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Abstract: There is an urgent need to fulfill future energy demands for micro and nanoelectronics.
This work outlines a number of important design features for carbon-based microsupercapacitors,
which enhance both their performance and integration potential and are critical for complimentary
metal oxide semiconductor (CMOS) compatibility. Based on these design features, we present
CMOS-compatible, graphene-based microsupercapacitors that can be integrated at the back end of
the line of the integrated circuit fabrication. Electrode materials and their interfaces play a crucial
role for the device characteristics. As such, different carbon-based materials are discussed and
the importance of careful design of current collector/electrode interfaces is emphasized. Electrode
adhesion is an important factor to improve device performance and uniformity. Additionally, doping
of the electrodes can greatly improve the energy density of the devices. As microsupercapacitors
are engineered for targeted applications, device scaling is critically important, and we present the
first steps toward general scaling trends. Last, we outline a potential future integration scheme for a
complete microsystem on a chip, containing sensors, logic, power generation, power management,
and power storage. Such a system would be self-powering.

Keywords: microsupercapacitors; energy storage; self-powering systems; IoT; sensor networks

1. Introduction

Electronic devices have been shrinking for decades in accordance with Moore’s law—providing
additional processing power and storage capacity with each technological iteration [1]. However, recent
trends in industry, as well as physical limits of silicon technology suggest that Moore’s law is nearing
its end [2]. In consequence, manufacturers are searching for ever more inventive ways to continue
technological progression, such as energy efficient architectures [3], three-dimensional (3D) stacking,
and the addition of multiple cores, to speed up processing [2,4]. Simultaneously, as devices continue to
have increased computational power, they experiencing a complimentary increase in functionality
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(diversification), which has come to be referred to as ‘more-than-Moore’ [2,5,6]. Diversification
involves the incorporation of a wide variety of sensor components into one device—typically through
a combination of system on chip (SoC) and system in package (SiP) solutions [6]. A consequence of
additional functionality is an increasing power requirement. Additionally, most applications using
more-than-Moore technologies, such as smart phones and wearable electronics, benefit greatly from
having access to energy storage, which is quickly recharged with insignificant degradation over the
device’s lifetime.

Batteries have been commonly incorporated for commodity storage applications [7–9]. However,
although they have high energy density, batteries suffer from poor cyclability [10] and slow recharging
rates. In contrast, a relatively novel device structure, the supercapacitor, offers excellent cyclability and
promises charge/discharge rates in the order of seconds [11] rather than hours—making supercapacitors
an attractive alternative to batteries for future more-than-Moore applications. Supercapacitors operate
primarily by employing a double-layer capacitance, meaning that ions collect along the electrode
surface and attract their charge pair from the electrolyte. Consequently, materials with a high surface
area can achieve a correspondingly high energy density. As such, there has been significant research
investigating both wearable and flexible electronic supercapacitor applications [12–16], as well as
microsupercapacitors (MSCs) for more-than-Moore applications.

One particularly attractive application involves the integration of supercapacitors with energy
harvesters. Such a device combination is potentially self-powering [17–20], as excess energy from the
harvester is stored in the supercapacitor for use at times of intermittent energy generation from the
harvester. A combined supercapacitor and harvester component can then be connected to sensor/digital
logic/memory systems and power those systems indefinitely.

Currently, supercapacitors have energy densities that are far lower than batteries. Typical commercial
batteries have energy densities of 140 Wh/kg at the battery pack level [21], while commercial
supercapacitors have reported energy densities that are as high as 30 Wh/kg [22]. Consequently,
a substantial portion of the research into supercapacitors has been devoted to increasing their energy
density. The best reported values for supercapacitors, that we are aware of, exceed 200 Wh/kg at the
cell level [23,24], which is comparable to the commercially available battery technology. There are a
number of ways to improve supercapacitor device performance which include asymmetric electrode
designs, hybrid supercapacitor/battery designs [25–29], electrolyte optimization [22,30,31], and novel
electrode materials [22,30,32–38] including chemical doping of electrodes [39]. Graphene-based
materials have shown a great promise as electrode materials, due to their high electrical conductivity,
large surface-to-volume ratio and excellent flexibility [36,40–42]. Therefore, a number of studies
have been devoted to examining graphene-based materials as electrode materials for supercapacitor
applications [43–50].

