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OBJECTIVE—Wolfram syndrome 1 (WFS1) single nucleotide
polymorphisms (SNPs) are associated with risk of type 2 diabe-
tes. In this study we aimed to refine this association and
investigate the role of low-frequency WFS1 variants in type 2
diabetes risk.

RESEARCH DESIGN AND METHODS—For fine-mapping, we
sequenced WFS1 exons, splice junctions, and conserved noncod-
ing sequences in samples from 24 type 2 diabetic case and 68
control subjects, selected tagging SNPs, and genotyped these in
959 U.K. type 2 diabetic case and 1,386 control subjects. The
same genomic regions were sequenced in samples from 1,235
type 2 diabetic case and 1,668 control subjects to compare the
frequency of rarer variants between case and control subjects.

RESULTS—Of 31 tagging SNPs, the strongest associated was
the previously untested 3� untranslated region rs1046320 (P �
0.008); odds ratio 0.84 and P � 6.59 � 10�7 on further replication
in 3,753 case and 4,198 control subjects. High correlation be-
tween rs1046320 and the original strongest SNP (rs10010131)
(r2 � 0.92) meant that we could not differentiate between their
effects in our samples. There was no difference in the cumulative
frequency of 82 rare (minor allele frequency [MAF] �0.01)
nonsynonymous variants between type 2 diabetic case and

control subjects (P � 0.79). Two intermediate frequency (MAF
0.01–0.05) nonsynonymous changes also showed no statistical
association with type 2 diabetes.

CONCLUSIONS—We identified six highly correlated SNPs that
show strong and comparable associations with risk of type 2
diabetes, but further refinement of these associations will require
large sample sizes (�100,000) or studies in ethnically diverse
populations. Low frequency variants in WFS1 are unlikely to
have a large impact on type 2 diabetes risk in white U.K.
populations, highlighting the complexities of undertaking asso-
ciation studies with low-frequency variants identified by
resequencing. Diabetes 59:741–746, 2010

T
he post genome-wide association study era pre-
sents several challenges. These include fine-
mapping association signals to genes and/or
variants within the genomic regions of interest,

assessing the impact of low frequency variants (not tagged
in previous association studies) on diseases/traits, and
understanding the functional mechanisms behind genetic
associations.

WFS1 encodes wolframin (1,2), an endoplasmic reticu-
lum (ER) membrane protein with a role in ER calcium
homeostasis (3–5) and in the ER stress response (6,7).
Loss-of-function mutations in WFS1 cause Wolfram syn-
drome (MIM 222300), which includes young onset nonau-
toimmune insulin-dependent diabetes (8). Common single
nucleotide polymorphisms (SNPs) at WFS1 have recently
been shown to be reproducibly associated with type 2
diabetes risk in white European populations (9–11). How-
ever, the strongest associated SNP, rs10010131, is intronic
and is not associated with WFS1 expression in HapMap
lymphoblastoid cell lines (12), suggesting that it is tagging
a causal variant(s).

Given the impact of rare and common WFS1 variants on
Mendelian and common forms of diabetes, respectively,
WFS1 is an excellent candidate gene in which to look for
low frequency variants with intermediate effects on diabe-
tes risk. Furthermore, anecdotal evidence suggests in-
creased type 2 diabetes susceptibility in obligate carriers
of Wolfram syndrome mutations (13).

We aimed to refine the association between WFS1
common variants and type 2 diabetes by sequencing
exons, splice junctions, and conserved intragenic and
upstream noncoding regions in a subset of case (n � 24)
and control (n � 68) subjects from the Cambridgeshire
case-control study. We used these data to select tagging
SNPs to capture common (minor allele frequency [MAF]
�0.05) and nonsynonymous variants and genotyped these
tagging SNPs in two U.K. case-control studies (total 959
case and 1,386 control subjects). Replication studies were
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conducted in four additional studies: two U.K., one Swed-
ish, and one Ashkenazi (total 3,753 type 2 diabetic case
and 4,198 control subjects). We also aimed to test for the
presence of independent type 2 diabetes association sig-
nals from low-frequency (MAF �0.05) putative functional
WFS1 variants by sequencing 1,235 type 2 diabetic case
and 1,668 control subjects from two U.K. case-control
studies.

