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Abstract: Several methods are available for the identification of functional networks of brain areas using
functional magnetic resonance imaging (fMRI) time-series. These typically assume a fixed relationship
between the signal of the areas belonging to the same network during the entire time-series (e.g., positive
correlation between the areas belonging to the same network), or require a priori information about
when this relationship may change (task-dependent changes of connectivity). We present a fully data-
driven method that identifies transient network configurations that are triggered by the external input
and that, therefore, include only regions involved in stimulus/task processing. Intersubject synchroniza-
tion with short sliding time-windows was used to identify if/when any area showed stimulus/task-
related responses. Next, a first clustering step grouped together areas that became engaged concurrently
and repetitively during the time-series (stimulus/task-related networks). Finally, for each network, a sec-
ond clustering step grouped together all the time-windows with the same BOLD signal. The final output
consists of a set of network configurations that show stimulus/task-related activity at specific time-
points during the fMRI time-series. We label these configurations: “brain modes” (bModes). The method
was validated using simulated datasets and a real fMRI experiment with multiple tasks and conditions.
Future applications include the investigation of brain functions using complex and naturalistic stimuli.
Hum Brain Mapp 36:3404-3425, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
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INTRODUCTION

Over the last 20 years, functional magnetic resonance
imaging (fMRI) has been extensively used to investigate
sensory, motor, and cognitive functions in the human brain.
The vast majority of these studies made use of experimental
designs entailing the manipulation of one (or more) specific
stimulus or task parameters to generate a set of relevant
experimental “conditions.” Changes of brain activity associ-
ated with these conditions are assessed by fitting the BOLD
signal with predictors based on the type and timing of con-
ditions (GLM: general linear model) [Friston et al., 1995].
More recently, there has been an increasing interest in the
study of brain functioning using more complex and realistic
stimuli, such as videos and movies [e.g., Bartels and Zeki,
2004; Fiser et al., 2004; Hasson et al., 2008; Kayser et al.,
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2004; Nishimoto et al., 2011; Wolf et al., 2010; see also
Peelen and Kastner, 2014]. Unlike traditional paradigms, in
these cases there is little a priori knowledge about the tim-
ing/occurrence of the relevant events and, hence, the con-
struction of “predictors” for data-fitting is challenging [but
see Bartels et al.,, 2008; Bordier et al., 2013; Lahnakoski
et al., 2012a; Ogawa et al.,, 2013; Raz et al., 2012]. Indeed,
most studies using naturalistic stimuli sought to identify
patterns of activity based only on the data structure [ie.,
data-driven approaches, e.g., independent component anal-
yses, Bartels and Zeki, 2005; Lahnakoski et al., 2012b; for
review see Calhoun and Pearlson, 2012; intersubject correla-
tion analyses, Hasson et al., 2004; cluster analyses, Heller
et al., 2006]. Nonetheless, the available data-driven methods
entail several limitations that, here, we seek to overcome
with a new approach that combines data-driven and multi-
variate clustering techniques.

The data-driven method that has been most commonly
used for the analysis fMRI time-series is the spatial Independ-
ent Component Analysis (ICA) [Calhoun et al., 2001; Comon,
1994]. Spatial ICA identifies functional networks that are spa-
tially independent patterns [Mckeown and Sejnowski, 1998].
Using spatial ICA, a large number of functional networks
have been identified even in the absence of any stimulus or
task [i.e., ICA of resting-state data, see Damoiseaux et al.,
2006; Veer et al., 2010]. Most of these components/networks
are present also in task-related fMRI time-series [see Smith
et al., 2009]. The latter can make it difficult to decide whether
any given IC is related to the task or, instead, reflects some
task-unspecific underling functional coupling (unless one uti-
lizes additional information about the experimental design,
e.g., by testing for correlations between the IC time-courses
and GLM predictors). Within the ICA framework, one
method that may best identify dynamic and overlapping
networks associated with the processing of stimuli/tasks is
tensor independent component analysis (tensor-ICA) [Beck-
mann and Smith, 2005]. The algorithm is based on parallel
factor analysis [Harshman, 1970] and decomposes the data in
independent components (ICs), each including a “temporal,”
a “spatial,” and a “subjects” mode. The subjects-mode indexes
the consistency of the IC across subjects and has been primar-
ily exploited for multi-subjects IC analyses or to perform
between-groups comparisons [e.g., Rombouts et al., 2009].
However, it should be noticed that ICs with a high subjects-
mode will comprise areas that share similar time-courses
across subjects. The latter will occur when a network responds
to some common external input or task, assuming that all sub-
jects were presented with the same sequence of events (cf.,
intersubject synchronization, below). Accordingly, tensor-ICA
should enable identifying overlapping spatiotemporal net-
works that are specifically associated with stimulus/task
processing and exclude any spontaneous fluctuations that
will not be “synchronized” across different subjects.

A different approach for the identification of stimulus/
task-related brain activity in the absence of any a priori
information was proposed by Hasson et al. (ISS: intersub-
ject synchronization) [Hasson et al., 2004]. The ISS works

by computing, voxel-by-voxel, the correlation between the
BOLD time-series acquired in different participants. Only
brain regions that are involved in stimulus processing
should show correlated activity across subjects, assuming
that all subjects were presented with the same stimuli. The
method is fully data-driven and does not require any a
priori knowledge about the stimuli [see also Pajula et al.,
2012]. The ISS has been used to investigate brain activity
associated with several different processes, including
memory encoding [Hasson et al., 2008], auditory oddball
task [Hejnar et al., 2007], or narrative speech comprehen-
sion [Wilson et al., 2008]; and it is often used to examine
brain associated with complex, naturalistic stimuli like
movies [Hasson et al., 2004; Golland et al., 2007; Jaaskelai-
nen et al.,, 2008; see also Hasson et al., 2010, for review].
However, unlike tensor-ICA, the ISS is a mass uni-variate
approach that considers every single voxel/region in isola-
tion and does not provide us with any information about
possible inter-regional effects (functional networks).

A further issue with the available data-driven methods,
including both tensor-ICA and ISS, is that they are gener-
ally applied to the entire fMRI time-series. With this, there
is an implicit assumption that the relationship between the
stimuli and brain activity (ISS) or connectivity (tensor-
ICA) is stable over time. This point has been addressed by
studies that used sliding windows to capture the dynamic
nature functional connectivity, primarily using resting-
state datasets [see Hutchison et al., 2013a; for review]. Slid-
ing windows have been combined with various methods,
with the aim of assessing whether a given index of con-
nectivity changes over the duration of the experiment.
These indexes may be derived simply by correlating the
BOLD signal in two brain areas; or can include more com-
plex measures such a inter-regional correlation matrices
(tracking the connectivity between a seed-region and an
extensive set of other regions) [e.g., Allen et al., 2014] and
networks derived from spatial ICA [e.g., Kiviniemi et al.,
2011; Morton and Hutchison, 2014; see also Chang and
Glover, 2010; Grigg and Grady, 2010; Majeed et al., 2011,
for other indexes of inter-regional connectivity]. Even at
rest, these approaches revealed dynamic reconfigurations
of brain networks, reflecting both the fluctuation of high-
level processes (e.g. arousal, attention, memory, etc.), as
well as spontaneous ongoing activity [Hutchison et al.,
2013b; see also Deco et al., 2011; Sadaghiani and Kleinsch-
midt, 2013, for reviews].

The relevance of these fluctuations for stimulus processing
and/or task performance has been typically assessed by
means of correlations between the chosen connectivity index
and some behavioral measure. For example, using short
time-windows, Thompson et al. showed that the level of
(anti-)correlation between “the default mode network” and
the “task positive network” in a 12.5 s window centered just
before the target onset predicted the speed of target detec-
tion on a trial-by-trial basis [Thompson et al., 2013].
Recently, Raz et al. used 30 s sliding-windows to extract
dynamic patterns of inter-regional connectivity during
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movie watching [Raz et al., 2012]. The connectivity indexes
were correlated with behavioral and parasympathetic meas-
ures related to the subjects’” emotional state, on a window-
by-window basis. The results showed significant correlations
between the connectivity of the limbic system with the pre-
frontal cortex and the sadness ratings, demonstrating the
functional relevance of the dynamic connectivity changes
[Raz et al., 2012; see also Baldassarre et al., 2012 and van
den Heuvel and Sporns, 2013] (who demonstrated the task-
relevance of resting-state networks using inter-individual
differences, rather than within-scan time-resolved measures).

Here, we propose combining ISS with sliding-windows
and cluster analyses with the aim of capturing dynamic
inter-regional effects that are relevant for stimulus/task
processing. Cluster analyses have been extensively used to
analyze resting-state data for brain parcellization [e.g.,
Craddock et al.,, 2012; Thirion et al., 2014] and to index
connectivity at rest [Cordes et al. 2002]. Moreover, time-
resolved applications of cluster analysis contributed to the
identification of networks’ dynamics at rest [Allen et al.,
2014; Liu et al., 2013; Yaesoubi et al., 2014]. Using sliding-
windows and hierarchical clustering, Yang et al. [2014]
reported that the duration of specific “network states” cor-
related with individual neuropsychological scores, again
indicating a possible relevance of networks’ fluctuations at
rest (see also above). Using a task-based paradigm, Ren
et al. [2014] compared hypothesis-driven GLM analyses
and data-driven clustering algorithms. Overall the results
were consistent across methods (with a major advantage
in terms of computation times, for the new clustering algo-
rithm proposed by the authors), but the study examined a
very simple On-Off visual activation paradigm and did
not include any time-resolved analysis. To our knowledge,
only one previous work combined clustering algorithms
with ISS analysis. Kauppi et al. [2010] used a modified
version of the k-means clustering algorithm to analyze ISS
coefficients obtained while subjects were presented with
complex stimuli (movie watching). However, the aim of
the clustering procedure was to assess the reliability of the
ISS coefficients across pairs of subjects, rather than identi-
fying dynamic inter-regional effects (functional networks).