The present article continues investigations into the application of graphene-based materials for
supercapacitor applications, including a focused review and a report of our own design solutions to
key challenges. We outline recent developments while providing an overall context of MSC design
parameters and our current attempts at performance improvement. Figure 1 outlines three main areas
for improvement (electrode, electrolyte, and current collector) and the two primary MSC topologies
(planar, Figure 1a, and stacked, Figure 1b). We present our current progress at improving these areas
and provide additional paths for future investigation. Although there are a number of electrode
materials available [32], the primarily examined materials here are reduced graphene oxide (rGO) and
vertically grown graphene. The contact resistances between graphene and current collectors are also
critically important, as it impacts the energy losses of each charge/discharge cycle of the MSC. Hence,
this work provides an analysis of graphene/current collector contact resistances under the influence
of moisture, as electrodes will likely be immersed in liquid electrolyte and be subjected to moisture
during their lifetime. Additionally, the implementation of chemical doping into the electrode materials
is likely to improve the energy density of the supercapacitor, without any critical penalty on power
density and cyclability. Consequently, this work presents the potential options for doping electrodes
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with redox-active heteroatoms. Based on the device topology, the separator can play an important role,
hence, its importance is discussed. Geometric scaling of components is also examined and it represents
an important incremental step in effectively engineering the desired performance of the MSC.Sensors 2019, 19, x FOR PEER REVIEW 3 of 17 
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such as SiO2 or flexible substrates such as polydimethylsiloxane (PDMS). The integration of 
supercapacitors with CMOS technology, requires coating and patterning methods compatible with 
CMOS circuits, including temperatures below 450 °C. In this work, we primarily focused on MSC 
fabrication using a planar design (although we briefly elaborated on stacked configurations in a later 
section) and a fully CMOS-compatible process (Figure 2a). The process begins with a Si/SiO2 wafer 
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collectors are patterned on it, either through a bi-layer metal lift-off process or through a 
metal-etching post-blanket-wafer-evaporation (Figure 2a(ii)). Some current collector materials, such 
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metals tend to migrate into the pin-holes in the insulating passivation layers—short circuiting the 
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Figure 1. Schematic of a microsupercapacitors (MSCs)—planar (a) and stacked (b)—and its design
parameters. There are 3 primary areas for performance improvement—electrolyte, electrode, and
current collector. Each of these areas have 3 subset groups for improvement. This work aims to provide
an overview of each area and subset group.

2. Materials and Methods

2.1. Planar Microsupercapacitor Fabrication

MSCs can be designed and fabricated in various ways, depending on their target application [35].
For example, flexible electronics requires foldable MSCs, which must demonstrate a stable performance
under strain [51,52]. Several manufacturing approaches, such as spray coating [53,54], electrophoretic
deposition [55,56], and laser patterning of thin-film electrodes [57–59], have been used to coat
electrode materials onto a wide variety of target substrates (standard CMOS substrates such as
SiO2 or flexible substrates such as polydimethylsiloxane (PDMS). The integration of supercapacitors
with CMOS technology, requires coating and patterning methods compatible with CMOS circuits,
including temperatures below 450 ◦C. In this work, we primarily focused on MSC fabrication using
a planar design (although we briefly elaborated on stacked configurations in a later section) and a
fully CMOS-compatible process (Figure 2a). The process begins with a Si/SiO2 wafer (Figure 2a(i))
which could in principle also be a wafer with prefabricated CMOS circuits. Current collectors are
patterned on it, either through a bi-layer metal lift-off process or through a metal-etching post-blanket-
wafer-evaporation (Figure 2a(ii)). Some current collector materials, such as Au or Pd, require a
diffusion barrier layer between them and an insulating substrate, as some metals tend to migrate into
the pin-holes in the insulating passivation layers—short circuiting the device.

Electrodes can either be deposited or grown on the substrate, depending on the choice of the
material. Techniques such as doctor-blade coating and spin-coating are effective in covering the entire
wafer surface for materials such as carbon nanotubes (CNTs), reduced graphene oxides (rGOs), carbon
nanofibers (CNFs), and activated carbons (ACs). Growth of CNTs, CNFs, and vertical graphene (VG)
is also possible on the wafer (Figure 2a(iii)). Each method has its own advantages and disadvantages.
For example, spin-coating is challenging, both for achieving a strong adhesion of the electrode to the
substrate and to obtain a uniform coating. Likewise, direct growth on pre-patterned substrates is
typically challenging, due to the uneven temperature distribution across the surface. In this work,
we focus on spin-coated rGO and direct growth of VG. After the electrode deposition, a metal, such as
Al, is evaporated onto the electrode to act as a hard mask (Figure 2a(iv)). The exposed areas of the
electrode are then etched using an O2-reactive ion-etching (Figure 2a(v)), followed by a removal of the
hard mask (Figure 2a(vi)). Lastly, an electrolyte is drop-cast onto the surface of the MSC.
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Figure 2. (a) Schematic CMOS compatible process for MSC fabrication. (b) Optical micrograph of
the fabricated intedigitated reduced graphene oxide (rGO) electrodes on Au/Ti current collectors.
(c) Graphical SEM image of vertical graphene on a 50 mm diameter Si/SiO2 wafer with Au/Ti collectors.
(d) SEM image of rGO on Fe/Ti/Au current collectors. (e) Electrochemical test setup of fabricated
rGO-MSCs with H3PO4/polyvinyl alcohol (PVA) electrolyte.