RESEARCH DESIGN AND METHODS

The Cambridgeshire (14) (552 type 2 diabetic case and 552 control subjects),
European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk
(15) (417 case and 834 control subjects), Anglo-Danish-Dutch Study of
Intensive Treatment in People With Screen-Detected Diabetes in Primary Care
(ADDITION)/Ely (16,17) (926 case and 1,497 control subjects), and Exeter
(18–20) (601 case and 610 control subjects) studies comprise white U.K.
participants. The Ashkenazi study comprises 930 type 2 diabetic case and 461
control subjects of Ashkenazi Jewish origin (21). The Västerbotten study
comprises predominantly northern Swedish whites (1,296 type 2 diabetic case
and 1,412 control subjects) (11). The online appendix (available at http://
diabetes.diabetesjournals.org/cgi/content/full/db09-0920/DC1) describes the
cohorts in detail.
PCR and sequencing. PCR was performed on genomic DNA from Cam-
bridgeshire case-control participants or whole-genome amplified DNA from
ADDITION and Ely study participants. Fourteen primer pairs (sequences and
cycling conditions available upon request), designed using Primer3 software
(http://frodo.wi.mit.edu/primer3/), were required to amplify the eight WFS1

exons, including splice junctions, untranslated regions (UTRs), and selected
conserved regions. Coverage is shown in supplemental Fig. 1 in the online
appendix. PCR and bi-directional sequencing were performed using standard
conditions and following manufacturers’ protocols (supplemental Methods).
Sequencing reactions were run on ABI3730 capillary machines (Applied
Biosystems) and analyzed using an automatic SNP caller, ExoTrace (S.
Leonard, Wellcome Trust Sanger Institute, unpublished data). The results of
SNP calling were displayed and low-frequency variants were manually re-
viewed in a specific implementation of GAP4 (Staden Sequence Analysis
Package software). All regions produced usable sequences for �90% of
samples.
Tagging SNP selection. Details are provided in the supplemental Results and
supplemental Fig. 2. Linkage disequilibrium (LD) was calculated using Hap-
loview version 4.0 (http://www.broad.mit.edu/mpg/haploview), and pairwise
tagging SNPs were selected by Tagger using r2 � 0.8, force including
nonsynonymous variants.
Genotyping. Tagging SNPs were genotyped using the Sequenom iPlex
platform, whereas rs1046320 and rs7691824 were genotyped using TaqMan
MGB chemistry (Applied Biosystems, Foster City, CA) according to the
manufacturers’ instructions (conditions and primers available upon request).
Quality control. Variants were excluded if they departed from Hardy-
Weinberg equilibrium (P � 0.001) or had low call rates (n � 85%) and/or if
there was discrepancy in the call rate between case and control subjects (P �
0.001) (details provided in the online appendix).
Real-time PCR. The relative expression of rs1046320 alleles was assessed
using total RNA from 10 HapMap lymphoblastoid cell lines (12) heterozygous
for rs1046320 (six CEU, two YRI, and two CHN) and a TaqMan RNA-to-CT
2-Step Kit according to the manufacturer’s instructions (primers and probes
available upon request). Genomic DNA was used as a control.
Statistical analyses. Statistical analyses were conducted in StataSE 9.
Logistic regression was used to assess the contribution of individual SNPs
under a log-additive model (1 df) to risk of type 2 diabetes using study as a
categorical covariate. Log-likelihood ratio tests were used to assess whether
associated SNPs independently contributed to risk of type 2 diabetes by
comparing the log likelihood of a nested model (2 df) containing an associated
SNP and study with that of the full model (3 df) also containing the test SNP.
The difference in prevalence of type 2 diabetes in carriers versus noncarriers
of rare variants was analyzed using Fisher exact test. Power was calculated
using the Power and Sample Size Program (22) and Quanto version 1.1.1
(http://hydra.usc.edu/gxe). Fixed-effects meta-analyses were performed using
the metan command, combining summary estimates (log odds ratios and
lower and upper CIs for each study), weighted using the inverse-variance
method. An expectation-maximization algorithm was used to estimate haplo-
type frequencies, and GENEBPM software was used to cluster haplotypes by
allelic make-up and risk of type 2 diabetes to obtain a Bayes’ factor (BF) in
favor of association (23).