Here, we use ISS with sliding windows to target brain
areas where activity is stimulus/task-dependent. Next, we
use a first clustering step to identify sets of regions that
engage concurrently and in a repeated manner, over the
duration of the entire experiment (ISS-clustering). This
provides us with sequences of time-points when specific
groups of brain areas become engaged (network configura-
tions), without making use of any a priori information
about the stimuli. Because the first clustering is based on
the significance of ISS, rather than the BOLD signal, the
brain activity can differ between areas belonging to the
same network and between successive time-points.
Accordingly, under the hypothesis that each network
configuration may express different temporal patterns of
BOLD activity during the experiment [see also Liu and
Duyn, 2013], we apply a second cluster analysis to group

time-windows with the same signal (BOLD-clustering). The
output of the algorithm consists of stimulus/task-related
networks, each including: (1) a set of brain areas; (2) a
sequence of time-points when the network is engaged; and
(3) a distinctive BOLD signal for each area belonging to the
network. We label these network configurations: “brain
Modes” (bModes). The bModes represent networks of brain
areas (where) that engage transiently at specific time-points
(when) during the fMRI time-series. It should be noted that,
while the method was explicitly designed to identify “when
and where” brain activity is stimulus/task related, the
method does provide us any information about “what”
in the stimuli or tasks triggers the ISS and generates the
bModes, please see also Discussion section.

We first present a detailed description of the method,
and then apply the method both to simulated fMRI time-
series and to a real whole-brain fMRI experiment. It
should be noted that the method was developed primarily
to investigate brain activity using complex stimuli (e.g.,
during movie watching), but there are no well-established
methods for assessing task-related inter-regional dynamics
using such complex stimuli. Therefore, we validated the
method with a protocol that included “known” sequences
of events and that could be analyzed also with a standard
hypothesis-driven GLM [i.e., data fitting with a priori
defined predictors; e.g., see also Pajula et al., 2012, who
resorted to an analogous approach for ISS validation; and
Calhoun et al., 2001, for the evaluation of spatial and tem-
poral ICA]. We selected particular stimuli and tasks, and
combined these in a specific manner, with the aim of gen-
erating patterns of coactivation across brain regions (net-
work configurations) that changed dynamically over time
(see Fig. 2A1,B1). We used a linguistic task and a spatial
judgment task, both entailing visual stimuli and manual
responses. With this, we sought to activate task-common
regions in visual and motor cortices, as well as task-
specific regions in associative areas of the left and right
hemisphere. Moreover, we presented irrelevant auditory
stimuli that were sometime time-locked to the spatial judg-
ment task and sometime presented in the rest period
between the task blocks (see Fig. 2A1). These auditory
stimuli will engage the auditory cortex that, thus, should
sometime coactivate with the “task-common” visual/
motor areas and with any “task-specific” region associated
with the spatial judgment task, and sometime not (i.e.,
when the sounds were presented in the rest periods).
Accordingly, despite not using naturalistic stimuli, the val-
idation protocol included relatively complex combinations
of events, each expected to trigger a specific network con-
figuration. The main goal of the method was to retrieve
the different network configurations and their times of
occurrence within the fMRI time-series, in a fully-data
driven manner. For comparison, the same dataset was also
analyzed with tensor-ICA that should also identify task-
related networks, but without providing us with any
direct information about the timing of the different stim-
uli/tasks in the time-series.
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Figure I.

Schematic representation of the main steps for the computation
of the brain modes (bModes). This comprised: (1) Transient
intersubject synchronization (transient-ISS); (2) ISS-clustering;
and (3) BOLD-clustering. In the transient-ISS, separately for
each area, sliding windows are used to compute a linear regres-
sion between the BOLD signal in each pair of subjects. Non-
parametric methods are then applied on the resulting parameter
estimates (betas) to determine whether the ISS in each area and
each time-window is statistically significant (see Methods). The
result is a binary matrix of functionally relevant areas and time-
windows (the significant points are displayed in black). The

MATERIAL AND METHODS
Computation of the bModes

The computation of the bModes comprises three main
steps (see Fig. 1): (1) ISS using short sliding-windows,
with the aim of detecting stimulus/task-related transients
changes of the BOLD signal (transient intersubject syn-
chronization [transient ISS]); (2) Clustering of the
synchronized brain areas, with the aim of identifying net-
work configurations comprising areas that became
engaged at the same time (ISS-clustering); and (3) Cluster-
ing according to the BOLD signal in the different areas of
each cluster, with the aim of grouping time-windows with
similar BOLD signal (BOLD-clustering).

Transient ISS

The aim of the first step of the analysis is to identify
time-points within the fMRI time-series when there is a
stimulus/task related change of the BOLD signal. To do
this, we perform a variant of the intersubject correlation

binary matrix is then submitted to the ISS-cluster analysis (k-
mean). The result of this is a set of clusters/networks, each with
a distinctive set of time-windows indexing when the cluster was
engaged (the relevant time-points are displayed in black). Sepa-
rately for each cluster, the BOLD signal of each area and time-
window is submitted to the BOLD-clustering step that allows us
to group together time-windows with similar BOLD signal. The
final output consists of task-related networks that are engaged
at specific time-points during the fMRI time-series and that dis-
play a specific BOLD signal (i.e., the bModes).

analysis proposed by Hasson et al. [2004] but using short
time windows [see also Glerean et al., 2012].

Before computing the transient-ISS, the fMRI time-series
were averaged within regions of interest, here using AAL
defined regions and generating 116 time-series for each
subject [Tzourio-Mazoyer et al., 2002] (please see also the
Discussion section about the possibility of using other tem-
plates). Next, a multiple regression model was used to
high-pass filter the data and to remove signal related to
head movements. For this, the model included a cosine
basis-set and the movement parameters estimated during
realignment [Friston et al., 1995]. All the analyses pre-
sented below made use of a high pass filtering cut-
off =0.008 Hz. These settings did not affect the sustained
signal associated with the task-blocks (cf., Simulations sec-
tion) and were found not to produce any false positives in
simulated datasets, irrespective of the presence/absence of
low-frequency drifts (not shown). However, higher cut-off
may be considered [i.e., related to the length of the slid-
ing-window: e.g., “1/window-length,” see Leonardi and
Van De Ville, 2015] particularly if the dataset is not
expected to contain any regions with sustained periods of
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Al. Experimental protocol used both for the simulations and for
the main fMRI experiment. Two conditions were presented
according to a block-design and corresponded to the language
task (T1) and the spatial task (T2) during fMRI, see Methods for
details. The third condition comprised single events (T3) that in
the fMRI experiment corresponded to the presentation of task-
irrelevant sounds. Note that the sounds were sometime pre-
sented in isolation while sometime they were coupled with the
onset of a T2 block (T3 events marked with asterisks). BI.
Areas and signals included in the simulations. The simulations
comprised nonoverlapping (task-specific) blocked responses in
areas X and Y, “common” activation in area Z; transient
responses in area W (sometime time-locked with the block-
onsets in area Y, cf., asterisks) and the control area K, without
any signal. B2. Results of one of the simulations (18 subjects,

SNR =15, time-window = 16 s, P-corr. = 0.05, see main text).
The transient ISS analysis, with the binary matrix associated
with the simulated dataset. For each area, the black lines repre-
sent “when” the transient-ISS was significant. B3. Results of ISS-
clustering step that identified four clusters (A-D), each including
one or more areas and engaging at specific time-points (cf.,
black lines). Cl. The results of the transient ISS (i.e., binary
matrix) for the main fMRI experiment. This comprises |16
rows, corresponding to the AAL areas, and 622 columns corre-
sponding to the concatenation of two fMRI runs (see also Meth-
ods). C2. The ISS-clustering step of the main fMRI experiment
identified four clusters, each repeating several times over the
entire fMRI time-series (see the black lines associated with each
cluster).
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activity. At this stage, other covariates of no-interest could
be added, such as the global signal in each volume or
covariates related to the individual behavior (e.g., eye-
movements recorded during fMRI scanning).