2.2. Electrode Materials

As previously mentioned, to be compatible with the top-down approach for microsupercapacitor
manufacturing, the active electrode, collector, and separator materials must be deposited onto the
surface of wafers. The deposition of the electrode material can be achieved through two different
strategies, i.e., spin-coating and a direct growth of materials [17,36,44]. For the spin coating route, stable
inks containing supercapacitor active materials must be prepared. To this end, we have successfully
demonstrated graphene oxide (GO) and carbon nanotubes (CNTs). For the direct growth, we have
uniformly grown vertical graphene (VG) on wafer surfaces. Representative SEM images of the
respective investigated electrode approaches are shown in Figure 3.

Sensors 2019, 19, x FOR PEER REVIEW 4 of 17 

 

Figure 2. (a) Schematic CMOS compatible process for MSC fabrication. (b) Optical micrograph of the 
fabricated intedigitated reduced graphene oxide (rGO) electrodes on Au/Ti current collectors. (c) 
Graphical SEM image of vertical graphene on a 50 mm diameter Si/SiO2 wafer with Au/Ti collectors. 
(d) SEM image of rGO on Fe/Ti/Au current collectors. (e) Electrochemical test setup of fabricated 
rGO-MSCs with H3PO4/ polyvinyl alcohol (PVA) electrolyte. 

Electrodes can either be deposited or grown on the substrate, depending on the choice of the 
material. Techniques such as doctor-blade coating and spin-coating are effective in covering the 
entire wafer surface for materials such as carbon nanotubes (CNTs), reduced graphene oxides 
(rGOs), carbon nanofibers (CNFs), and activated carbons (ACs). Growth of CNTs, CNFs, and 
vertical graphene (VG) is also possible on the wafer (Figure 2a(iii)). Each method has its own 
advantages and disadvantages. For example, spin-coating is challenging, both for achieving a strong 
adhesion of the electrode to the substrate and to obtain a uniform coating. Likewise, direct growth 
on pre-patterned substrates is typically challenging, due to the uneven temperature distribution 
across the surface. In this work, we focus on spin-coated rGO and direct growth of VG. After the 
electrode deposition, a metal, such as Al, is evaporated onto the electrode to act as a hard mask 
(Figure 2a(iv)). The exposed areas of the electrode are then etched using an O2-reactive ion-etching 
(Figure 2a(v)), followed by a removal of the hard mask (Figure 2a(vi)). Lastly, an electrolyte is 
drop-cast onto the surface of the MSC.  

2.2. Electrode Materials 

As previously mentioned, to be compatible with the top-down approach for microsupercapacitor 
manufacturing, the active electrode, collector, and separator materials must be deposited onto the 
surface of wafers. The deposition of the electrode material can be achieved through two different 
strategies, i.e., spin-coating and a direct growth of materials [17,36,44]. For the spin coating route, 
stable inks containing supercapacitor active materials must be prepared. To this end, we have 
successfully demonstrated graphene oxide (GO) and carbon nanotubes (CNTs). For the direct growth, 
we have uniformly grown vertical graphene (VG) on wafer surfaces. Representative SEM images of 
the respective investigated electrode approaches are shown in Figure 3.  

 

Figure 3. SEM images of (a) rGO, (b) carbon nanotubes (CNT), and (c) a vertical graphene (VG) layer 
as electrode materials on an SiO2 surface. Insets show higher magnification of the respective sample. 
Raman spectroscopy images of each material are shown in (d), (e), and (f), respectively. 

Figure 3. SEM images of (a) rGO, (b) carbon nanotubes (CNT), and (c) a vertical graphene (VG) layer
as electrode materials on an SiO2 surface. Insets show higher magnification of the respective sample.
Raman spectroscopy images of each material are shown in (d), (e), and (f), respectively.
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Additionally, Raman spectra of rGO, CNT, and VG are shown in Figure 3d, e, and f, respectively.
Two fundamental vibrations can be found for rGO, as shown in Figure 3d. The D band originated from
a breathing mode of j-point photons of A1g symmetry, and the G band is from first-order scattering of
E2g phonons by sp2 carbon [60], as well as C–C stretching [61]. The intensity ratio of G to D bands
(IG/ID) is correlated with the amount of defects in graphitic materials [62]. The ratio is calculated to
be 1.10 for rGO and is comparable to other reported rGO materials [63]. Raman spectrum of CNTs is
shown in Figure 3e. D, G, and G’ bands can be recognized at about 1327, 1594, 2631 cm−1, respectively.
Noticeably, the G band is split into G+ and G– bands, attributed to a slight carbon sheet curvature and
is considered to be a signature of CNTs [48]. The ID/IG ratios is 0.23, indicating a relatively low defect
concentration for the CNTs. Figure 3f displays typical features of VG—besides the D and G bands, a
secondary D (2D) band is observed at about 2648 cm−1, and a G + D band [64] at around 2913 cm−1.
The ID/IG ratio is about 1.43 for the VG used in this work, comparable to previous reports [65].

