectories and R2-values for the non-adaptive versions of

the two optimal control models. For this, the object dynamics were
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removed from the state update equation as were position and

velocity terms for the object in the cost function. The same

parameter settings for the optimal control simulations were used

(i.e. T, noise characteristics etc.) and R2-values between the

optimal control predictions and the experimental data for each

condition was computed as before.

To analyze the performance of individual subjects, optimal

control simulations and R2-analysis was repeated for the last 25

correct trials of every subject. The same parameters were used

as before except we and wo were now fit for each subject

individually rather than across subjects (see Table S2 for fitted

values).

Learning for reaches to the 0u target was analyzed in the second

training sessions and the first test session that all subjects

completed. The first training session in which subjects moved to

three different target directions was excluded from the analysis to

rule out potentially confounding aftereffects from previous

conditions and increased variability due to movement to different

target directions. Additional test sessions that some subjects

required to reach the performance criterion (Table 1) were not

included in the analysis for comparability reasons. The 600 trials

were grouped into batches of 20 trials resulting in a total of 30

batches.

Movement duration was defined as the time elapsed between

exceeding a speed threshold of 0.01 ms21 at the beginning of the

trial until reaching a predefined speed threshold in the target area

for both hand and object (see Experimental Protocol). The data

was averaged across conditions and across subjects and compar-

isons between the first and the last batch were made using a paired

t-test.

To assess variability between subjects across the course of the

experiment, we computed the average Euclidian distance between

hand trajectories and between object trajectories. The start of a

trial was defined as the subject crossing a speed threshold of

0.01 ms21 and the data was aligned accordingly. To allow

comparisons between movements of different durations, we only

considered the first 1.2 s of the movement (as data was recorded

for at least 1.2 s). For every batch of 20 trials an average trajectory

was computed. The average Euclidian distance between a given

subject’s average trajectory and the average trajectory of every

other subject was calculated resulting in 5 comparisons for every

subject. The mean value across the 5 comparisons for every

subject and across the 6 conditions for every batch was taken,

resulting in one value per batch for every subject, and comparisons

between the first and the last batch were made using a paired t-

test.

To test the point-mass optimal control model on the results of

[13], we modeled the experimental data of a typical subject from

Experiment B and Experiment C of the original study. For the

final movement time T the same value from the fits in the original

paper was used. The weighting factor for effort was set to

we~10{8, the same as for the previous experiment. The relative

importance of hand to object was not fit to the data and simply set

to wo~1.

Supporting Information

Figure S1 Predictions of the linear optimal control model with

incomplete state observation and sensorimotor delay. A. The

actual and simulated hand paths for all 6 conditions (in the same

format as Figure 2 of the main article). The fits (black lines) of the

linear, point-mass optimal control model with incomplete state

observation and a sensorimotor delay of 100 ms. B. as in A, but for

the object motion (blue lines).

Found at: doi:10.1371/journal.pcbi.1000419.s001 (4.67 MB EPS)

Figure S2 Condition B-low: Actual and simulated hand paths

for individual subjects.The actual and simulated hand paths for

Condition B-low of all 6 subjects (in the same format as Figure 2 of

the main article). A. The fits (black lines) of the linear, point-mass

optimal control model, and B. the nonlinear, two-link arm optimal

control model, respectively.

Found at: doi:10.1371/journal.pcbi.1000419.s002 (3.86 MB EPS)

Figure S3 Condition B-high: Actual and simulated hand paths

for individual subjects. The actual and simulated hand paths for

Condition B-high of all 6 subjects (in the same format as Figure 2

of the main article). A. The fits (black lines) of the linear, point-

mass optimal control model, and B. the nonlinear, two-link arm

optimal control model, respectively.

Found at: doi:10.1371/journal.pcbi.1000419.s003 (3.45 MB EPS)

Figure S4 Condition K-low: Actual and simulated hand paths

for individual subjects.The actual and simulated hand paths for

Condition K-low of all 6 subjects (in the same format as Figure 2 of

the main article). A. The fits (black lines) of the linear, point-mass

optimal control model, and B. the nonlinear, two-link arm optimal

control model, respectively.