Independently for each AAL region, the time-series were
divided into short segments using sliding windows (sliding
step =1 pt) [Gembris et al., 2000]. For the analyses of the
real fMRI experiment, the size of the window was set to be
equal to the duration of the hemodynamic response func-
tion (HRF), that is, approximately 16 s [cf., also Glerean
et al., 2012]. The appropriateness of this choice was con-
firmed by our simulations that systematically assessed the
effect of the window-size (see below, and Fig. 4B). For each
region and each segment, a linear regression was used to
compute the “synchronization” between each pair of sub-
jects, that is, the data of one subject acted as the predictor
for the data of a different subject. The statistical assessment
of the resulting (nonindependent) parameter estimates was
performed using a nonparametric method. We sampled
1,000 bootstrap means [Efron and Tibshirani, 1998] and esti-
mated the correspondent density function [kernel density
estimation: Bowman and Azzalini, 1997]. The inverse of the
probability function was used to assess whether the ISS
was significantly larger than zero with a 5% probability
threshold, corrected for the number of sliding windows (see
also below and Fig. 4B, for simulations concerning the
thresholds applied to the transient-ISS analysis). This proce-
dure was repeated for all regions and all sliding windows,
generating a binary matrix that represents “where” (areas,
rows) and “when” (windows, columns) the BOLD signal
shows a transient burst of task-related activity (see Fig. 1,
panels on the left).

Clustering of the “synchronized” brain
areas (ISS-clustering)

The second step of the analysis aimed to group areas
that show similar patterns of transient synchronization
during the fMRI time-series. For this, the ISS binary matrix
(cf., Step 1, above) was submitted to a k-mean cluster anal-
ysis [Seber, 1984]. The clustering procedure minimizes the
distance between k centroids and the data. Because of the
binary format of the data, the Hamming method—which
quantifies the number of bits that differ between two
sequences—was used to compute the distances [Hamming,
1950]. The number of centroids (k) was determined using
the elbow method that takes into account the increase of
the percentage of variance explained when the number of
centroids is progressively increased [Thorndike, 1953].
This method determines the number of clusters, so that
adding another cluster does not improve the modeling by
more than 5%. Across all the simulations (290 in total, see
below), k was found to range between 0 and §; in the
main fMRI experiment k was found to be equal to 4. To
minimize the effect of the initial seed, the clustering was
repeated n times using different seeds (7 = number of win-
dows divided by k), and the clustering with the lowest

sum of square distance was retained as the final result.
For instance, the final results for the fMRI experiment
were obtained by running the k-mean cluster analysis 153
times (i.e., number of windows = 615; k =4; n = 153).

This second step of the analysis provided us with tran-
sient network configurations, comprising areas that became
engaged at the same time and in a repeated manner. Each
cluster comprises of a set of areas and a sequence of rele-
vant time windows (see Fig. 1, center panel). The latter rep-
resents “when” the network was engaged in the fMRI time-
series.

Clustering according to the BOLD
signal (BOLD-clustering)

The ISS-clustering procedure generated groups of areas
and windows (clusters), irrespective of the BOLD signal in
each area and each window: only the timing and the con-
sistency of the synchronization across subjects contributed
to the definition of these inter-regional patterns. This may
include the simultaneous coactivation of several regions;
but also anti-correlations between regions, with the BOLD
signal increasing in one area and decreasing in a different
area (see also Discussion section). The aim of the last step
of the analysis was to further partition each cluster accord-
ing to the BOLD signal in the relevant windows.

For each cluster, we extracted the BOLD signal of each
area (mean across subjects) and each time window. The
signals of all the areas belonging to the same cluster were
concatenated, separately for each window (see Fig. 1, pan-
els on the right). For each cluster, this generated a WXT
matrix, where W is the number of windows and T is the
number of areas by the number of data points per win-
dow. Accordingly, each row of a WXT matrix can include
data belonging to different areas. A new k-mean cluster
analysis was then performed on each of these matrices,
with the aim of grouping windows with similar patterns
of activity. Because the WXT matrix is not binary, the
data-to-centroids distances were now computed using the
square Euclidean method. The number of centroids was
estimated using the Dunn’s index [Dunn, 1974; see also
Pal and Biswas, 1997] that aims to identify dense and
well-separated clusters. This index can range between 0
and infinite and is defined as the maximization of the ratio
between the smallest inter-cluster distance to the largest
intra-cluster distance. The Matlab-code to compute the
brain Modes is available at: http://www.sIneuroimagin-
glab.com/mt-tools.

Simulations

The method was evaluated using simulated fMRI time-
series and varying several parameters, see below. The sig-
nal/paradigm was identical in all the simulations and
comprised five areas (X, Y, Z, W, K) with specific patterns
of activation (see Fig. 2B1). Area X and Y included 10
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blocks of nonoverlapping sustained activation, while area
Z included all 20 blocks simulated in X and Y. Thus, areas
X and Y simulated regions responding selectively to one
or another stimulus/task, while area Z simulated a
“common” region responding to both tasks. Area W
included 16 transient events, 6 of which were time-locked
with the onset of the activation blocks in area Y (cf., events
marked with an asterisk, in Fig. 2A1). Area K served as a
control region and did not include any signal. The time-
series comprised 622 data points (volumes) that would
correspond to two fMRI-runs of approximately 10 min
each, with a repetition time of 2 s; cf.,, also main fMRI
experiment below.

We used the R package “neuRosim” to simulate the
BOLD signal in each area [Welvaert et al, 2011]. We
manipulated the number of subjects (sample size), the
signal-to-noise ratio (SNR), the size of the sliding-
windows, and statistical threshold applied to the ISS anal-
ysis. For all the simulations, the baseline value of the time-
series was set to 100 and the response amplitude was set
to 1% [see Welvaert and Rosseel, 2013]. The signal in each
region and each subject was convolved with the HREF.
Rician noise was added to the simulated time-series, inde-
pendently for each subject and area. The simulated data
neither included any slow drift component nor simulated
physiological noise. The average SNR was defined as:

El
ON

SNR =

With S =the average magnitude of the signal; and
on = the standard deviation of the noise [Kruger and
Glover, 2001].

In the first set of simulations, we varied the number of
subjects and the SNR. The sample size was set equal to 8,
14, 18, or 25 subjects and the SNR ranged between 1 and
30; see Figure 4A. For this set of simulations, the size of
the sliding windows was equal to 16 s and the results
were evaluated using an ISS-threshold of P-corr.=0.05. A
second set of simulations varied the size of the sliding
windows between 12 and 40 s (i.e., 6-20 TRs) and the ISS-
threshold, see Figure 4B. The ISS-threshold was set to P-
corr. = 0.05, P-corr. = 10_4, or P-uncorr. = 0.05. Please note
that here setting the threshold to P-corr.=10"* corre-
sponds to applying a Bonferroni-type correction for multi-
ple comparisons considering the number of sliding
windows, as well as 200 areas (i.e., more than the number
of ALL regions used for the analysis the fMRI experiment).
For this second set of simulations, the sample size was
fixed to 18 subjects and the SNR was set to 15.

Each simulation condition was repeated five times, thus
200 different datasets were constructed for the first set of
simulations (4 “simple sizes” x 10 “SNR” x 5 “repetitions,”
Fig. 4A) and 90 for the second set (6 “windows” X 3
“thresholds” X 5 “repetitions,” Fig. 4B). For each single
simulation, we quantified the accuracy of the output using
the Matthews correlation coefficient (Mcc) [Matthews,

1975]. This quantifies the performance of a binary classifi-
cation by comparing the “true” versus the “observed” clas-
sification. Importantly, this method takes into account both
correct detections as well as any false positive. Specifically,
the Mcc is defined as:

TPXTN-FPXFN

Mcc =
\/(TP+FP) (TP+EN)(TN+FP)(TN+FN)

With TP corresponding to the number of true positive
(hits), TN of true negative (correct rejections), FP of false
positive (false alarms), and FN of false negative (mis-
ses).The Mcc-values range between +1 and —1, indexing a
perfect match versus a total disagreement between the
true and the observed classification. Values around zeros
indicate random performance of the classification
procedure.

Here, for each simulation we obtained a set of bModes,
each including a number of areas and a sequence of time-
points indicating when the bMode was active. We scored
as a TP each time-point of a bMode, when both the timing
and the combination of areas were correct. The timing was
considered “correct,” if the true signal happened within
the size of the sliding-window used for the simulation.
Any bMode occurrence without corresponding true signal
was scored as FP. If the method failed to detect a simu-
lated combination of areas at a given time-point, this was
counted as a FN. Finally, the number of TN was obtained
by subtracting the total number TP + FP + FN from the
total number of sliding windows (622 in our simulations).
It should be noticed that at low levels of SNR and with
small sample sizes, there was no significant ISS and the
Mcc could not be computed (TP =0, FP =0, with the Mcc-
denominator = 0). In these cases, the Mcc was set equal to
0. Table 1 shows the results of one of the simulations, with
the “true” simulated signal and the corresponding counts
of TP, TN, FP, and FN.

Main fMRI Experiment
Participants

Nineteen subjects (aged 20-40, mean =28.1 years, 11
females and 8 males) with no history of neurological or
psychiatric illness participated in this study. They had nor-
mal or corrected-to-normal visual acuity and reported no
difficulty of hearing. One subject was discarded from the
analysis because of large head movements during the data
acquisition, leaving 18 participants for the analyses. The
Ethical Committee of Santa Lucia Foundation approved
this study. All subjects gave written informed consents
prior to the scanning session.