2.2.1. Graphene Oxide (GO)

Highly concentrated single layer GO solution was purchased from Graphene Supermarket.
The commercial GO solution is prepared through a modified Hummers method by reacting graphite
with a mixture of potassium permanganate (KMnO4), concentrated sulfuric acid (H2SO4), and sodium
nitrate (NaNO3). The oxygen-containing surface functional groups have a high affinity to water
molecules, therefore, GO is hydrophilic and ‘dispersible’ in water. The flake size of GO ranges from 0.5
to 5 µm, with a single layer GO content of over 80%. The purchased water-based ink has a concentration
of 6.2 g/L and was later diluted to 3 g/L, by adding deionized water.

Due to the insulating nature of GO caused by the disrupted sp2 bonding network, a reduction
step is required to recover most of the properties of graphene. GO reduction can be done through
chemical, thermal, or electrochemical means. In the present study, the GO was thermally or chemically
reduced. Besides reduction of oxygen-containing groups, exfoliation of stacked GO occurs at a high
temperature, due to gas (e.g., CO2) production—improving the surface area [66].

2.2.2. Carbon Nanotubes (CNTs)

CNTs have a narrow distribution of size (diameter) in the nanometer range, a highly accessible
surface area, high conductivity, and stability. These features are promising for supercapacitor
applications. However, CNTs tend to form large agglomerates, making the processing and stabilization
of CNT-containing inks for spin-coating challenging. To counter this problem, external energy needs
to be supplied to overcome the internal forces holding the aggregates together. Moreover, after the
CNTs detach from the aggregates, there is a possibility of re-agglomeration. Therefore, a suitable type
of surfactant is needed to stabilize them in water-based solutions.

In the present study, the CNT dispersions were prepared according to a previous work [67].
In general, 30 mg of CNTs was dispersed in 15 mL of water. The dispersion was prepared by first
stirring the CNTs with a 7 mL water at 90 ◦C in a water bath, for 1 h, followed by 20 min sonication to
increase the energy for de-agglomeration. Afterwards, cetyltrimethylammonium bromide (CTAB),
which was used as a surfactant to prepare a stable dispersion, was added in an 8 mL solution form.
By keeping the mixture at 90 ◦C for another 1 h under constant stirring and 20 min of sonication,
the dispersion was centrifuged to remove the undispersed CNTs.

2.2.3. Vertical Graphene (VG)

Horizontal graphene has poor out-of-plane conductivity and a limited accessible area for capacitive
energy storage, thereby, limiting its performance in microsupercapacitors. In contrast, vertical graphene
has a high out-of-plane electrical conductivity, large surface-to-volume ratio, and an open network
structure with graphene-like flakes oriented perpendicularly to the substrate. The vertical arrangement
was beneficial for capacitive energy storage, due to a high-ion diffusivity and ion accessibility.
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In this work, we implemented a plasma-enhanced chemical vapor deposition (PECVD) process to
grow VG. Hydrogen, argon, and acetylene gases were used as a reducing agent, carrier gas, and carbon
source, respectively, for the growth. The wafer substrate was heated up to 775 ◦C under argon and
hydrogen, and then acetylene was introduced to grow the VG for 10 min under an 80 W direct
current plasma.

3. Results

3.1. Electrode Adhesion

Spin-coated electrode materials can suffer from issues related to poor adhesion to the wafer
substrate and current collectors. These issues are two-fold. First, the material deposited through
spin-coating is non-uniform. The thickness of the fabricated electrodes varies substantially. This leads
to an uneven device performance across devices on the wafer. Second, the fabrication of MSCs involves
submersion of the wafer into various developers. If the electrodes do not adequately adhere to the
surface, the process leads to a loss of electrode material. This eventually leads to a poor device
manufacturing yield. There are two main causes for these issues. The substrates are typically Si wafers
covered with an insulating thermally grown thin-film of SiO2. On top of this, metal current collectors
are deposited and patterned. The current collector and SiO2 surfaces typically do not have the surface
roughness necessary to ensure a reliable adhesion of the electrode flakes onto the surfaces.