RESULTS

WFS1 tagging SNPs are associated with type 2 diabe-

tes. Of 31 tagging SNPs, 24 passed quality control and
captured 81% of the common (MAF �0.05) and/or nonsyn-
onymous WFS1 variants in the Cambridgeshire case-con-
trol samples and 98% of the common WFS1 region variants
in HapMap CEU trios.

Eight SNPs were nominally associated with type 2
diabetes risk (P � 0.05) in a pooled analysis of Cam-
bridgeshire and EPIC-Norfolk studies (Table 1). The LD
between these eight SNPs (supplemental Table 1) and the
consistency of their effect size suggests that they are
linked to similar extents with the real causal allele(s).
However, we were unable to demonstrate that any of the
associated SNPs were contributing to type 2 diabetes risk
independently of the other seven (supplemental Table 2).
Replication of the rs1046320 association. In our data,
the strongest association with type 2 diabetes risk
(rs1046320, P � 0.008) mapped within a putative func-
tional region (3� UTR). We therefore genotyped it in four
further case-control studies—Exeter, Ashkenazi, ADDI-
TION/Ely, and Västerbotten studies (3,753 case and 4,198
control subjects)—to improve the accuracy of the effect-
size estimate and compare it with rs10010131, the stron-
gest SNP from the original study (10,11). In meta-analyses,
rs1046320 and rs10010131 demonstrated similar magni-
tudes of association with type 2 diabetes risk (OR 0.856
[95% CI 0.804–0.912], P � 1.25 � 10�6 and 0.854 [0.800–
0.912], P � 2.58 � 10�6, respectively) (Fig. 1). The high
correlation between these SNPs in our samples (r2 � 0.92)
suggests �100,000 samples would be required to have 80%
power to distinguish between their effects with a signifi-
cance level P � 10�3 (supplemental Fig. 4). In an assess-
ment of the possible function of rs1046320, we found no
difference in allele-specific expression in lymphoblastoid
cell lines from 10 heterozygous HapMap individuals (data
not shown).
Haplotype analysis. To test whether haplotypes tag the
causal variant(s) better than individual SNPs, we esti-
mated the frequency of haplotypes across 20 genotyped
SNPs (excluding three variants with MAF �0.01) in Cam-
bridgeshire and EPIC-Norfolk samples. We found nine
haplotypes with MAF �0.01 (supplemental Table 3) that
fell into two clusters according to allelic make-up and type
2 diabetes risk (supplemental Fig. 3). One cluster con-
tained haplotypes that are protective against type 2 diabe-
tes relative to the most common haplotype. There were six
SNPs (including rs10010131 and rs1046320) that partition
the two clusters entirely and, due to high LD between
them, were each sufficient to separate the clusters. When
the analysis was repeated with haplotypes made up of
each SNP in turn, we found the evidence in favor of
association was stronger for the single SNPs than for the
haplotypes. For the overall haplotype analysis, the esti-
mated log10 BF was 0.64, whereas for the single SNPs, the
strongest log10 BF was 1.07 for rs1046320. This suggests
that haplotypes made up of SNPs in this study do not tag
the causal variant(s) any better than any of the individual
SNPs. However, this does not preclude the possibility of
independent causal variants in the region that we cannot
tag with our SNPs (either pairwise or through the use of
haplotypes).
Imputation of nontagging SNPs. To increase coverage
in the region, we imputed missing genotypes at 66 addi-
tional loci (supplemental Methods) (Fig. 2). In this analy-
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sis, rs1046320 remained the most strongly associated SNP
in Cambridgeshire and EPIC-Norfolk studies, except for
the imputed intronic rs7691824. However, genotyping of
rs7691824 in Cambridgeshire and EPIC studies showed
that there were no carriers among our samples.