Paradigm

The aim of the current method is to detect changes of
network configurations that are related stimulus and task
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TABLE |. Summary of the results obtained for one of the simulated dataset (number of subjects = 18; SNR = 15;
size of the sliding time-windows = 16 s)

bMode results Simulated signal Evaluation
bModes Areas Nr. True False
Label Areas z X Y w Positive Negative Positive Negative
Al1-6 W — — — Ev. 10 10 — 0 0
B1-2-3 YZW B-on — B-on Ev 6 6 — 1 0
C2 XZ B-on B-on — — 10 10 — 0 0
C1 XZ B-off B-off — — 10 10 — 0 0
D2 YZ B-on — B-on — 4 4 — 0 0
D1 YZ B-off — B-off — 10 9 — 0 1
— — — — — — — — 571 —
Total 49 571 1 1
Mcc =0.978

On the left, the results/output of the new method (see also Fig. 3). In the center, the “true” simulated signal with the pattern of activa-
tion in the different areas (B-on: block-onset; B-off: block-offset; Ev. event, see also Fig. 2A1). On the right, the evaluation the results
that took into account the True positives/negatives (hits and correct rejections), and the False positives/negatives (false alarms and
misses). The count of the true negative corresponds to the number of sliding windows (622) minus the sum of true positive, false posi-
tive, and false negative. With these counts we computed the Matthews correlation coefficient (Mcc) that provided us with a quantitative

measure of the accuracy of the results (see also main text).

processing, and to do this in a fully data-driven manner.
To induce these changing patterns inter-regional of activa-
tion (network configurations), we made use of three tasks/
stimuli with specific characteristics and presented with
specific temporal relationships with each other. First, we
selected two tasks that should activate both “common”
brain regions, as well as “task-specific” areas. We made
use of a language task and a spatial perception tasks (see
section below, for details). Both tasks involved visual stim-
uli and motor responses, and should therefore activate
common regions in visual and motor cortex. In addition,
the language task should activate frontotemporal regions
in the left hemisphere [Binder et al., 1997]; while the spa-
tial task should activate frontoparietal regions in the right
hemisphere [Fink et al., 2001; see also Pugh et al., 1996].
The two tasks were presented in different blocks. We
expected to identify network configurations including both
task-common and task-specific areas, with sequences of
time-windows consistent with the timing of corresponding
tasks: for example, visual and motor areas together with
language regions in the left hemisphere, when the subjects
performed the language task; and different network con-
figurations including the same visual and motor regions,
but now together with areas in the right hemisphere, dur-
ing the visuospatial judgment task.

Moreover, the experimental paradigm included task-
irrelevant auditory events. These will activate regions in
the auditory cortex, not involved in the two other tasks,
and should not activate any visual or motor region.
Accordingly, these stimuli will engage a third, independ-
ent set of areas (auditory-network). However, we induced
the coactivation of this auditory-network and the spatial-

task network by controlling the temporal relationship
between the onset of the spatial-task and auditory events:
sometime the sounds were presented in isolation (i.e., dur-
ing the rest period between the task-blocks), while other
times they were time-locked with the onset of the spatial-
task (see also Fig. 2Al, events marked with an asterisk).
Thus, we expected to identify a network configuration
comprising auditory regions alone, with a sequence of
time-windows corresponding to the events presented in
isolation; and a different configuration comprising both
auditory areas and the areas involved in the spatial judg-
ment task, now with time-windows corresponding to the
sounds co-occurring with the spatial-task.

In sum, our fMRI paradigm was designed to trigger sev-
eral different patterns of coactivation at specific time-
points during the experiment. These included: (1)Visual
and motor regions with left-hemisphere areas (language
task); (2) Visual and motor regions with right-hemisphere
areas (spatial-task, without sound); (3) A similar network,
but also including auditory areas (spatial task with co-
occurring sounds); and (4) Auditory areas alone (sound
only). With the new method, we sought to isolate these
different inter-regional patterns and to recover the corre-
sponding timings in a fully data-driven manner.

Stimuli and tasks

The fMRI protocol comprised two active tasks that were
presented in blocks of 30 to 36 s, plus task-irrelevant audi-
tory events. The first task required the semantic categori-
zation of written words [Leube et al., 2001]. On each trial,
a word was presented on the screen for 500 ms and the
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participants were asked to report whether this belonged to
a “living” (animals) or a “non-living” (vehicles, tools or
furniture) category. Participants responded by pressing
one of two buttons with the index/middle finger of the
right hand. Each block included 16-19 trials (50% living and
50% non-living), with a fix inter-trial interval of 1500 ms.
The same pool of words was used for all participant (87 for
each category), but the order of presentation was random-
ized across participants. The second task was a spatial bisec-
tion judgment [Fink et al., 2001]. Each trial consisted of an
horizontal line (length =6°-7° visual degrees) that was pre-
bisected by a shorter vertical line (2.5°). On half of the trials,
the bisection was “symmetrical” with respect to the horizon-
tal line; while in the other half of the trials the bisection was
“asymmetrical” with the vertical line intersecting the hori-
zontal line either to the left or to the right of the center. The
stimulus display was presented for 500 ms, followed by a fix
intertrial interval of 1500 ms. The task of the participants
was to report whether the bisection was symmetrical or
asymmetrical. Participants responded by pressing one of
two buttons with the index/middle finger of the right hand.
Each block lasted for 30 to 36 s and included 16-19 trials.

Each fMRI-run included five blocks of the words-task
and five blocks of the spatial-task, presented in a pseudo
random order. Together with the two active tasks, during
each fMRI-run we presented eight task-irrelevant auditory
events, consisting of bursts of white-noise (duration =1 s).
Three of these auditory events were time-locked to the
onset of a spatial-task block, while the other five were pre-
sented during the interblock interval. Each participant
underwent two fMRI-runs lasting approximately 10 min
each. The data analyses considered both runs together,
thus including 10 blocks of the words-task, 10 blocks of
the spatial-task, and 16 auditory events (10 in isolation
and 6 coupled with the spatial-task, see Fig. 2A1). The
most important constraint to perform any ISS analysis is
that all subjects are presented with the same stimuli [Has-
son et al., 2004]. Accordingly, the order and the timing of
the three conditions (i.e., the blocks of the two tasks and
the auditory events) were identical for all 18 subjects.

FMRI acquisition and preprocessing

A Siemens Allegra (Siemens Medical Systems, Erlangen,
Germany) 3T scanner equipped for echo-planar imaging
(EPI) was used to acquire the functional resonance images.
A head-sized quadrature volume coil was used for radio fre-
quency transmission and reception. Mild cushioning mini-
mized head movement. Thirty-two slices volumes were
acquired using blood oxygenation level dependent contrast
(192 mm X 192 mm X 120 mm, in-plane resolution = 64 X
64, pixel size =3 mm X 3 mm, thickness = 2.5 mm, 50% dis-
tance factor, TR =2.08 s, TE =30 ms), covering the entire
cortex. The total duration of each functional run was 10 min
and 55 s, with the acquisition of 315 volumes.

The fMRI data were preprocessed using SPM8 (Well-
come Trust Centre for Neuroimaging, London, UK). After

discarding the initial four volumes of each run, the
remaining volumes were slice-time corrected, head-motion
realigned and normalized to the standard MNI EPI
template space (voxel-size resampled to 3 X 3 X 3 mm?).
Finally, the data were spatially smoothed with a 8 X 8 X 8
full-width at half-maximum Gaussian kernel.

GLM analysis

First, the imaging data were analyzed using a standard
hypothesis-based approach in SPM8. For each subject, a GLM
was used to fit the time-series at each and every voxel. The
regression model included four predictors of interest corre-
sponding to the two active tasks, the sound alone and the
sounds coupled with the onsets of the spatial-task. Each
model included also subject-specific realignment-parameters
and the session constants, as effects of no interest. The task-
blocks (words and spatial) were modeled with a boxcar func-
tion time-locked to the onset of the task with a duration corre-
sponding to the block duration (15-18 TR). The auditory
events were modeled with delta functions (duration = 0). The
predictors were convolved with the canonical HRF and the
time-series were high-pass filtered at 0.008 Hz. For each sub-
ject, we computed five contrast-images corresponding to the
parameter estimates for the four conditions of interest aver-
aged across the two fMRI-runs, and the difference between
the “words” and the “spatial” tasks. Group-level analyses
were performed with five separate t-tests. One model was
used to directly compare the two active tasks (see Fig. 5A,B),
while the other four tests identified activations and deactiva-
tions for each condition compared to rest (Fig. 5C-F). The sta-
tistical thresholds were set to voxel-level P-FWEcorr. = 0.05,
corrected for multiple comparisons considering the whole
brain as the volume of interest. In addition, the contrast-
images associated with the four conditions were also entered
in an omnibus one-way ANOVA. This was used to compute
an overall F-map highlighting all the areas where the GLM
fitted the data, irrespective of condition and activation vs.
deactivation (see Fig. 7A).