Use of hydrophilic nanoparticles provides higher surface roughness on the substrate. Studies
have demonstrated that the use of Fe-nanoparticles fabricated by evaporation and annealing of a 4 nm
Fe layer at 600 ◦C affects the adhesion and uniformity of the spin-coated electrodes [10]. Figure 4a
shows the atomic force microscopy (AFM) profiles of the Fe and bare SiO2 surfaces on 1 cm2 chips
and the optical micrograph of the subsequent spin-coated wafer. The Fe surface demonstrates an
average roughness of 2.1 nm, while the SiO2 surface has a roughness of only 0.28 nm. The surface
on the roughened wafer is completely covered with a pink hue, while the non-roughened wafer is
covered only in some areas. Figure 4b shows the percentage coverage of the spin-coated electrodes on
different surfaces (percentages calculated based on optical microscopy of the surfaces). The surface with
nanoparticles demonstrates the highest coverage, whereas the SiO2 (control) substrate has the lowest
coverage on the entire wafer. The experiments performed include the spin-coating on an un-roughened
surface (control group in red), a roughened surface without current collectors (blue), a roughened
surface with Ti/Au current collectors (yellow), and 3 roughened surfaces with Ar plasma bombardment
as a post-treatment to attempt to further enhance roughening. Ar post-treatments were attempted at
durations of 3, 6, and 10 minutes (teal, grey-blue, and purple, respectively). The experiments pertaining
to coverage demonstrate that the use of Ar ions to further roughen the surface proves counter intuitive,
as they reduce the surface roughness and, thereby, the percentage coverage of the spin-coated electrode
material on the entire wafer. Furthermore, increased roughness leads to a larger capacitance of the
MSCs. Figure 4c shows the cyclic voltammograms of the roughened and non-roughened (Si/SiO2/Ti-Au
surfaces) MSCs and clearly indicates a larger charge storage for the roughened devices. The capacitance
for the MSCs was calculated from the cyclic voltammetry measurements using C = Q

(2∗∆V)
where

Q is the total charge accumulated over a ∆V voltage potential. The factor of 2 in the denominator
comes from the average of the charging and the discharging area of the current curves. The areal
capacitance (CA) of an individual device was calculated by CA = C/A, where A is the area of the MSC.
Most of the devices fabricated on the roughened surfaces demonstrate a 1.5x improvement in the areal
capacitance across all scan rates, from 0.1 V s−1 to 5 V s−1. A large capacitance directly translates into
a higher energy and power densities for the roughened MSCs, as shown in Figure 4d. The energy
density is calculated from E = 1

2 CA∆V2 and the power density is acquired from P = E
t , where t is the

discharge time. Thus, enhancing the surface roughness through nanoparticle deposition can improve
the performance of MSCs (regardless of device topology), make the fabrication steps more stable, and
lead to a greater device yield with a uniform controllable performance.
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3.2. Electrode Doping for Performance Enhancement

Chemical doping of carbon-based nanomaterials with heteroatoms (B, N, O, S, P) has
attracted tremendous attention due to their improved physicochemical properties and better
energy density performance compared with undoped samples [68]. Among them, nitrogen-doped,
carbon-based nanomaterials have shown superior electrochemical performances as electrode materials
in supercapacitors. In general, nitrogen doping leads to the formation of different nitrogen sites, such
as pyrrolic N, pyridinic N, and quaternary N/graphitic N [69]. This improves the active surface area
and thereby the wettability by introducing extrinsic defects in the carbon networks; contributes to the
surface faradaic reactions; and finally leads to an enhanced electrochemical performance. Chemical
treatment of graphene, for example, GO with reactive nitrogen sources such as urea, melamine,
polyaniline, or ammonia is an effective way to obtain nitrogen-doped rGO. As shown in Figure 5a,
we have prepared nitrogen-doped rGO through a hydrothermal process, by reacting GO with ammonia
solution at 180 ◦C, overnight. The content of nitrogen in the N-doped rGO could be up to 5.8%. As a
control, GO was also reduced to rGO using the same reaction condition, without the addition of
ammonia solution. Then, both rGO and nitrogen-doped rGO were employed as electrode materials in
a two-electrode configuration for supercapacitor measurements. Figure 5b shows the galvanostatic
charge–discharge (GCD) plot of rGO and nitrogen-doped rGO, at a current density of 0.5 A g−1.
The specific capacitance was calculated to be 98, 176 F g−1 for rGO, and N-doped rGO, respectively.
Compared with rGO, N-doped rGO showed an improved electrochemical performance due to the
introduction of nitrogen doping.
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Figure 5. (a) Preparation of nitrogen-doped rGO from graphene oxide (GO) and ammonia solution (as
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3.3. Geometric Scaling of Electrodes

