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1ICFO-Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain, 2National Centre
for Biological Sciences (TIFR), Bellary Road, Bangalore 560065, India, 3ICREA-Institució Catalana de Recerca i Estudis Avançats,
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The spatial organization of membrane receptors at the nanoscale has major implications in cellular function
and signaling. The advent of super-resolution techniques has greatly contributed to our understanding of
the cellular membrane. Yet, despite the increased resolution, unbiased quantification of highly dense
features, such as molecular aggregates, remains challenging. Here we describe an algorithm based on
Bayesian inference of the marker intensity distribution that improves the determination of molecular
positions inside dense nanometer-scale molecular aggregates. We tested the performance of the method on
synthetic images representing a broad range of experimental conditions, demonstrating its wide
applicability. We further applied this approach to STED images of GPI-anchored and model
transmembrane proteins expressed in mammalian cells. The analysis revealed subtle differences in the
organization of these receptors, emphasizing the role of cortical actin in the compartmentalization of the cell
membrane.

T
he plasma membrane of eukaryotic cells is a receptor-rich lipid bilayer that mediates essential cell functions.
In the presence of appropriate stimuli, membrane receptors may undergo interactions with other proteins,
membrane lipids, ligands and/or the actin cytoskeleton, which are reflected in changes of their nanoscale

spatial rearrangement1–3. In this scenario, quantitatively underpinning the molecular organization of receptors on
the cell membrane is crucial to unravel the mechanisms used by the cellular machinery to accomplish efficient
signaling. Such task requires the use of techniques suitable for nanoscale interrogation as well as robust analytical
tools for quantification.

Recently, optical super-resolution techniques (STORM, PALM, f-PALM, STED, NSOM)4–9 have been suc-
cessfully exploited to visualize the nanoscale (co)-organization of different receptor proteins10–15. Unfortunately,
several factors impose major challenges for reliable quantification of molecular positions and cluster stoichi-
ometry even at sub-diffraction resolution. Besides effects related to antibody-labeling procedures (use of primary-
secondary antibodies, variance in the number of fluorophores per antibody) and inherent fluorescent probe
photo-physics (stochastic nature of photoswitching, occurrence of multiple-reactivation events, limited photo-
activation efficiency and/or photobleaching) a major limiting factor for image quantification is represented by the
high (local) molecular density in relation with the imaging resolution. Indeed, light diffraction imposes an upper
limit to the density for resolving single fluorescent objects. This density is such that the number of labeled
molecules within the area of an Airy disk must be of the order of unity. This limitation is even more stringent
when automated localization algorithms are applied to fit images by means of a model point–spread function
(PSF). For conventional fluorescence microscopy (FWHM , 300 nm), the maximum resolvable density is r #

1 mm22 16. Localizations techniques like STORM, PALM and f-PALM circumvent this limitation by stochastically
tuning the density of simultaneously fluorescent molecules by photoactivation4–6. Yet, obtaining a low effective
density in each sequential frame requires the use of high laser powers and long acquisition times. Recently, several
computational methods have been developed to improve localization efficiency of overlapping PSFs at higher
densities, thus reducing image acquisition time and limiting photobleaching effects related to high power and
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long imaging cycles. These methods rely on multi-PSF fitting of the
image intensity map and have shown excellent results, with 50%
recall17 (i.e., the percentage of identified molecules over the total
number of molecules) at r , 10 mm22 16,18–23. Other super-resolution
methods, such as STED7,8 and NSOM9, shrink the width of the PSF
(FWHM 5 30–90 nm) as compared to conventional microscopy. In
both cases, images are obtained at full labeling density, without the
possibility of tuning the molecular density by stochastic photoactiva-
tion. Therefore, at densities corresponding to typical membrane-
receptor expression levels (r , 200 mm22) a 30-nm resolution in
combination with multi-PSF fitting algorithm would result in a recall
#20%16. In addition, heterogeneity in receptor distribution can loc-
ally produce large density fluctuations, further impacting the recall
rate. As a consequence, even at the superior resolution offered by
STED and NSOM, it is challenging to fully determine molecular
localization positions from dense samples. In this scenario, better
algorithms capable of improving fitting in high-density regions
would not only improve imaging speed for localization microscopy,
but will also allow extracting particle localizations from STED and
NSOM images, allowing accurate quantification of molecular organ-
ization at the nanoscale.