Deep sequencing summary. Sequencing of exons, splice
junctions, and conserved noncoding regions in 1,235 type
2 diabetic case and 1,668 control subjects from the Cam-
bridgeshire and ADDITION/Ely studies revealed 290 vari-
ants (supplemental Table 4). Of 250 rare (MAF �0.01)

TABLE 1
Association of WFS1 tagging SNPs with type 2 diabetes risk in a pooled analysis of Cambridgeshire and EPIC case-control studies

SNP
Nucleotide change

(major minor) Protein consequence MAF Odds ratio (95% CIs) P odds ratio*

rs13107806 C T Conserved upstream 0.427 0.90 (0.79–1.02) 0.11
rs10937714 T C Intron 1 0.212 0.93 (0.79–1.09) 0.35
rs4689391 A G Intron 2 0.423 0.90 (0.79–1.03) 0.11
rs752854 T C Intron 2 0.344 0.87 (0.76–1.00) 0.05

WFS1_3 C G Intron 3 0.051 0.89 (0.66–1.21) 0.46
rs4688989 C T Intron 3 0.402 0.86 (0.75–0.98) 0.03

rs5018648 G C Intron 4 0.412 0.85 (0.74–0.97) 0.01

rs10010131 G A Intron 4 0.398 0.87 (0.76–0.98) 0.02

WFS1_K193Q A C K193Q 0.004 1.00 (0.36–2.81) �0.99
rs13101355 C T Intron 5 0.4 0.85 (0.75–0.97) 0.02

rs7672995 G C R228R 0.316 0.84 (0.73–0.97) 0.02

rs6446482 G C Intron 6 0.405 0.87 (0.77–0.99) 0.03

rs12511742 G T Intron 6 0.072 0.93 (0.72–1.20) 0.58
rs3821943 T C Intron 7 0.457 0.91 (0.81–1.03) 0.15
rs1801212 A G I333V 0.28 0.90 (0.78–1.03) 0.14
rs35031397 C G L432V 0.004 1.10 (0.39–3.09) 0.86
rs1801208 G A R456H 0.046 1.25 (0.92–1.69) 0.15
WFS1_A559T G A A559T 0.005 0.66 (0.25–1.75) 0.40
rs2230719 C T A575A 0.076 0.92 (0.72–1.18) 0.51
rs734312 A G H611R 0.455 0.93 (0.82–1.05) 0.25
rs1802453 G A 3� UTR 0.089 0.93 (0.74–1.17) 0.54
rs1046320 A G 3� UTR 0.419 0.83 (0.72–0.95) 0.008

rs1046322 G A 3� UTR 0.119 1.01 (0.82–1.23) 0.95

This list excludes tagging SNP WFS1_S855P as the minor allele was only present in one case and one control subject and therefore could
not be analyzed. Bold text indicates significant P values. Bold italicized text highlights the strongest statistically associated SNP from the
original study cohorts described in Sandhu et al. (10) and the strongest statistically associated SNP in Cambridgeshire and EPIC case-control
fine-mapping studies (rs1046320). *Outcome of a logistic regression analysis.

Overall  (I-squared = 0.0%, p = 0.695)
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FIG. 1. Meta-analysis of rs1046320 in U.K., Ashkenazi, ADDITION/Ely, and Västerbotten case-control studies. The overall OR is 0.856 (95% CI
0.804–0.912), P � 1.25 � 10�6. Summary statistics from previously published work (11) show that rs10010131 has a comparable overall OR of
0.854 (0.800–0.912), P � 2.58 �10�6, in the same populations. ES, effect size.