The capacitance of an MSC is critically dependent on the total electrode surface area. Consequently,
the pore structure of the respective carbon-based material is important, as well as the geometric structure
of the collectors and the electrodes. In order to accurately engineer a device with the desired capacitive
behavior, we must also understand this scaling. Therefore, we have undertaken an extensive exploration
of device scaling principles for both the areal geometry of the collectors and the electrodes, as well as
the electrode height differences. This provides a good foundation for extrapolating how performance
would be improved through modification of the collector and electrode geometry. Figure 6a displays
the geometries investigated.
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Figure 6. (a) 2D structural variations of the collectors and carbon-based electrodes of the MSCs where
1F, 5F, etc. denotes the number of fingered pairs of the collectors and electrodes and ‘60’ represents
the spacing (in µm) between the fingers. (b) Measured average equivalent series resistance (ESR) for
different collectors and electrode geometries representing 19 devices and 57 measurements. (c) Specific
capacitance normalized for electrode height for two samples of different heights (3–4 µm for sample
A and 5–6 µm for sample B). (d) Total capacitance for the two samples of different electrode heights
(3–4 µm for sample A and 5–6 µm in B).
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Figure 6b represents the measured average equivalent series resistance (ESR) for different geometric
structures—suggesting that the collector and electrode geometry affects the power density. A total of 57
measurements were performed on 19 devices. Figure 6c and d are capacitance comparisons for the two
samples with different electrode heights. Sample B is a thicker deposited electrode layer than Sample A
(3–4 µm for sample A and 5–6 µm for sample B) and, thus, has a higher total capacitance. Significantly,
when normalized for the height (Figure 6c), the specific capacitance is relatively constant—meaning
that there is good penetration of the ions into the electrode and that the height scaled very well with the
predicted trends (Figure 6d). In summary, we find that both energy and power density are affected by
device geometry. This scalability of device properties is important for the design of future integrated
MSC systems, which must follow spatial design constraints while fulfilling performance specifications.
Without investigation into scaling, such device engineering would be unreliable. Here, we present the
first steps toward understanding those scaling principles.

3.4. Separator Considerations for Stacked MSC Configurations

The electrode materials and electrolytes are the most influential constituents of a high performance
MSC device. As a consequence, significant research has been focused on improving the capacitive
performance by exploring different kind of electrode and electrolyte materials and designs [31,44,70].
Further, for planar MSCs, the investigation of separators is unnecessary (as the separator is special),
while for stacked MSC configurations the separator is more important. Although planar MSCs are the
primary focus of this article, some discussion of separators and ways to improve them is merited for
providing a more complete overview of performance improving device metrics for both planar and
stacked configurations.

A separator, an electrically insulating but ionically conducting membrane, is placed between two
electrode materials of a device, in order to prevent electrode short circuit, while allowing an electrolyte
ion diffusion with minimal obstruction. Therefore, the separator holds a critical role to suppress the
failure of the MSC and to ensure a safe operation, which is especially important for applications such as
medical devices. In addition, the separator could also make a significant difference for the MSC device
performance by means of certain characteristic properties, such as thickness, porosity, wettability,
chemical, and thermal stability. Ideally, a separator should hold certain properties as listed below [71]:

• Thickness: It should be as thin as possible without compromising mechanical stability or
electrical reliability.

• Chemical stability: It should not react with the electrodes or the electrolyte under any
circumstances. Otherwise, separator membrane degradation will compromise the reliability of
the MSC device.

• Porosity: Porosity determines the amount of electrolyte the separator can hold in its pores to
facilitate better ionic conductivity. At the same time, a highly porous separator might degrade
under the influence of electrolytes. The standard porosity of typical separators is about 40%.

• Pore Size: Pore size should be in accordance with the pore size of the electrodes. For better
performance, the ion size of the electrolytes should also be taken into account. In practice,
separator membranes with sub-micron pore size are sufficient.

• Wettability: The separator should be easily wetted by aqueous electrolyte (hydrophilic) or
non-aqueous electrolyte (hydrophobic) and should reliably hold the electrolyte for a very long time.