Tensor-ICA

Together with the validation of the bModes results using a
standard GLM approach, which requires a priori knowledge
about the timings and conditions (cf., above), we also sought
to compare the current method with another fully data-driven
approach. For this, we submitted our task-related fMRI data
to the “tensor ICA” algorithm [Beckmann and Smith, 2005]
implemented in MELODIC v3.14 tool (Multivariate Explora-
tory Linear Decomposition into Independent Components),
part of FSL v.5.0.8 (FMRIB'’s Software Library, www.fmrib.ox.
ac.uk/fsl). This implementation of ICA makes the assumption
that the temporal response pattern of each IC is the same
across the population. The algorithm extracts a set of ICs that
characterize the signal variation in the temporal (time-series),
spatial (spatial maps) and subject domains. Here, we con-
catenated the two fMRI-runs and submitted the data of all 18
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subjects to the algorithm, which initially extracted 198 ICs.
The number of components was determined with the
“automatic dimensionality estimation” in Melodic, which
uses the Laplace approximation to the Bayesian evidence of
the model order [Beckmann and Smith, 2004; Minka, 2000].
We retained 60 ICs that showed reliable spatiotemporal com-
ponents over subjects (i.e., mean of the subject-mode larger
than zero, at P<0.001) and examined the relationship
between these ICs and the experimental design by correlating
the temporal mode of each IC with the four GLM predictors,
using four separate regressions (see Supporting Information
Fig. 52).

RESULTS
Simulations

Qualitative description of the results for one
simulated dataset

First, we describe in details the output of one of the simu-
lations. The simulated dataset included 18 subjects (corre-
sponding to the sample size of the fMRI experiment), a SNR
equal to 15 (analogous to the SNR of the real fMRI data; SNR
=16.6) [computed according to Constantinides et al., 1997],
sliding windows of 16 s and an ISS-threshold of P-
corr. = 0.05, that is, the same parameters used for the analy-
sis of the main fMRI experiment. The timings of the simu-
lated signals corresponded exactly to the timings of the
stimuli/tasks used during fMRI (see Methods and Fig. 2A1).

Figure 2B.2 shows the output of the transient-ISS analy-
sis. This is a binary matrix with five lines corresponding
to the five simulated “areas” (X, Y, Z, W, K) and 622 col-
umns corresponding to the number of the sliding win-
dows applied to the time-series. The black lines (value in
the matrix = 1) indicate “when” and “where” the ISS was
significant, thus identifying stimulus/task related areas
and the associated relevant time-points (cf., also Fig. 1).
This included the onset and the offset of the task-blocks
(areas X, Y, Z) and the transient events (area W); compare
Figure 2B1,B2. It should be noticed that the onset of the
significant ISS with respect of the simulated signal, as well
as number of successive windows showing a significant
ISS (i.e., width of the black lines), was somewhat variable.
This was accounted for by the last step of the analysis
(BOLD-clustering), please see below.

Next, the ISS binary matrix was submitted to k-mean
clustering (cf., Fig. 1). This isolated four separate clusters,
each including areas with the same pattern of significant
ISS over the time-series. Figure 2B3 shows “when” the
clusters were active and the areas belonging to each clus-
ter (where). Cluster A included area W only; cluster B also
included area W, but now together with areas Y and Z;
cluster C included area X and Z; and cluster D included
area Y and Z. The areas belonging to each cluster and the
timings of engagement of the clusters were consistent with
the simulated signal (see below, Fig. 3 and Table 1).

As noted in the Methods section, the “transient ISS” and
the “ISS-clustering” analysis steps work on the consistency
and the timing of the responses, not on the specific shape
of the BOLD signal within each window. Thus, a single
cluster can include windows with different signals: for
example, cluster C included both the onsets and the offsets
of the words-task blocks. The second cluster analysis
(BOLD-clustering, see Fig. 1) grouped together time-
windows with similar signals. This then enabled us to
average signals across time-windows and to obtain the
final bModes, each with a specific set of areas and time-
windows, but also with a specific BOLD signal at the
times of occurrence. Figure 3 shows the results of this last
step of the analysis, with the final set of bModes for this
specific simulation. The cluster A was separated in Al to
A6 that differed in time of onset of the BOLD response
within the window, with some bMode showing an earlier
onset than others (Fig. 3A, for bModes A1-3). This reflects
the variability of “when” the transient-ISS became statisti-
cally significant compared to the actual/simulated
response onset. When the simulated signal was averaged
and plotted using the time-points associated with the
bModes, we observed the very same shift in time (cf.,
inset, in each panel). This demonstrates that the method
identified the correct timing of the stimulus onsets, despite
the variability of exactly when the transient-ISS became
significant. The BOLD-clustering of cluster B showed the
same effect (see Fig. 3B). Most importantly, the compari-
son of Figure 3A,B highlights that the method was able to
correctly track the changes of coupling of area W, which
sometime activated alone (bModes Al-6) and sometime
activated together with the XZ network (bModes B1-3).
For clusters C and D, the BOLD-clustering separated cor-
rectly the block-onsets and the block-offsets, both for the
XZ network (C1 vs. C2, in Fig. 3C) and the YZ network
(D1 vs. D2, Fig. 3D). Figure 3C,D show that the method
was successfully in tracking the changes of network mem-
bership of the “common” area Z, which became part of
the XZ network or the YZ network at different moments
in the time-series.

Table 1 presents the quantification of the performance
accuracy for this specific simulation. The method success-
fully detected and classified almost all the expected net-
work configurations, at the correct time-points of the
simulated time-series. Specifically, all the onsets and the
offsets of the XZ network were detected successfully
(bModes C1-2). The method discriminated well the pre-
sentation of isolated events in area W (see bModes A1-6)
from when these events were coupled with the activation
of the YZ network (YZW-network: bModes B1-3). We
observed a single case of wrong classification with bMode
B3 (areas YZ, plus W) occurring at a time-point actually
corresponding to an onset of the YZ network without any
co-occurring event in area W (see also inset in Fig. 3B).
This was scored as a false positive for bMode B3, as well
as a false negative for bMode D1; that is the bMode corre-
sponding to the correct YZ network configuration at that
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Final bModes for one of the simulations (see Fig. 2B). The
BOLD-clustering allowed us to group together time-windows
with the same BOLD signal, thus generating the final bModes.
Each bMode comprises a set of areas, a set of time-windows
and a specific BOLD signal for each area belonging to the
bMode. We also show the “true” simulated signal (cf., Fig. 2BI)

time-point. The resulting Mcc-value for this specific simu-
lation was 0.978.

In sum, this simulation highlighted that the method
was able to retrieve several different network configura-
tions in fully data-driven manner, and to do this with a
high degree of accuracy (Table 1, and see section below).
The method identified areas that switched between two
different networks (“common” area Z switching between

that here was averaged using the time-windows associated with
each bMode, see plots in the insets. The latter demonstrate that
the method successfully identified and grouped together time-
points corresponding to specific events (or combination of
events) in our simulated dataset.

“task-specific” areas X and Y; see bModes C and D); and
areas that dynamically coupled or uncoupled with
another network (area W activating alone or coupled
with YZ-network, see bModes A and B). The BOLD-
clustering step separated instances when the same set of
regions were coupled, but showed a different BOLD sig-
nal (i.e., block-onset vs. block-offset, cf., bModes C1-2
and D1-2).
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Results of the simulations using different parameters, see also
main text. A. The Matthews correlation coefficient (Mcc) plot-
ted against the signal-to-noise ratio, for different sample sizes
(time-window = 16 s; ISS-threshold set to P-corr=0.05). B.
The Mcc computed for sliding time-windows of different length
and with the ISS-threshold set at different levels of significance

Quantitative evaluation of the method’s performance

To quantify the performance of the new method, we
manipulated several parameters and evaluated the accu-
racy of the method’s output. The performance was
assessed by comparing the simulated patterns of inter-
regional coactivation (“true signal,” see Fig 2B1) with the
observed bModes, each including a set of areas and a
sequence of time-points (e.g., see Fig. 3 and Table 1). The
accuracy of each simulation was quantified using the Mcc
that takes into account the performance both on true posi-
tives (Hits and Misses), as well as on true negatives (cor-
rect rejections and false alarms), see Methods section.

A first set of simulations varied the sample size (number
of simulated “subjects”) and the SNR. The size of the
sliding-windows was set to 16 s and the threshold of the
ISS analysis was set to P-corr. = 0.05. Figure 4A shows the
method performance as a function of the sample size and
SNR. As expected we found that, across sample sizes, the
performance increased with increasing SNRs. The per-
formance reached a plateau of approximately 0.9 with
SNR = 8-10 for the largest sample size (n = 25); while for
the small sample size (n = 8) this required an SNR = 20-25.
With an SNR =15 (corresponding to the value estimated
for our main fMRI experiment, cf., above), a sample size
between 15 and 20 subjects appeared suitable to obtain a
good performance (Mcc approx. 0.9).

(18 subjects, SNR = 15). Each simulation condition was run five
times and the error bars represent the standard deviation of the
Mcc across these five repetitions. The P-values refer to the
thresholds applied to the transient-ISS analysis, with (P-corr) or
without (P-unc) correcting for the number of sliding windows,
see also Method section.