Here we present an approach that relies on the use of Bayesian
inference to determine molecular localizations in dense samples. The
method takes advantage of a likelihood-based hierarchical routine
that sequentially classifies the region of interest and an intensity-
based determination of the number of PSFs. In this way a high recall
rate for closely spaced molecules even at moderate super-resolution
conditions can be achieved while maintaining a low false-positive
detection rate. The algorithm performance was tested on synthetic
images in a wide range of experimental conditions. Application of
the algorithm to STED images of glycosylphosphatidyl inositol-
anchored proteins (GPI-AP) and model transmembrane receptors
allowed quantification of protein spatial organization and revealed
the influence of actin cytoskeleton on their inhomogeneous
distribution.

Results
Algorithm description. We developed an algorithm combining hi-
erarchical sub-region selection and marker-intensity Bayesian infe-
rence to improve particle localization from dense fluorescence
images. The method only requires two input parameters: the width
of the PSF and the intensity distribution of individual receptor
markers. Both quantities can be evaluated from images of sparse
immobilized fluorescent markers on glass or on the cell membrane
(see Supplementary Fig. S1 online). The image is reconstructed as a
sum of PSFs whose individual peak intensities are drawn according
to the experimental distribution of single markers. The different
blocks of the algorithm are assembled in an iterative loop that pro-
gressively builds up a reconstructed image while correspondingly
deflating the raw image (REC/SUB block). A schematic view of the
algorithm implementation and its flow diagram are depicted in
Fig. 1. A detailed description is provided in Supplementary Me-
thods and Fig. S2 online.

In order to limit computational complexity, PSF multi-fitting is
generally performed sequentially in selected sub-regions of the full
image. The choice and the order of the sub-regions to be analyzed are
crucial for optimum particle localization. In the presence of hetero-
geneous signals and large fluorescence features, a threshold-based
sub-region extraction from the filtered image might impact on the
recall and false positive identification. Therefore, we developed a
hierarchical sub-region selection routine based on the likelihood
function evaluation (SEARCH). The routine does not require image
preprocessing or thresholding. Specifically, the routine uses fast
Fourier transform analysis to transform the image in a likelihood
map, in which each pixel has a value corresponding to the likelihood
for having Poisson noise in the surrounding box (see Supplementary

Methods and Fig. S2 online). The minimum pixel value thus corre-
sponds to the center of the region containing higher fluorescence
intensity variability. This evaluation establishes an objective criterion
for sub-region classification. In addition, in the presence of intense
fluorescence patches such as large receptor clusters, the SEARCH
routine first pinpoints the areas at the border of the patch where
the maximum information is contained. Successive fitting and defla-
tion steps allow to progressively eroding the patch towards the
center. Once the SEARCH routine has pinpointed the sub-region
most-likely candidate to contain markers, the algorithm proceeds
to its further analysis, attempting to reconstruct it via the fitting
routine box-BIC. This is achieved via modeling the box intensity
profile as a sum of n bi-dimensional Gaussian functions, approx-
imating the instrumental PSF24. For each box, several models (n 5

1,…,nmax) are evaluated by the minimization of the Bayesian
Information Criterion (BIC)25:

BIC nð Þ~{2 log P
bw

i,j~1
Lrec Ii,j
� �

P
n

k~1
Lint Ikð Þ

� �
z3n, ð1Þ

where the first product in the logarithm represents the goodness of
the model in reconstructing the image, and the second term corre-
sponds to the likelihood for the PSF peak intensities to belong to the
marker intensity distribution. The last term introduces a penalty for
the addition of further PSFs preventing overestimation of the particle
number. PSF center positions and intensity are used as free para-
meters in the optimization. The number of PSFs in the model (n) is
iteratively increased until a stable global minimum of the BIC is
obtained. The PSFs corresponding to the best model are then sub-
tracted from the raw image (REC/SUB) and the analysis is iterated
recursively26 on the resulting image. At each iteration the global
likelihood of the subtracted image intensity is evaluated and the
algorithm is stopped when further subtraction of PSFs does not cause
an increase in the likelihood value. Although this choice allows fast
calculation, it tends to overestimate the number of emitters and to
produce a high false positive recognition rate. Therefore, the routine
is finally refined by the cumulative BIC analysis on the entire recon-
structed image. In this final step, all the individual localizations prev-
iously retrieved are sorted in descending order of their individual
likelihood and the BIC is cumulatively calculated over the whole
image. The localizations producing a decrease of the overall BIC
up to a global minimum are retained, whereas those producing a
BIC increase are excluded (see Supplementary Methods and Fig.
S2 online).