• Permeability: The presence of the separator should not influence the characteristics of the
electrolyte. The loss of ionic conductivity can be expressed with a parameter called the Macmulin
number. This is calculated as the ratio between the resistance of electrolyte in presence of a
separator and the resistance of a pristine electrolyte. The Macmulin number of practical separators
is of the order 10–12. Homogeneous composition of the separator material is also important to
achieve an improved permeability.
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We carried out a comparative electrochemical study of supercapacitors containing activated carbon
(AC) electrodes, 1-ethyl-3-methylimidazolium acetate (EmImAc) ionic liquid electrolyte, and three
different separators—(1) an electrospun polyvinylpyrrolidone (PVP) membrane with a thickness of
90 µm; (2) a commercially available glass fiber (GF) with a thickness of 200 µm; and (3) a Celgard
membrane with a thickness of 25 µm. The AC electrode materials were synthesized according to
the procedure mentioned in [72]. The supercapacitor test device was prepared with a two-electrode
Swagelok cell containing a SS316 current collector. Three different electrochemical measurements were
conducted—(1) GCD, (2) electrochemical impedance spectroscopy (EIS), and (3) open circuit voltage
(OCV) decay. All electrochemical measurements were conducted at room temperature with a Gamry
Reference 3000AE potentiostat/galvanostat.

Figure 7a illustrates the GCD plots of the supercapacitors at a current density of 0.5 A g−1.
All curves followed a triangular shape representative of a typical capacitive behavior. Longer charging
and discharging times for the PVP-containing supercapacitor demonstrated a superior performance
as compared to the commercial separators. As a consequence, the specific capacitance at 0.5 A g−1

was calculated to be 99 F g−1 for the PVP-containing MSC while it was 82 and 52 F g−1 for the
MSCs-containing GF and Celgard, respectively. The specific capacitance was calculated according
to the equations mentioned in [72]. Figure 7b shows the variation of the specific capacitance over
time for the three different separators. Accordingly, a rate capability (capacitance at 10 A g−1 relative
to 0.5 A g−1) was calculated to be 60% for the PVP, compared to 62% and 49% for the GF and
Celgard-containing MSCs, respectively. Figure 7c–e display the SEM images of the PVP, Glass fiber,
and Celgard separators, respectively.
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Figure 7. Measurements of supercapacitor devices including (a) GCD plots and (b) capacitance
variations at different current densities. The measurements were done on an MSC with an AC electrode,
a 1-ethyl-3-methylimidazolium acetate (EmImAc) ionic liquid electrolyte, and three different separators.
(c–e) SEM images of polyvinylpyrrolidone (PVP), Glass fiber, and Celgard separators, respectively.

Figure 8 shows an electrochemical impedance spectroscopy graph (Nyquist plot), which was used
to extract the equivalent series resistance (ESR) values of the devices (first intersection of the semi-circle
in the X-axis represents the ESR). The ESR of the PVP-containing supercapacitor is smaller (0.7 Ω cm2),
as compared to the GF- and Celgard-containing supercapacitors, 2.2 and 3.6 Ω cm2, respectively. This
was due to the good wettability and excellent porosity of the electrospun PVP separator membrane.
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The wettability of the separators were observed during electrolyte injection to be in the decreasing
order for PVP, GF, and Celgard, respectively. Figure 8b shows the OCV decay (self-discharge) behavior
of the MSCs. The voltage retention at the end of a one-hour interval was calculated to be 70% for the
PVP-containing supercapacitor and 61% and 36% for the supercapacitors-containing GF and Celgard,
respectively. In order to observe the wettability, a tentative contact angle measurement was carried out
by injecting the EMIM Ac electrolyte in all three different separators. Figure 8c–e show the contact
angle of the Celgard, Glass fiber, and PVP separators, respectively. For Celgard, the contact angle was
measured to be 68◦ after 30 seconds of pouring the electrolyte droplet. The contact angles for Glass
fiber and PVP separators were 46◦ and 45◦, respectively, after just 3 seconds of pouring the electrolyte
droplet and most of the electrolytes were absorbed by the end of 10 secs. Therefore, both the Glass
fiber and PVP separators have superior wettability than the Celgard separator.
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Figure 8. (a) Nyquist plot of the MSCs (same devices as in Figure 7). (b) Open circuit voltage (OCV)
decay over time. The measurements used an AC electrode, 1-ethyl-3-methylimidazolium acetate
(EmImAc) ionic liquid electrolyte, and three different separators. (c–e) The optical images used for the
preliminary contact angle measurements of PVP, Glass fiber, and the Celgard separators, respectively.

Based on the above measurement results, electrospun PVP membranes could be considered as a
promising separator material for MSCs. This is significant as electrospinning is a potentially attractive
deposition method for the realization of MSCs based on stacked devices configurations. However,
further material characterizations are required to fully understand the improved capacitive performance,
compared to the commercial separators—as well as the development of more comprehensive device
manufacturing schemes.