K.A. FAWCETT AND ASSOCIATES

diabetes.diabetesjournals.org DIABETES, VOL. 59, MARCH 2010 743



changes, 94% were novel, demonstrating the value of deep
resequencing for identifying rare changes.
Analysis of variants with MAF <0.01. Given the sample
size, our study is underpowered to detect effects of each
rare variant tested individually. For example, 76 of the 82
rare, nonsynonymous variants have MAF �0.001, for
which we have only 25% power to detect an OR of �3. To
improve power, we collapsed rare (MAF �0.01) variants
together by comparing the prevalence of type 2 diabetes in
carriers versus noncarriers. We collapsed only nonsynony-
mous variants in the first instance, as their relative paucity
at higher MAFs in the population suggest they are enriched
for functional changes under negative selective pressure
(supplemental Fig. 5). However, there was no significant
increase in risk of type 2 diabetes in carriers compared
with noncarriers (OR 1.04 [95% CI 0.79–1.37], Fisher exact
test P � 0.79) (Table 2). Adding rare variants in con-
served noncoding sequences and TargetScan (http://
www.targetscan.org/)-predicted miRNA seed sequences
to the rare nonsynonymous changes made no material
difference (P � 0.67) (Table 2).

A comparative study of synonymous variants (MAF
�0.01), assumed to be functionally neutral, yielded similar
results (Table 2). Further exploratory analyses, including
examination of mutation load, PANTHER scores, and
combined analysis of rare and intermediate frequency
variants, also did not yield significant results (supplemen-
tal Results and supplemental Table 6).
Predicting variants with deleterious effects on pro-
tein function. To avoid diluting effects of rare (MAF
�0.01) nonsynonymous variants on disease risk by pool-
ing them with neutral nonsynonymous changes, we re-
stricted analysis to nonsynonymous changes most likely to
impact protein function. Variants were selected based on
three criteria 1) previous biochemical evidence that the
variant causes loss of wolframin function, 2) previous
genetic evidence for involvement in Wolfram syndrome,
and 3) predicted deleterious functional effects by three

programs: SIFT (http://sift.jcvi.org/), PolyPhen (http://
genetics.bwh.harvard.edu/pph/), and PANTHER (http://
www.pantherdb.org/tools/csnpScoreForm.jsp). Using these
criteria, we inferred 23 functionally important mutations
(supplemental Table 5), but carriers were at type 2 diabe-
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FIG. 2. The statistical strength of the association of WFS1 tagging (�) and imputed (E) SNPs in the context of estimated recombination rates
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TABLE 2
Number of case and control subjects carrying nonsynonymous,
synonymous, or inferred functional mutations with MAF �0.01
versus wild type

Types of variation (MAF �0.01) Cases Controls Total P

Nonsynonymous
Noncarriers 1,128 1,529 2,657
Carriers 107 139 246
Total 1,235 1,668 2,903 0.79

Nonsynonymous and variants in
predicted miRNA sites and
conserved noncoding
sequence*

Noncarriers 1,125 1,527 2,652
Carriers 110 141 251
Total 1,235 1,668 2,903 0.67

Synonymous
Noncarriers 1,173 1,596 2,769
Carriers 62 72 134
Total 1,235 1,668 2,903 0.37

Inferred mutations†
Noncarriers 1,189 1,605 2,794
Carriers 46 63 109
Total 1,235 1,668 2,903 �0.99

*Rare variants in predicted miRNA sites are in red italics in supple-
mental Table 4 and variants in conserved noncoding sequence are in
blue italics in supplemental Table 4. †Nonsynonymous variants with
MAF �0.01 and predicted functional based on previous biochemical
evidence that the variant causes loss of wolframin function, previous
genetic evidence for involvement in Wolfram syndrome, and pre-
dicted deleterious functional effects by web-based programs SIFT,
PolyPhen, and PANTHER.
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tes risk comparable with that of noncarriers (OR 0.99 [95%
CI 0.65–1.48], P � 0.99) (Table 2).
Analysis of variants with MAF 0.01–0.1. Two nonsyn-
onymous SNPs, V871M and R456H, had MAFs of 0.013 and
0.042, respectively. In single SNP analyses of pooled
Cambridgeshire and ADDITION/Ely studies, neither were
associated with type 2 diabetes (P � 0.13 and P � 0.25,
respectively).