Found at: doi:10.1371/journal.pcbi.1000419.s004 (3.84 MB EPS)

Figure S5 Condition K-high: Actual and simulated hand paths

for individual subjects. The actual and simulated hand paths for

Condition K-high of all 6 subjects (in the same format as Figure 2

of the main article). A. The fits (black lines) of the linear, point-

mass optimal control model, and B. the nonlinear, two-link arm

optimal control model, respectively.

Found at: doi:10.1371/journal.pcbi.1000419.s005 (3.41 MB EPS)

Figure S6 Condition M-low: Actual and simulated hand paths

for individual subjects. The actual and simulated hand paths for

Condition M-low of all 6 subjects (in the same format as Figure 2

of the main article). A. The fits (black lines) of the linear, point-

mass optimal control model, and B. the nonlinear, two-link arm

optimal control model, respectively.

Found at: doi:10.1371/journal.pcbi.1000419.s006 (3.88 MB EPS)

Figure S7 Condition M-high: Actual and simulated hand paths

for individual subjects. The actual and simulated hand paths for

Condition M-high of all 6 subjects (in the same format as Figure 2

of the main article). A. The fits (black lines) of the linear, point-

mass optimal control model, and B. the nonlinear, two-link arm

optimal control model, respectively.

Found at: doi:10.1371/journal.pcbi.1000419.s007 (3.37 MB EPS)

Figure S8 Sensitivity analysis of condition B-low. The plots

depict how the goodness of fit changes when wv and the two fitted

parameters wo and we are varied from one tenth to ten times of

their fitted values. The values in between were sampled uniformly

on a logarithmic scale. A. Linear, point-mass optimal control

model. B. Non-linear, two-link arm optimal control model.

Found at: doi:10.1371/journal.pcbi.1000419.s008 (3.89 MB EPS)

Figure S9 Robustness to changes in we. Effect of we on the hand

paths for A. the linear model and B. the non-linear model.

Found at: doi:10.1371/journal.pcbi.1000419.s009 (4.57 MB EPS)

Figure S10 Robustness to changes in wo (linear model). Effect of

wo on A. hand paths and B. object paths predicted by the linear

model.

Found at: doi:10.1371/journal.pcbi.1000419.s010 (4.38 MB EPS)

Figure S11 Robustness to changes in wo (non-linear model).

Effect of wo on A. hand paths and B. object paths predicted by the

non-linear model.
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Found at: doi:10.1371/journal.pcbi.1000419.s011 (4.40 MB EPS)

Figure S12 Robustness to changes in wv (linear model). Effect of

wv on A. hand paths and B. object paths predicted by the linear

model.

Found at: doi:10.1371/journal.pcbi.1000419.s012 (1.74 MB EPS)

Figure S13 Robustness to changes in wv (non-linear model).

Effect of wv on A. hand paths and B. object paths predicted by the

non-linear model.

Found at: doi:10.1371/journal.pcbi.1000419.s013 (1.77 MB EPS)

Figure S14 Between-subject variability for individual conditions.

A. The average Euclidian distance of the hand trajectory (red lines)

for all 6 conditions with 1 s.e.m. across subjects. For condition K-

high, we also show the average Euclidian distance for only 5

subjects (black line) excluding subject 3 that performed this

condition differently (see Figure S5). B. as in A, but for the object

trajectory (blue lines).