3.5. Electrode/Current Collector Contact Resistance

Contact resistance is a critically important feature in any microscale device [73,74]. For MSCs,
the contact resistance between the electrode and current collector is important because it will contribute
to energy losses during charging and discharging. This will affect the actual energy density of the
device as well as the power density. In order to characterize and engineer a good electrical contact
between carbon-based electrode materials and the current collector, we have fabricated transmission
line model (TLM) characterization devices to evaluate the contact resistance between gold contacts and
chemical vapor deposited (CVD) graphene, VG and rGO, respectively.
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A TLM device consists of multiple gold electrodes of various spacing that are placed on an
insulating substrate (inset of Figure 9a). A patch of graphene covers the electrodes and forms an
electrical connection between the electrodes. The electrical resistance between two neighboring
electrodes is composed of the resistance of the intermediate graphene patch and the contact resistance
between graphene and gold in both contact areas. To extract the contact resistance, the measured
resistance between two neighboring electrodes is plotted against the respective electrode spacing.
The contact resistance is derived by extrapolating the residual resistance at zero contact-spacing.
In addition, multiplication of the width of the graphene patch with the slope of the linear fit yields the
sheet resistance of the intermediate graphene patch. As an example, Figure 9a shows the extraction of
contact resistance (Rc) and sheet resistance (Rs) of CVD graphene patches on gold contacts for three
different TLM devices. Here, Rc averages to 32.4 ± 18.4 Ω per contact and Rs to 32.4 ± 18.4 Ω per
contact and Rs to 556.2 ± 7.6 Ω/square.

Another important feature is the influence of moisture as well as the presence of the electrolytes
on the contact resistance of the device. Moisture has been shown to have a strong influence on
electrolyte behavior [75] but there are no studies, to our knowledge, that specifically address the
influence of moisture on the contact resistance in MSC devices. Only one study examined the influence
of moisture on contact resistance in graphene devices [76]. As such, this work continues the progress
already made in examining contact resistances between the electrode material and the gold current
collectors, and provides a preliminary investigation of the influence of low levels of moisture on the
contact resistance.

The same TLM devices with CVD graphene patches as in the inset of Figure 9awere measured at
various humidity levels. The relative changes in Rc and Rs were plotted against the relative humidity
(RH) (Figure 9b). The sheet resistance showed a significant increase of 0.6% when decreasing the RH
from 20%RH to 10%RH whereas the contact resistance remained unaffected at these moisture levels.
Note, both figures were extracted simultaneously from the very same measurement cycle. There is
much room for future investigation (higher moisture concentration, in situ measurements of contact
resistance in various electrolytes). However, this work aimed to provide some initial indication of
graphene’s insensitivity to moisture and establish a foundation for future investigations to build upon.
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Figure 9. (a) Extraction of contact resistance of three transmission line model (TLM) devices with
chemical vapor deposited (CVD) graphene patches on gold contacts. Extrapolating the linear fit (solid
lines) of the measured resistance between the neighboring electrodes yields the contact resistance at
the graphene/metal interface. Multiplication of the slope of the fit by the graphene patch results in
the graphene sheet resistance. The inset displays a colorized scanning electron microscopy (SEM)
photograph of a TLM device with gold contacts (yellow) and covering a graphene patch (blue).
(b) Relative change in contact resistance and sheet resistance for variation in relative humidity (RH).
Solid lines are the average of the three devices with 1σ error bars.



Sensors 2019, 19, 4231 13 of 17

4. Discussion

As previously mentioned, the primary application for MSCs is in on-chip energy storage
components integrated alongside micro-energy harvesters [17–20]. For the overall device integration,
the MSC would likely be built on top of a traditional CMOS stack containing digital logic, including
power management circuitry and rectifiers. Energy harvesters and sensors could be fabricated in
a back end of the line (BEOL) process and connected to power the CMOS stack through metal
vias. In one possible integration scheme, MSCs could be integrated on-chip with other application
specific integrated circuit (ASIC) components using a wafer bonding process—forming a self-powering
microsystem (schematic of potential future integration scheme displayed in Figure 10). Such a design
has, to our knowledge, not been integrated into a single on-chip microsystem.
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Figure 10. Schematic of a potential future self-powering system consisting back end of the line (BEOL)
integration of an microsupercapacitors (MSC) and harvester with application specific integrated circuit
(ASIC) components.

5. Conclusions

We presented a number of design investigations and improvements for the realization of
high-performance MSCs that can be integrated with CMOS-based integrated circuits. The proposed
MSCs feature carbon-based electrode materials and can be integrated at the back end of the line of the
integrated circuit fabrication to realize microsystems for future self-powering devices. Several critical
design features are highlighted that influence both performance and integration potential. These
include careful design of current collector and electrode interfaces to improve energy density, minimize
contact resistance, and improve adhesion and uniformity. We further propose a CMOS-compatible
manufacturing and integration scheme for realizing a fully on-chip, self-powering microsystem that
can benefit from the aforementioned improvements.
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