Evaluation of algorithm performance. Besides molecular density,
other factors such as the width of the PSF, background noise and
marker brightness distribution significantly affect particle localiza-
tion accuracy. While PSF width and noise depends on instrumental
settings, marker brightness distribution is related to the labeling
marker. For STED and NSOM microscopy, receptors are typically
labeled with antibodies containing one or more organic fluoro-
phores13–15,27. The brightness intensity distribution (see Supplemen-
tary Fig. S1) accounts for the fluorophore quantum yield, mean and
variance of the number of fluorophores per antibody and the
intrinsic stochasticity of fluorophore emission. Since our algorithm
takes advantage of such a distribution to infer on particle localization,
we also sought to evaluate its impact on the algorithm performance.
Therefore, we generated synthetic images at different molecular
densities while varying the full-width-at-half-maximum (FWHM)
of the PSF, signal-to-noise ratio (SNR, calculated as 20 times the
logarithm of the mean brightness over the background noise stan-
dard deviation), average intensity (I) and width (sI

2) of the marker
brightness distribution. The analysis of simulated data (Fig. 2) shows
the algorithm capability to reconstruct raw images in a wide range of
molecular densities (up to 200 mm22) at moderate super-resolution
conditions (FWHM 5 90 nm) typically afforded by our commercial
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STED microscope15 and NSOM13,14. At densities larger than ,500
mm22 (Fig. 2, lower panels), the finite width of the intensity distri-
bution increases the probability that different molecules separated by
distances shorter than the resolution are identified as a single one,
affecting the particle localization accuracy and the number of
positive detections.

For a quantitative assessment of the algorithm performance, we
then calculated the recall fraction Rf, i.e. the ratio between the num-
ber of particles correctly identified with localizations and the number
of simulated ones16,17, the localization error Lerr and the relative
intensity error Ierr. We first evaluated the effect of the instrumental
resolution on particle identification and localization (Fig. 3a).
Notably, the method yields a high Rf, small Lerr and Ierr at receptor
densities ,200 mm22 for all the investigated resolutions. For densi-
ties beyond this value, Rf decays in a resolution-dependent way
towards a constant offset (,0.4), together with a concomitant
increase in Lerr and Ierr. Notice that for extremely high densities
(.1000 mm22) there is an apparent decrease in Lerr due to the false
identification of closely spaced particles as a single one.

We also evaluated the effect of SNR on the overall performance of
the algorithm (Fig. 3b). Changes in SNR (.10 dB) have little impact
on Rf and Ierr and, expectedly, slightly affect Lerr, which always
remains below ,15 nm. At lower SNR (,10 dB), the method loses
performance, failing to identify a larger fraction of particles even at
low densities. On the other hand, mean (I) and variance (sI

2) in
the brightness distribution mainly influenced Rf (Fig. 3c–d). The
increase of sI

2 also affected Ierr for densities beyond 200 mm22.
This effect is caused by the uncertainty in assigning the exact number
of localizations to intense fluorescence spots that, due to a broad
intensity distribution, might correspond to one bright marker or
several closely located markers. Although molecular clusters can
have different shapes, in our simulations we only considered convex
molecular arrangements. However, since non-convex shapes can be
approximated as sum of convex regions, our conclusions can be
extended to different cluster shapes. As a whole, our algorithm

allows reliable analysis of images having resolution, SNR and intens-
ity distribution in a wide range of physiological density settings
(,500 mm22).