Found at: doi:10.1371/journal.pcbi.1000419.s014 (1.30 MB EPS)

Figure S15 Optimal control simulations for Experiment B of

Dingwell et al. Hand-velocity profiles for each of the four test

conditions of Experiment B for a typical subject. The linear point-

mass optimal control model predicts that increasing movement

distance simply scales the velocity profile as is observed

experimentally. For faster movements a change from a uniphasic

to a triphasic velocity profile is predicted and seen in the

behavioural data. Thin grey lines correspond to individual trials,

thick grey lines represent the average of the thin grey lines, and

black lines denote the optimal control predictions of the linear,

point-mass model. Similar results were obtained for 13 of 14

subjects. (Figure S15 was adapted with permission from Figure 5

from Jonathan B. Dingwell, Christopher D. Mah, and Ferdinando

A. Mussa-Ivaldi. Experimentally Confirmed Mathematical Model

for Human Control of a Non-Rigid Object. J Neurophysiol 91(3):

1158-1170, 2004 (J704-3))

Found at: doi:10.1371/journal.pcbi.1000419.s015 (1.32 MB EPS)

Figure S16 Optimal control simulations for Experiment C of

Dingwell et al. Hand and object velocity profiles of Experiment C

for a typical subject manipulating three different objects (k - object

spring constant, m - object mass, f - resonant frequency). The

resonant frequency, independent of the particular set of spring

constant and object mass, determines the shape of the velocity

profile predicted by the linear, optimal control model. For both

object #1 (k = 60 Nm21; m = 1.5 kg; f = 1.0 Hz) and object #3

(k = 180 Nm21; m = 4.5 kg; f = 1.0 Hz), which both have the same

resonant frequency, the model predicts a triphasic hand velocity

profile also observed experimentally. Note that differences in the

shape of the velocity profile result from differences in the

movement duration. For object #2 (k = 180 Nm21; m = 1.5 kg;

f = 1.7 Hz) with a greater resonant frequency the model predicts a

uniphasic hand velocity profile also seen in the behavioural data.

Thin grey lines correspond to individual trials, thick grey lines

represent the average across trials, and black lines denote the

optimal control predictions of the linear, point-mass model.

(Figure S16 was adapted with permission from Figure 6 from

Jonathan B. Dingwell, Christopher D. Mah, and Ferdinando A.

Mussa-Ivaldi. Experimentally Confirmed Mathematical Model for

Human Control of a Non-Rigid Object. J Neurophysiol 91(3):

1158-1170, 2004 (J704-3))

Found at: doi:10.1371/journal.pcbi.1000419.s016 (1.41 MB EPS)

Table S1 Order of presentation of conditions. The order of

presentation of the different conditions was counterbalanced as

much as possible between subjects to avoid systematic biases. None

of the conditions appears twice in one column. Half of the subjects

always started with a low-damped spring for a given condition

(‘‘low’’) whereas the other half always started with a high-damped

spring (‘‘high’’).

Found at: doi:10.1371/journal.pcbi.1000419.s017 (0.02 MB PDF)

Table S2 we- and wo-values used for the optimal control

simulations fitted to individual subject trajectories.

Found at: doi:10.1371/journal.pcbi.1000419.s018 (0.02 MB PDF)

Text S1 Specifications of state update equations used in the two

optimal control models, the LQR with incomplete state observa-

tion and sensorimotor delay, the sensitivity analysis and the LQR

with model uncertainty and incomplete learning.

Found at: doi:10.1371/journal.pcbi.1000419.s019 (0.07 MB PDF)

Acknowledgments

The authors would like to thank the three anonymous reviewers for their

valuable comments and suggestions, Luc Selen for helpful discussions, Ian

Howard and James Ingram for technical assistance and corrections of the

final draft, and Jonathan Dingwell for providing the figures from his

original paper.

Author Contributions

Conceived and designed the experiments: AJN DAB DMW. Performed the

experiments: AJN. Analyzed the data: AJN DAB. Contributed reagents/

materials/analysis tools: AJN DAB DMW. Wrote the paper: AJN DAB

DMW.

References

1. Iriki A, Tanaka M, Iwamura Y (1996) Coding of modified body schema during

tool use by macaque postcentral neurones. Neuroreport 7: 2325–2330.