A second set of simulations varied the size of the sliding-
windows and the statistical threshold applied to the
transient-ISS analysis (Fig. 4B). With the current simulated
signal, which included both blocks and events (see Fig.
2A1), we found that the best performance was obtained
with sliding windows between 8 and 12 TRs (i.e., 16 to
24 s). Possibly, this reflects the best balance between having
sufficient data points to compute the ISS reliably and, at the
same time, including segments of the time-series with a rel-
evant change of BOLD signal (i.e., increases/decreases of
the signal associated with the block-onsets/offset or the
events). Concerning the ISS-threshold used to generate the
binary matrix, the simulations showed a performance
decrease when this was not corrected for multiple compari-
sons (P-unc., see black line in Fig. 4B). This was primarily
due to an increase of the number of “synchronized” time-
windows appearing in the binary matrix, despite the lack
of any true signal in the corresponding areas or time-points
(i.e., Type I errors in the transient-ISS analysis). This, in
turns, generated an high number of false positives that
included both the detection of bModes at time-points with-
out any true signal, as well as the detection of wrong net-
work configurations. Conversely, increasing the corrected
threshold from P-corr. = 0.05 to P-corr.=10"* did not affect
the method’s performance to any large extent. This may be
relevant if one considers correcting the ISS-analyses not
only for the number of windows but also for the number of
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Results of the standard, hypothesis-driven analyses of the main
fMRI experiment. A. Direct comparison of “Words > Spatial.”
The threshold was set to P-FWE-corr. = 0.05. B. Direct compar-
ison of “Spatial >Words.” The threshold was set to
P-unc. = 0.001, for illustrative purposes (see Table Il, with the
statistics corrected for multiple comparisons). C. “Words vs.

areas included in the analysis. In this context, a P-
corr. =10~ * would correspond to a further Bonferroni-type
correction for 200 areas, that is, more than those considered
in the main fMRI experiment (116 AAL-defined regions).

Main fMRI Experiment: GLM Results

The same protocol used for the simulations was applied
during whole-brain fMRI scanning in healthy participants
(cf., Fig. 2A1). One task was a category-judgment language
task (“living vs. non-living” words) and the other task was
a spatial judgment task (“symmetrical vs. asymmetrical”
bisection lines). The transient events were auditory bursts
of white noise. First, the fMRI data were analyzed with a
standard GLM that made use of a priori knowledge of

Rest”; D. “Spatial vs. Rest”; E. “Sound (alone) vs. Rest”; and F.
Sounds time-locked with spatial block-onset “(Sound & Spatial)
vs Rest.” Activations are shown in red, deactivations (i.e., Rest-
> stimuli/task) in blue. For C-F the thresholds were set to
P-FWE-corr. = 0.05. Activations are rendered on the MNI tem-
plate in SPM8.

“what” stimuli/tasks were presented and “when” (hypoth-
esis-based approach, see Fig. 2B1).

The direct comparison between the two tasks revealed
the expected dissociation, with activation primarily in the
left hemisphere, including the left inferior frontal opercu-
lum and regions in the left occipital cortex, for the words-
task and in the right hemisphere, including the right supe-
rior parietal gyrus, plus right precuneus and right inferior
temporal gyrus for the spatial-task (Fig. 5A,B, and Table
2). When both tasks were compared with rest, we found
the expected activation of “common” regions in visual
occipital cortex and in the left motor cortex contra-lateral
to the hand used for responding (see Fig. 5C,D, activations
shown in red; and Supporting Information, Tab. S1). More-
over, we found significant activation of the left frontal
operculum for the words-task and of the right
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TABLE 2. Direct comparisons between the two active tasks in the main fMRI experiment

x y z Z-SC. P-corr. Vox.

Words > Spatial

L. Inf. Occip. —-15 —102 =7 5.90 < 0.001 18

L. Lingual -36 —90 -13 5.76 < 0.001 54

L. Inf. Frontal Oper. —42 15 23 522 = 0.005 21

L. Cereb. Crus 1 —45 —66 —28 5.39 = 0.002 22
Spatial > Words

R. Sup. Parietal 27 =72 56 4.82 =0.035 4

R. Precuneus 3 —51 38 4.78 =0.040 1

R. Inf. Temporal 57 —66 —-10 4.74 =0.048 1

The contrasts have been assessed with a standard, hypothesis-driven GLM analysis. Results are reported at P-FWE-corr.= 0.05,
corrected for multiple comparisons at the voxel level. The labeling of the areas correspond to the AAL template. L/R: left/right hemi-
sphere. Coordinates are in MNI space (x, y, z; in mm). Z-sc: Z scores. Vox: number of voxels in the activated cluster.

supramarginal gyrus for the spatial-task, see Supporting
Information Tab. S1. The auditory events activated only
the auditory cortex when the sounds were presented in
isolation (Fig. 5E); while the sounds time-locked with the
onset of spatial-task activated the auditory cortex, “task
common” regions in visual and motor cortex, plus areas
specific for the spatial-task in the right premotor cortex
(see Fig. 5F and Supporting Information Tab. S1).

Overall, the GLM analyses confirmed that our experi-
mental paradigm was successful in generating: “common”
activation for the two active tasks (visual and motor
areas); “task-specific” activation for the words-task (infe-
rior fontal regions in the left hemisphere) and for the
spatial-task (premotor and parietal regions in the right
hemisphere); and activations associated with the auditory
events, including either only the auditory cortex (isolated
sounds) or the auditory cortex plus visuo-motor and right
premotor cortex when the sounds were time-locked to the
onset of the spatial-task. In addition, the GLM analyses
revealed that during the two active tasks the BOLD signal
decreased below rest-baseline in several regions (see Fig.
5C,D, de-activations shown in blue). For both tasks, this
included the medial posterior parietal cortex (cf., default
mode network) [Raichle et al., 2001].

Main fMRI Experiment: bModes

The time-series of the main fMRI experiment were aver-
aged within the 116 AAL regions and submitted to the
new method. Visual inspection of the transient-ISS binary
matrix already indicated some regular pattern of ISS over
both areas and time-windows (Fig. 2C1). This was for-
mally assessed with the first clustering step. The ISS-
clustering identified four clusters (A, B, C, and D; see Fig.
2C2), plus one additional cluster that occurred only once
during the entire experiment and was not considered fur-
ther. Cluster A comprised four areas corresponding to the
auditory cortex bilaterally (see also Fig. 6A). Cluster B
comprised 13 areas, including the auditory cortex but also

the visual and motor areas, and frontoparietal regions in
the right hemisphere (Fig. 6B). Cluster C comprised 11
areas, including visual and motor regions, the left premo-
tor cortex, plus medial parietal cortex, and dorsal occipital
regions (Fig. 6C). Cluster D included only the visual and
motor cortices (Supporting Information Fig. S1; and Table
3, with the list of the AAL regions included in each clus-
ter). Overall, there was a good correspondence between
the areas identified with our data-driven approach and
those highlighted with standard data-fitting GLM (com-
pare panels A and B, in Fig. 7).

The BOLD-clustering of Cluster A identified three bMo-
des (see Fig. 6A). The BOLD signal in bModes Al and A2
was consistent with an event-related response to short
auditory stimuli. We evaluated the specificity of these
results by averaging the predicted signal used for the
GLM analyses, but time-locking the predictors based on
the time-points associated with the bModes (cf., insets, in
the plots of Fig. 6). If the time-windows associated with
the bModes are unrelated to the experimental paradigm,
these plots would simply show some noise. By contrast, if
the method correctly detects the occurrence of specific
events in time-series, these plots will show the correspond-
ing effect coded in the stimulus/task predictors (i.e.,
design matrix of the GLM). This procedure confirmed that
bModes Al1-A2 corresponded to the isolated auditory
events (light gray, in the insets), without any co-occurring
active task (continuous and dotted-lines). As we already
observed in the simulated data, the separation of Al and
A2 was due to a temporal shift by one data-point/TR,
which can be attributed to the timing of “when” the
transient-ISS became significant. By contrast, the single
occurrence of bMode A3 appeared to be time-locked just
after the onset of a spatial-task block (cf., dotted-line in the
inset of the corresponding plot) that we interpret as an
incorrect classification.

The BOLD-clustering of Cluster B (13 areas) identified
four bModes, see Fig. 6B. For illustrative purposes, we
plotted the signal of the four “auditory” regions in blue
and the other nine regions in red. For bModes B1-3, the
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Figure 6.

Final bModes obtained for the main fMRI experiment. The figure
shows three out of the four clusters identified in main fMRI
dataset, the fourth cluster is reported in the Supporting Infor-
mation. For each cluster, we show the relevant areas rendered
on the MNI brain template; and the further subdivision in the
final bModes, each engaging at specific time-points (see plots
below the 3D renderings) and with a specific BOLD signal (see
plots on the left). The areas belonging to each cluster are listed
in Table Ill. Above each signal plot, we report how many times
the bMode occurred during the time-series (“n” time-windows).
The BOLD signal is an average of the signal in these time-

average signal within the windows showed a BOLD
increase all the areas (see signal plots in Fig. 6B). By time-
locking the predicted responses (GLM) to the time-

windows, separately for each area belonging to the bMode. To
highlight that areas belonging to the same bMode can display
substantially different BOLD signal, for bModes Bl-3 and Cl-2
the signal of different areas are plotted in different colors (cf.,
also Table lll). The insets show the expected signal for the differ-
ent tasks/stimuli (i.e., GLM design matrix, and cf., Fig. 2B1) aver-
aged using the time-windows associated with the corresponding
bMode. These highlight that we successfully identified and
grouped together time-points corresponding to specific events
in the experimental paradigm, see also main text.

windows of the bModes, we confirmed that these bModes
corresponded to the auditory events co-occurring with the
onset of the spatial-task blocks (see insets, in each plot).
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A. F-test

B. All bModes

C. Tensor IC (Task related)

Figure 7.