Application to STED images of membrane receptors. We next
applied our method to investigate the role of different membrane
anchors and the cytosolic domain on the nanoscale spatial
organization of membrane proteins. Aside from lipid-protein and
protein-protein interactions implicated in receptor nanoclustering1,
new evidence indicates that dynamic remodeling of the cortical actin
plays a major role on the spatiotemporal organization of cell surface
molecules28. Indeed, dynamic formation and disassembly of cortical
actin might lead to transient concentration fluctuations of lipid
anchored proteins (GPI-APs) and nanoclustering of proteins
capable of binding directly to actin28,29. Therefore, to test how the
capacity to bind cortical actin affects nanoscale spatial organization,
we acquired STED images of CHO cells stably expressing the GPI-AP
folate receptor (FR-GPI), an Ezrin-derived transmembrane variant
having an actin filament-binding domain (FRTM-Ez-AFBD) and a
mutated version of AFBD unable to bind actin (FRTM-Ez-AFBD*).
As an example, typical confocal and STED images of FRTM-
Ez-AFBD are shown in Fig. 4a–b, highlighting the increased
resolution of STED. To illustrate the ability of the algorithm in
recovering molecular positions from individual fluorescence spots
on the STED image, regions of the cell have been zoomed-in and
shown together with the corresponding reconstructed images and
the retrieved localization positions (Fig. 4c). Clearly, a co-existence of
monomers and small nanoclusters of the FRTM-Ez-AFBD is
observed. The determination of localization positions enables
the application of different methods for data quantification, as
described below.

Schematic structures of the studied model proteins are depicted in
Fig. 5a together with representative STED images and corresponding
localizations (Fig. 5b). From the retrieved localizations, the molecu-
lar organization was investigated by calculating the nearest-neighbor

Figure 1 | Schematic principle of the algorithm. (a) The nanoscopy image is progressively decomposed into PSFs via BIC analysis, providing the

reconstructed image and the molecular localizations of single markers. (b) Representative simulated image showing intensity peaks over a background

noise (top) and the reconstructed profile (middle). The bottom panel shows the residual noise and the positions of the localized particles (dots). (c) Flow

diagram of the algorithm.
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distribution13 (nnd) and the pair-correlation function11,12. Details of
the quantification are provided in Supplementary Methods online.

For the FR-GPI, the nnd probability distribution exhibits a sharp
peak at a distance of ,50 nm, significantly shorter than the corres-
ponding distribution of randomly organized particles (Fig. 5c). This
deviation suggests that a percentage of receptors reside in close prox-
imity, pointing towards the existence of receptor-enriched regions
(nanoclusters). To quantify this deviation, we calculated the en-
hanced proximity probability, defined as the integral of the difference
between the observed and simulated nnd. Notably, ,20% of FR-GPI
molecules display enhanced proximity, in agreement with previously
reported values13,30.

We further used the pair-correlation function11,12 to estimate the
cluster size and density (Fig. 5e–f). The FR-GPI correlation curves
were fitted with an exponential correlation function from which we
inferred a nanocluster size of 56 6 4 nm (mean 6 s.d.) with an
average of 3.9 6 0.5 (mean 6 s.d.) molecules per nanocluster, con-
sistent with previous observations12. Remarkably, the excellent agree-
ment in terms of nanoclustering percentage, size, density and spatial
proximal organization of GPI-APs with recently published data12,13,30

further validates our PSF decomposition approach. Treatment with
Latrunculin A (0.5 mM for 10 minutes) to perturb the actin cytoske-
leton resulted in a two-fold reduction in the number of molecules per
cluster (1.9 6 0.2) and a corresponding reduction of size (46 6
4 nm).

The same analyses were also performed over the other two model
proteins. For both FRTM-Ez-AFBD and its mutated form FRTM-
Ez-AFBD*, the nnd showed a significant deviation from random

organization (Fig. 5c, blue and red curves), with a maximum value
at ,95 nm, and similar degree of enhancement proximity (,28%).
Although this analysis only reveals a twofold increase in the short-
distance nnd probability of FRTM-Ez-AFBD with respect to FR-Ez-
AFBD*, the homo-FRET measurements in Gowrishankar et al28