DISCUSSION

We performed a comprehensive fine-mapping and low-
frequency variant analysis for WFS1, a locus associated
with type 2 diabetes risk (9–11). Using a sequencing,
SNP-tagging, and genotyping approach, we identified a
number of putative causal variants for type 2 diabetes
association. However, due to strong LD between the SNPs
within the candidate interval, we were unable to distin-
guish between their effects on disease risk. None of the
associated SNPs have obvious functional properties, and
real-time PCR revealed no difference in allele-specific
expression of rs1046320 (the strongest associated in this
study) in lymphoblastoid cell lines, suggesting this SNP is
unlikely to affect mRNA stability or processing in this
tissue. However, we cannot rule out rs1046320-associated
expression changes in other tissues.

Deep resequencing of WFS1 exons, splice junctions, and
conserved noncoding sequences in 1,235 type 2 diabetic
case and 1,668 control subjects revealed no statistically
significant differences in the cumulative frequency of rare
(MAF �0.01) nonsynonymous variants (P � 0.79). Given
that �8% of study participants carried at least one rare
nonsynonymous change, we had �80% power to detect
ORs �1.43 at P � 0.05. This study was therefore well
powered to detect previously reported effect sizes for rare
variants on complex traits (the average being OR 3.74)
(24). Restricting the analysis to those variants most likely
to be functional reduced the frequency of the exposure
(carrier status) to �4%, but retained �80% power to detect
ORs �1.65. Still, there were no statistical differences
between case and control subjects (P � 0.99), suggesting
rare variants in WFS1 do not have a large impact (ORs �2)
on type 2 diabetes risk. It is worth noting that our analyses
assumed all rare variants have the same direction of effect.
Our power to detect significant effects on type 2 diabetes
would have been reduced if the variants were a mixture of
protective and susceptibility alleles. Finally, our study had
�80% power to detect moderate effect sizes of intermedi-
ate-frequency SNPs V871M and R456H on risk of type 2
diabetes (ORs �1.93 and �1.45, respectively), though
neither were statistically associated with type 2 diabetes
(P � 0.13 and P � 0.25). Selecting case subjects enriched
for early onset/family history of the disease might have
increased our power to find rarer variants of slightly
higher penetrance that might segregate in the family.
However, this kind of analysis was not feasible in our
study, as we have no DNA from family members.

Our attempts to refine the WFS1 association signal
demonstrate that while high LD is useful for minimizing
the amount of genotyping required to discover a genetic
association, it can compromise attempts to further refine
the association signal. Studying populations with different
and/or weaker patterns of LD may help refine signals. For
example, the LD block spanning the WFS1 gene is more
fragmented in HapMap samples of African descent, and
correlation between SNPs is generally weaker (r2 � 0.204

between SNPs rs10010131 and rs1046320 in YRI HapMap
samples compared with r2 � 0.92 in CEU samples). In this
setting, studies with �10,000 samples (compared with
�100,000) would be well powered to distinguish their
effects (supplemental Fig. 4), assuming that this locus is
associated with type 2 diabetes in this population. An
alternative strategy is to test SNPs within the candidate
region for association with proximal traits, which may
provide greater power to distinguish between SNP effects
(25).

Limitations of our fine-mapping study design are that we
were underpowered to detect associations with SNPs at
MAF �0.05, and we limited sequencing to regions most
likely to harbor functional variation. Though we were able
to impute 66 additional known SNPs in the region (most
common and in high LD [r2 � 0.8] with directly genotyped
SNPs), 7 had MAF �0.05 and were not well correlated
(r2 � 0.8) with genotyped SNPs. As illustrated by fol-
low-up genotyping of the imputed SNP (rs7691824), mono-
morphic in our samples, imputation of rare variants is less
accurate. This could potentially lead to false negative
results if rare variants of poorer imputation quality have
larger effect sizes than more common SNPs.

In conclusion, we have undertaken the most compre-
hensive fine-mapping and rare variant analysis in a type 2
diabetes gene to date. We identified six SNPs that have
comparable associations with type 2 diabetes ranging from
ORs of 0.85 to –0.87. We also show that low-frequency
variants in putative functional regions of WFS1 are not
associated with diabetes risk in our U.K. populations.
Future whole exome/genome resequencing studies should
consider that functionality of rare variants is difficult to
predict and that pooling variants and candidate genes
together for purposes of analysis might diminish the
power to detect true risk alleles.
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