A. Results of the omnibus F-test that assessed the overall fitting
of the GLM model, including all tasks and stimuli. The threshold
was set to P-FWE-corr. = 0.05. B. Projection of all the bModes
(clusters A-D) that were detected in the main, task-related
fMRI experiment. C. Projection of the 36 IC-maps with tempo-
ral modes that correlated at least with one of the four GLM

The brain regions belonging to these bModes were also
consistent with this, and included auditory areas, as well
as visual and motor areas, plus frontoparietal regions in
the right hemisphere (see Table 3). Again the separation of
bModes B1, B2, and B3 reflected the variability of when
the transient-ISS became significant. The single occurrence
of bMode B4 corresponded to an onset of the spatial-task
without any associated auditory event (see inset plot; and
also note the lack of any auditory response in bMode B4,
cf., blue lines) and was interpreted as an incorrect
classification.

These results indicate that the algorithm successfully
detected the activation of auditory cortex for auditory
events presented in isolation (bModes Al-2), and segre-
gated these from responses to auditory events that co-
occurred with the onset of the spatial-task (bModes B1-3).
Note that these findings were obtained without any a pri-
ori information about neither the areas involved, nor the
type or timing of the stimuli presented to the participants.

The BOLD-clustering of Cluster C (11 areas) dissociated
block-onset and block-offsets for the language task. For
illustration purposes, in Fig. 6C the signal of the visual,
motor, and left premotor cortex is plotted in yellow, while
the signal in the medial parietal cortex is plotted in green.
The bMode C1 identified the onsets of the language blocks
(cf., inset in the corresponding panel) and was associated
with an increase of activation in visual-motor areas and in
the left inferior pre-motor cortex (in yellow) and a concur-
rent decrease of the BOLD signal in the medial parietal

predictors (cf., also Supporting Information Fig. S2). D. Projec-
tion of the 24 IC-maps with temporal modes that did not corre-
late with any of the GLM predictors (see also Supporting
Information Fig. S2). Activations, bModes, and IC-maps are ren-
dered on the MNI template in SPM8.

cortex (in green). The bMode C2 identified the block-
offsets, with a signal decrease in task-related areas and
signal increase in the medial parietal cortex.

The BOLD-clustering of Cluster D (four areas) revealed
a more complex collection of bModes. Inspection of the
signal associated with the different bModes and compari-
sons with the corresponding predicted signal (GLM) indi-
cated that most of these bModes corresponded with the
onset and offsets of the task-blocks, including both the
words and spatial conditions (see Supporting Information
Fig. S1).

Figure 7A,B displays an overview of the results that ena-
bles visually comparing the bModes and the GLM results.
All the bModes and the results of the omnibus F-test
(GLM, see also method section) are projected side-by-side
on a 3D rendering of the brain. This highlights a good
agreement, despite the fact that the F-map was computed
at the voxel-level (approx. 65.000 voxels), while the pro-
jected bModes considered only the 116 AAL regions. This
correspondence confirms that our fully data-driven
method is able to specifically identify brain areas associ-
ated with stimuli/tasks processing.

Main fMRI Experiment: Tensor ICA

Finally, we submitted our main fMRI dataset to tensor-
ICA, which also makes use of the consistency of the BOLD
response across subjects to extract functional networks, in
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TABLE 3. The areas belonging to the four clusters identified in the main fMRI experiment

Cluster A Cluster B Cluster C Cluster D
Visual L. Sup. Occip. (r) L. Sup. Occip. (g)
L. Inf. Occip. (y) L. Inf. Occip. (SI)
R. Inf. Occip. (y) R. Inf. Occip. (SI)
Motor L. Precentral (r) L. Precentral (y) L. Precentral (SI)
R. Cereb. 6 (y) R. Cereb. 6 (SI)
L.SMA (y)
Auditory L. Heschl (b) L. Heschl (b)
R. Heschl (b) R. Heschl (b)
L. Sup. Temporal (b) L. Sup. Temporal (b)
R. Sup. Temporal (b) R. Sup. Temporal (b)
L-language L. Inf. Frontal Op. (r) L. Inf. Frontal Op. (y)
R-attention R. Inf. Parietal (r)
R. Rolandic Op. (r)
Other L. Insula (r) L. Precuneus (g)
R. Insula (r) R. Precuneus (8)
L. Middle Cingulate (r) L. Cuneus (8)
L. Rolandic Op. (r) R. Cuneus (g)

The AAL areas belonging to each cluster. Areas are grouped according to whether they belonged to visual, motor or auditory cortex,
the left-hemisphere language network or right-hemisphere attention network. The letters in the brackets refer to the color used in Figure
5 to plot the corresponding area (cf., 3D rendering and signal plots; b: blue; g: green; r: red; y: yellow; SI: Supporting Information, Fig.

S1).

a fully data-driven manner. The tensor-ICA identified 60
ICs with reliable spatiotemporal components over subjects
(P <0.001, see Methods). The relationship between these
60 ICs and the experimental design was formally assessed
by correlating the temporal mode of each IC with the four
stimulus/task predictors of the GLM model. This revealed
that 36 ICs showed some correlation with the at least one
of the predictors (see Fig. 7C). Specifically, a total of 32 ICs
correlated with the predictor associated with the words-
task, 21 with the spatial-task, 16 with the isolated sound-
events, and 6 with the sound-events coupled with the
spatial-task (see Supporting Information Figs. S2, for
details). Accordingly, the tensor-ICA was successful in
extracting several components related to stimulus/task
processing; for example, see IC-60 in Supporting Informa-
tion Fig. S3A, which could be linked specifically with the
words-task. Nonetheless, 24 ICs included temporal modes
that did not correlate with any of the GLM predictors (cf.,
Fig. 7D). Moreover, in most cases the link between a single
IC and the stimuli/tasks was not straightforward, even for
components with a temporal mode highly correlated with
the GLM. For example, the temporal mode of IC-31
showed a positive correlation with the isolated-sound
GLM predictor (see Supporting Information Fig. S2), but
the corresponding thresholded IC-map did not include the
auditory cortex (cf., Supporting Information Fig. S3B). In
sum, tensor-ICA successfully identified several stimulus/
task-related effects in our fMRI dataset, but the high num-
ber of ICs and the complexity of the temporal modes
made it difficult to relate the output of the tensor-ICA

with the experimental stimuli and tasks, see also Discus-
sion below.

DISCUSSION

We present a new method for the analysis of fMRI time-
series that was designed to identify transient network con-
figurations that show stimulus or task-related responses,
and to do this without any a priori information (fully
data-driven approach). We applied the method both to
simulated time-series and to a real fMRI experiment with
multiple tasks/conditions. The results of the simulations
demonstrated that the method can effectively detect tran-
sient changes of network configurations. The systematic
manipulation of sample size, SNR, size of the sliding-
windows and of the statistical threshold applied to the
transient-ISS analysis indicated that the method should
perform well in standard fMRI settings. Indeed, the results
of the main fMRI experiment confirmed that method can
work in real neurophysiological conditions. We were able
to track “when” (time-windows) and “where” (networks)
different stimuli and tasks triggered specific network con-
figurations, without using any a priori information about
the stimuli and the tasks. The results of a standard
hypothesis-based GLM analysis of the same dataset were
in good agreement with our data-driven results.

The four main features of the method presented here
are: (1) it selectively targets areas engaged in stimulus/
task processing; (2) it identifies inter-regional effects; (3) it
tracks the dynamic changes of these inter-regional effects;
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and (4) it is fully data-driven. These characteristics makes
it ideal to investigate brain functioning in complex and
naturalistic experimental setting (e.g., during movie watch-
ing), when there is little a priori knowledge about the
underling processes and the construction of predictors for
hypothesis-driven analyses (e.g.,, GLM) is challenging.
However, it should be noticed that the aim of the current
work was to validate the method and, therefore, we
designed a protocol that allowed us to have some control
of the patterns of activity across brain regions and any
change of these over time. This enabled us to quantify the
method performance in our simulations and, for the main
fMRI experiment, to compare the results of the new
method with a standard GLM analysis [see also Pajula
et al., 2012]. While representing only a simplified version
of the network dynamics likely to occur with naturalistic
stimuli, the current experimental protocol included a rela-
tively complex set of inter-regional effects. We generated
inter-regional dynamics that included areas switching net-
work “membership,” as well as areas coupling/uncou-
pling over time [see Hutchison et al., 2013a and Smith
et al., 2012]. The first constraint was implemented by
choosing two tasks that would engage both “task-specific”
and “task-common” areas (i.e., language-task and spatial-
task) and by including “task-specific’ and “common”
areas in the simulations (i.e., areas X and Y, vs. area Z; see
Fig. 2B1). For the second constraint, we introduced the
task-irrelevant auditory stimuli that could either co-occur
with the spatial-task, thus triggering coactivation of the
auditory cortex with the spatial-task network, or be pre-
sented in isolation (cf., also area W in the simulations, and
see Fig. 2B1). The simulations and the results of the main
fMRI experiment showed that the current method was
able to identify and track these different types of dynamic
network re-configurations.