showed that the FRTM-Ez-AFBD molecules form nanoclusters that
are tightly packed at the molecular scale (within FRET distances)
while FR-Ez-AFBD* does not exhibit a similar arrangement.
Similar to the FR-GPI, the pair correlation function for FRTM-Ez-
AFBD was well fitted with an exponential correlation function
(Fig. 5e, blue curve) rendering a cluster radius of 102 6 8 nm and
an average of 2.9 6 0.5 molecules per cluster (Fig. 5f). In clear
contrast to FR-GPI and FRTM-Ez-AFBD which monotonically
approach the value g(r) 5 1, FRTM-Ez-AFBD* shows a significant
oscillation, dipping at values of g(r) , 1 (anti-correlation) at dis-
tances ,200 nm. This indicates that, in contrast to the nanoclusters
of FR-GPI and the actin binding protein FRTM-Ez-AFBD, the aggre-
gates of FRTM-Ez-AFBD* are isolated and spaced by a characteristic
distance. In order to satisfactorily fit its pair correlation function
(Fig. 5e, red curve), we used a damped cosine function, providing a
cluster radius of 102 6 6 nm, an average of 2.0 6 0.3 molecules per
cluster and a characteristic separation distance between nanoclusters
of 210 6 30 nm.

Discussion
With the increasing spread of super-resolution techniques it is
becoming highly important the development of automatic methods

Figure 2 | Application of the algorithm to synthetic images with different densities. Simulated images were generated using standard experimental

imaging conditions, i.e., resolution 5 90 nm, signal-to-noise ratio 5 15 dB, average intensity of 100 counts and standard deviation of the intensity of 15

counts. (a) Representative synthetic images at three different densities (5, 50, 500 mm22, from top to bottom). (b) Corresponding images reconstructed by

the PSF decomposition via Bayesian algorithm. (c) Particle localizations retrieved by the algorithm (red crosses) compared with the original particle

locations used in the simulations (open circles).
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capable of extracting unbiased quantitative information from nano-
scopy images. Here we described an algorithm that allows deter-
mination of molecular localizations from dense images, enabling
quantification of receptor organization from super-resolution tech-
niques such as STED and NSOM. The method provides a solution to
the automated analysis of images generated by these techniques and
increases their powerfulness by adding the possibility to extract
molecular localizations from highly dense aggregates. In comparison

to other algorithms that can also deal with overlapping PSFs16–18,20–23,
our method combines a sub-region selection routine within a defla-
tion loop which hierarchically defines the areas of the image were the
analysis is performed. Besides saving computational time, this
approach is crucial for the precise reconstruction of dense clusters.
A second advantage is provided by the implementation of the like-
lihood analysis for marker brightness based on the experimental
intensity distribution. This analysis allows faithful extraction of the

Figure 3 | Quantification of the algorithm performance. The recall fraction Rf, localization error Lerr and intensity relative error Ierr were evaluated as a

function of molecular density for different experimental settings. (a) For varying image resolution, i.e, FWHM, with SNR 5 15 dB, I 5 35 counts, sI
2 5 50

counts2. (b) For varying SNR, with FWHM 5 90 nm, I 5 35 counts, sI
2 5 50 counts2. (c) For varying mean intensity value I, with FWHM 5 90 nm,

SNR 5 15 dB, sI
2 5 50 counts2 and (d) for varying width of the intensity distribution sI

2, with FWHM 5 90 nm, SNR 5 15 dB and I 5 35 counts.

Figure 4 | Application of the algorithm to STED images. (a–b) Confocal (a) and STED (b) image of a CHO cell stably transfected with FRTM-Ez-AFBD.

Intensity profiles of selected features (arrowheads) show the increased resolution obtained with STED as compared to confocal microscopy. STED

resolution was evaluated from images of isolated markers under the same imaging conditions, giving a FWHM 5 93 6 15 nm (s.d.). (c) Zoomed-in

regions corresponding to the squared areas in (b), together with the corresponding reconstructed images and localization maps. In the localization maps,

arrows indicate isolated receptors whereas ellipses encircle representative nanoclusters appearing as intense spots in the STED image.