2. Aglioti S, Smania N, Manfredi M, Berlucchi G (1996) Disownership of left hand

and objects related to it in a patient with right brain damage. Neuroreport 8:

293–296.

3. Dingwell JB, Mah CD, Mussa-Ivaldi FA (2002) Manipulating objects with

internal degrees of freedom: evidence for model-based control. J Neurophysiol

88: 222–235.

4. Mah CD, Mussa-Ivaldi FA (2003) Evidence for a specific internal representation

of motion-force relationships during object manipulation. Biol Cybern 88:

60–72.

5. Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor

coordination. Nat Neurosci 5: 1226–1235.

6. Scott SH (2004) Optimal feedback control and the neural basis of volitional

motor control. Nat Rev Neurosci 5: 532–546.

7. Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7:

907–915.

8. Liu D, Todorov E (2007) Evidence for the exible sensorimotor strategies

predicted by optimal feedback control. J Neurosci 27: 9354–9368.

9. Diedrichsen J (2007) Optimal task-dependent changes of bimanual feedback

control and adaptation. Curr Biol 17: 1675–1679.

10. Todorov E, Li W (2003) Optimal control methods suitable for biomechanical

systems… in Medicine and Biology Society.

11. Li W, Todorov E (2004) Iterative linear-quadratic regulator design for nonlinear

biological movement systems. Proceedings of the First International Conference

on….

12. Todorov E, Li W (2005) A generalized iterative lqg method for locally-

optimal feedback control of constrained nonlinear …. American Control

Conference.

13. Dingwell JB, Mah CD, Mussa-Ivaldi FA (2004) Experimentally confirmed

mathematical model for human control of a non-rigid object. J Neurophysiol 91:

1158–1170.

14. Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics

during learning of a motor task. J Neurosci 14: 3208–3224.

15. Gandolfo F, Mussa-Ivaldi FA, Bizzi E (1996) Motor learning by field

approximation. Proc Natl Acad Sci USA 93: 3843–3846.

16. Goodbody SJ, Wolpert DM (1998) Temporal and amplitude generalization in

motor learning. J Neurophysiol 79: 1825–1838.

Optimal Object Manipulation

PLoS Computational Biology | www.ploscompbiol.org 14 June 2009 | Volume 5 | Issue 6 | e1000419



17. Morasso P (1981) Spatial control of arm movements. Exp Brain Res 42:

223–227.

18. Abend W, Bizzi E, Morasso P (1982) Human arm trajectory formation. Brain

105: 331–348.

19. Izawa J, Rane T, Donchin O, Shadmehr R (2008) Motor adaptation as a process

of reoptimization. J Neurosci 28: 2883–2891.

20. Flash T, Hogan N (1985) The coordination of arm movements: an

experimentally confirmed mathematical model. J Neurosci 5: 1688–1703.

21. Kawato M, Furukawa K, Suzuki R (1987) A hierarchical neural-network model

for control and learning of voluntary movement. Biol Cybern 57: 169–185.

22. Chen-Harris H, Joiner WM, Ethier V, Zee DS, Shadmehr R (2008) Adaptive

control of saccades via internal feedback. J Neurosci 28: 2804–2813.
23. Körding KP, Fukunaga I, Howard IS, Ingram JN, Wolpert DM (2004) A

neuroeconomics approach to inferring utility functions in sensorimotor control.

PLoS Biol 2: e330. doi:10.1371/journal.pbio.0020330.
24. Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor

planning. Nature 394: 780–784.
25. Jones KE, Hamilton AF, Wolpert DM (2002) Sources of signal-dependent noise

during isometric force production. J Neurophysiol 88: 1533–1544.

26. van Beers RJ, Haggard P, Wolpert DM (2004) The role of execution noise in
movement variability. J Neurophysiol 91: 1050–1063.

Optimal Object Manipulation

PLoS Computational Biology | www.ploscompbiol.org 15 June 2009 | Volume 5 | Issue 6 | e1000419