The main value of the current method is that it can iden-
tify transient network configurations that are relevant for
stimulus and task processing, without making use of any a
priori information. Most of the available methods used to
study stimulus/task-dependent changes of connectivity
require knowing when such changes occur [e.g., see psycho-
physiological interactions, Friston et al., 1997; dynamic
causal modeling, Friston, 1994; Granger causality, Goebel
et al., 2003; structural equation modeling, McIntosh and
Gonzalez-Lima, 1994], which is typically not the case for
experiments that make use of complex and naturalistic stim-
uli. Conversely, data-driven methods enable identifying pat-
terns of activation without any a priori knowledge, but the
link between the patterns of activity/connectivity and the
stimuli/tasks might be difficult to establish. Most com-
monly, the latter has been addressed by looking for correla-
tions between the extracted indexes of connectivity and
some behavioral measure ([e.g. Raz et al., 2012; Thompson
et al., 2013; see also Krishnan et al., 2011] for a review of Par-
tial Least Squares [PLS] methods, including behavior-PLS
and task-PLS that can test for relationships between inter-
regional patterns of activity and behavior/task).

Here, we adopted a conceptually different approach,
seeking to identify regions selectively engaged in stimu-
lus/task processing using ISS [Hasson et al., 2004]. More-
over, we computed the ISS using sliding windows, thus
obtaining time-resolved information about these stimulus/
task-relevant effects. Recently, Glerean et al. [2012] also
combined intersubject correlation analysis, and seed-based
inter-regional correlations, with sliding windows. The
authors were able to track dynamic changes of connectiv-
ity during movie watching and demonstrated that window
sizes of 8-10 TR are optimal both for intersubjects synchro-
nization and for the analysis of inter-regional connectivity.
This window-size range is consistent with the results of
our simulations (see Fig. 4B). However, because of the
uncontrolled nature of the stimuli, Glerean’s study could
not validate the time-resolved output against some
“known” sequence of events and the associated patterns of
brain activation. By contrast, here we were able to com-
pare the output of our data-driven method with simulated
sequences of activations and coactivation patterns; as well
as with the results of a standard GLM analysis, in our
main fMRI experiment.

Another data-driven approach that can make use of the
consistency of the responses across subjects to extract
information from fMRI time-series, is tensor-ICA. When
applied to the current fMRI dataset, tensor-ICA identified
several components (1 = 36) with temporal modes correlat-
ing with the stimulus/task design (see Fig. 7C and Sup-
porting Information Fig. S2). However, despite these
correlations, the single ICs could not be easily linked to
the different stimuli/tasks presented to the subjects (e.g.,
see IC-31, in Supporting Information Fig. S3B). Part of the
issue may relate to the statistical thresholding of the IC
maps. For instance, the IC-31 was found to correlate with
the auditory-events, but did not show any effect in the
auditory cortex at the default threshold (Z-score = 3.3; cor-
responding to P> 0.5, in the alternative hypothesis testing
framework of Melodic in FSL). However, lowering the
threshold to Z-score =2.0 started reveling some voxels
also in the superior temporal cortex. Furthermore, we
should note that here we performed a high-order decom-
position (189 ICs were extracted initially, see Methods)
and some stimuli/task-related effects may have been
“parcellised” across several ICs, some of which may have
not survived the thesholding procedure.

One difference between the tensor-ICA and the current
method is that tensor-ICA provides us with a continuous
decomposition of the time-series (i.e., each ICs has a single
temporal mode with a duration corresponding to entire
time-series) while the bModes are associated with specific
time-points within the fMRI time-series. The combination
of tensor-ICA and sliding windows may also enable cap-
turing such dynamical aspects, but this would require in-
depth testing; for example, to determine the size of the
sliding windows required to obtain reliable decomposi-
tions. Most importantly, a key feature of our current
method is that it permits characterizing time-varying and
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overlapping networks related to the different stimuli/tasks
that share common processes (e.g., auditory responses in
superior temporal areas of bModes A and B, associated
with the auditory events in isolation vs. sounds occurring
together with the spatial-task; see Fig 6). Thus, the bModes
can be used to detect and categorize events that occur in a
repeated manner during the experiment, under the
assumption that each occurrence of the event generates a
specific network configuration.

The notion of using network configurations to identify
and classify “brain-states” in a data-driven manner has
been used in several recent studies. For example, Leonardi
et al. [2014] used functional connectivity dynamics to clas-
sify three different cognitive states: counting backward
versus episodic retrieval versus silent singing. However,
their approach focused on distinguishing cognitive states
across fMRI-sessions [see also Shirer et al.,, 2012], rather
than detecting state-changes within a single session. Cross-
ley et al. [Crossley et al.,, 2013] used graph analysis to
examine a large dataset of task-related PET and fMRI
experiments, which revealed the recurrent coactivation of
distinct areas across experiments/tasks. These results con-
firmed the possibility of using network configurations to
track cognitive function in a data-driven manner, but
again without providing us any time-resolved information
for event-categorization within a fMRI time-series/experi-
ment. Conversely, Liu et al. proposed to generate tempo-
rally resolved coactivation patterns (CAPs) based on the
recurrent formation of specific spatial patterns of activity
at the level of the single MR volume [Liu et al., 2013, Liu
and Duyn, 2013]. Similar to the bModes, the CAPs are
computed with k-means clustering and each CAP can
include both regions with a positive BOLD signal and
regions with a negative signal. However, we should note
that CAPs have been developed in the context of resting-
state data analysis and were designed to extract bursts of
spontaneous of activity. By contrast, a key feature of the
current algorithm is that the bModes include only areas
that involved in stimulus/task processing. Indeed, the
analysis of a resting-state dataset with the current method
did not detect any bMode (data not shown).

Because the identification of network configurations via
coactivation does not rely directly on the BOLD signal, the
areas belonging to the same network can have markedly
different signal [cf., also CAPs, above; and “competitive
interactions,” in Crossley et al., 2013]. Here, the character-
istics of the BOLD signal within each area were examined
further with the second clustering step (BOLD-clustering).
The analysis of the main fMRI experiment highlighted that
the coupling between “task-related” regions (sensory and
motor areas) and the medial parietal cortex reversed com-
pletely at the beginning versus the end of a task-block (see
cluster C, in Fig. 6). Thus, these bModes identified cou-
plings between areas with anti-correlated BOLD signal,
and separated time-points when the coupling involved
activation in a set of regions and concurrent de-activation
in another set of regions (i.e., at the beginning of a task-

block: bMode C1) versus the opposite pattern of activa-
tion/de-activation (i.e., the end of a task-block: bMode
C2). These patterns were not included in our simulated
dataset, but are consistent with the existing literature
showing that regions in medial parietal cortex de-activate
when participants start a cognitive task and activate again
as soon as the participant goes back to rest [Fox et al.,
2005, McKiernan et al.,, 2003]. The finding of bModes
reflecting these complex inter-regional interactions empha-
size the potential of the current method to highlight inter-
regional patterns of activation that, for example, might not
be considered/tested in a classical hypothesis-driven GLM
analysis.

Future optimization of the method should consider
improving the spatial resolution. The analyses presented
here considered 116 regions, averaging the BOLD signal
over many voxels (up to 1633, for the AAL right middle
frontal region). This initial averaging reduces the possibil-
ity of detecting any effect that is highly localized in the
brain. Alternative applications of the method may consider
different templates, for example using cytoarchitectonic-
based atlases [Eickhoff et al., 2005] or defining ad hoc tem-
plates based on independent functional data. The latter
could include the investigation of network re-
configurations within the occipital visual cortex, by first
constructing a specific template based on individual reti-
notopic maps. A second point that could be optimized
concerns the automatic detection of bModes that differ
only because of small temporal shifts the BOLD signal
(e.g., bModes B1-3, in Fig. 6). These should be detected
and averaged together by shifting the time-windows and
the BOLD signal by the correct number of TRs. Finally, the
main purpose/application of the method is investigate net-
work dynamics involved in the processing of complex and
naturalistic stimuli; that is, when the construction of pre-
dictors for GLM analyses is particularly challenging.
Because each bMode includes a set of relevant time-
windows (when), future work will focus on re-examining
the stimuli at the relevant time-points with the aim of
associating each bMode with specific aspects of the stimuli
[cf., Hasson et al., 2004; see also Crossley et al., 2013, who
combined data-driven network identification with
database-derived “functional labels”]. This will add an
additional dimension to the output of the algorithm, which
would then include a specific “functionality” for each
bMode. Additional applications may involve using bMo-
des to detect instances of cooperative versus noncoopera-
tive behavior during hyper-scanning [Krill and Platek,
2012, Scholkmann et al., 2013], thus seeking to exploit ISS
related to common high-level goals, over and above the
presence of a common sensory input as during movie-
watching.

In conclusion, we present and validate a fully data-
driven technique that detects inter-regional configurations
of stimulus/task-related areas and tracks the dynamics of
these networks over time. The method does not rely on
the temporal relationship between the BOLD signal in the
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areas belonging to the same network but rather identifies
network configurations based on the repeated engagement
of the same set of task-related regions over the fMRI time-
series. This new approach will contribute to the growing
field of neuroimaging studies seeking to understand cogni-
tive functions in naturalistic, real-world-like conditions
[Peelen and Kastner, 2014].
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