www.nature.com/scientificreports
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number of markers from overlapping PSFs, thus providing better
estimation of cluster stoichiometry and limiting the number of
missed events even at high molecular densities. Based on analysis
of synthetic images, we estimated up to a five-fold increase in the
density at which 50% of the localizations are correctly retrieved
compared to other algorithms22 (see Supplementary Fig. S3).
However, such values strongly depend on the fluorescent marker
used and the associated brightness distribution, as high variance in
fluorophores emission reduces the advantages of the Bayesian ana-
lysis of intensity (Fig. 3). Therefore, accurate image quantification
requires proper choice of fluorescent markers and fluorophore-per-
antibody stoichiometry. We point out that the retrieved localizations
reflect the positions of the labeling marker and, as such, the use of
large markers might produce inaccuracies in assessing the positions
of the labeled receptor molecules. In addition, steric hindrance might
limit exact stoichiometry quantification. The computational effort of
the algorithm depends on image size and marker density. For the
analysis of a region of 128 3 128 pixels2 containing ,2000 markers,
processing on a single core i7 (3.40 GHz) requires ,30 minutes. To

reduce computational time, large images can be analyzed by breaking
them down into a number of small areas or, alternatively, by using
Graphic Processing Unit architecture18,31 or cluster computers.

The application of our algorithm to STED images enabled quan-
tification of membrane protein spatial organization. By investigating
proteins with different membrane anchors and cytosolic domains,
our analysis revealed the subtle role of the cortical actin on the
membrane architecture. In the cases of the lipid-tethered protein
and the transmembrane protein with an actin-binding motif, inter-
action with short dynamic actin coupled to motor activity might
create sites for local concentration of these molecules (asters)28. In
this context, the similarity between FRTM-Ez-AFBD and FR-GPI,
both showing comparable organization as well as the effect of Lat-A
on FR-GPI organization, point towards an indirect influence of actin
on the lipid anchor, either via coupling to actin-binding proteins or
via lipid-based transbilayer interactions28,29. In addition, the actin
meshwork could also work as a scaffold to induce nanoclusters,
facilitating the formation of larger platforms. In the case of the
FRTM-Ez-AFBD*, the agreement between r0 and the characteristic

Figure 5 | Quantification of molecular organization of membrane receptors having different membrane anchors and cytoplasmic features.
(a) Schematic representation of the model receptors. (b) Representative STED images of CHO cells expressing the three model proteins and

corresponding localizations maps. The average localization accuracy is ,25 nm. The localizations obtained for several cells (at least three for each

receptor) were used to quantify the data. (c) nnd distributions (continuous lines) for the FR-GPI (green), FRTM-Ez-AFBD (blue) and FRTM-Ez-ABFD*

(red) compared to the nnd distributions obtained from simulations of random organization at the corresponding experimental molecular densities

(dashed curves) (d) Pair correlation function g(r) for the three proteins investigated. The first part of the curves (,100 nm) shows a Gaussian decay,

which accounts for the average localization error with an amplitude inversely proportional to the average molecular density (r 5 43, 18 and 11 mm22 for

FR-GPI, FRTM-Ez-AFBD and FRTM-Ez-ABFD*, respectively). For distances larger than ,100 nm, a slower decay is observed (zoom-in region in the

inset) reflecting the non-random molecular organization of the three proteins. The dashed line corresponds to the pair correlation function of

uncorrelated (random) receptor organization, with r 5 23 mm22 and a localization accuracy of 25 nm. (e) Scatter plot of the number of particles per

cluster versus cluster size obtained by pair-correlation analysis on several cellular regions. Error bars correspond to standard deviation.
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size of the cytoskeletal meshwork32 indicates that the actin network
might act in here as a barrier, not only by reducing FRTM-Ez-AFBD*
aggregation but also by keeping the clusters away from each other
(Fig. 6).

Although the method has been applied for the analysis of receptor
heterogeneity on the cell membrane, its applications can readily
include the study of a priori unknown dense subcellular structures
and compartments.

Methods
SI Methods provides a detailed description of the algorithm and further details on the
quantification of receptors spatial organization.

Cell culture. Chinese hamster Ovary (CHO) cell lines expressing folate receptor (FR)
constructs were maintained in folate-free HF12 medium (Himedia Labs)
supplemented with 10% FBS (Gibco), 1% Pen/Strep/Glut (PAA), 200 mg/ml geneticin
and 100 mg/ml hygromycin (both from Invitrogen) as described in an earlier
publication33. CHO cells expressing GPI-anchored folate receptor (FR-GPI) were
obtained as previously described33. The transmembrane fusion proteins, FRTM-Ez-
AFBD and FRTM-Ez-AFBD* (R579A mutant), both encoding an actin-filament-
binding domain (AFBD) protein were generated from FRTM34 as previously
described28.

Receptors labeling. Labeling experiments were performed typically in 35 mm
coverslip dishes (Fluorodish, World Precision Instruments), 36–48 hr after plating
under cell culture conditions. Cells were washed in a HEPES-based medium (M1, pH
7.4) containing 150 mM NaCl, 5 mM KCl, 1 mM CaCl2, 1 mM MgCl2 and 20 mM
HEPES (all purchased from Sigma). Next, the cells were fixed in a 2% PFA containing
M1 solution for 30 min. Blocking was assured by incubating the fixed sample with 3%
BSA and 1 mM Glycine containing M1 for 20 min. Subsequently, the folate fusion
proteins were labeled by incubating the sample for 30 min with 5 mg/ml of the anti-
folate receptor monoclonal Mov18 (Enzo life sciences) in M1. Fluorescent labeling
was subsequently obtained through the incubation of the sample with 5 mg/ml GaM
secondary antibody conjugated with Alexa 488 (Invitrogen) in M1 for 30 min.
Samples were thoroughly washed with M1 between each of the fixation and labeling
steps. The STED measurements were performed directly after labeling. Actin
perturbation was performed by incubating the cells 10 min at 37uC with 0.5 mM
Latrunculin A before the fixation step.

Simulations and algorithm performance evaluation. To evaluate the performance
of the algorithm, we analyzed synthetic images generated by randomly positioning
fluorescent emitters in confined areas. The simulated positions were convoluted with
bi-dimensional Gaussian distributions whose peak intensities were randomly selected
from a normal emitter distribution with mean I and variance sI

2. According to the
Nyquist theorem for diagonal sampling, the images were pixelated at 3.5–4 pixels per
FWHM and, after the addition of fixed background intensity, corrupted with Poisson
noise. To check the reliability of the method in different experimental conditions,

simulations were performed at several molecular densities by varying the FWHM, the

signal-to-noise ratio SNR~20log10
I

sbkg

� �� �
, as well as the average and the width of

the marker intensity distribution.
The algorithm performance was evaluated by calculating the recall fraction, the

localization error and the relative intensity error. The recall fraction, i.e. the ratio
between the number of localized markers and the number of simulated ones, was
calculated as previously described16,17. The localization error was calculated as the
root-mean-square distance between a localization and the simulated position16.
Similarly, the relative intensity error was calculated as the root-mean-square intensity
difference divided by the average intensity. The percentage of false positive iden-
tification was found to be ,4% for all the investigated conditions.

STED nanoscopy. STED images were obtained with a commercial Leica STED setup
(TCS-SP5; Leica) equipped with a 1003 1.4NA oil objective (HCX PL APO CS, Leica)
and galvo scanner mirrors set to resonate at 8 kHz. Alexa 488 fluorophores were
excited using the 488-nm ArKr laser line at 5% (,1 mW). The fluorescence was
detected after passing a 1 airy pinhole (151.5 mm) and optical filters permeable for
light of wavelengths between 490 and 585 nm with a photomultiplier tube set at a gain
of 467.1 V. To obtain maximum optical resolution the 592 nm STED depletion beam
was set at 100% (,100 mW). Line accumulation was set at 8 and each image was
averaged over 16 frames. Image acquisition was set at 1024 3 1024 pixels with 12-bit
pixel depth.

The alignment of the two beams (excitation and STED) was performed automat-
ically and accepted only when it required little displacement voltages. The alignment
was regularly checked for drift after each measurement. The optical resolution was
assessed before each experiment by imaging the size distribution of 20 nm beads and
typically was 90–100 nm. Images of Alexa 488 conjugated secondary antibodies were
also obtained to quantify optical resolution and marker intensity distribution (see
Supplementary Fig. S1). In order to quantitatively compare the organization of the
different constructs, we used identical image acquisition settings in all cases.

Quantification of receptors spatial organization. Receptor spatial organization was
quantified by calculating the nnd13 and the pair-correlation function11,12, from the
localization coordinates obtained via application of the algorithm to the STED images
and taking into account the related localization accuracy. Details of the calculations
are provided in SI Methods.
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