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Abstract: Drug targeting is a progressive area of research with folate receptor alpha (FRα) receiving
significant attention as a biological marker in cancer drug delivery. The binding affinity of folic acid
(FA) to the FRα active site provides a basis for recognition of FRα. In this study, FA was conjugated
to beta-cyclodextrin (βCD) and subjected to in silico analysis (molecular docking and molecular
dynamics (MD) simulation (100 ns)) to investigate the affinity and stability for the conjugated
system compared to unconjugated and apo systems (ligand free). Docking studies revealed that
the conjugated FA bound into the active site of FRα with a docking score (free binding energy
< −15 kcal/mol), with a similar binding pose to that of unconjugated FA. Subsequent analyses
from molecular dynamics (MD) simulations, root mean square deviation (RMSD), root mean square
fluctuation (RMSF), and radius of gyration (Rg) demonstrated that FA and FA–βCDs created more
dynamically stable systems with FRα than the apo-FRα system. All systems reached equilibrium with
stable RMSD values ranging from 1.9–2.4 Å and the average residual fluctuation values of the FRα
backbone atoms for all residues (except for terminal residues ARG8, THR9, THR214, and LEU215)
were less than 2.1 Å with a consistent Rg value of around 16.8 Å throughout the MD simulation time
(0–100 ns). The conjugation with βCD improved the stability and decreased the mobility of all the
residues (except residues 149–151) compared to FA–FRα and apo-FRα systems. Further analysis
of H-bonds, binding free energy (MM-PBSA), and per residue decomposition energy revealed that
besides APS81, residues HIS20, TRP102, HIS135, TRP138, TRP140, and TRP171 were shown to have
more favourable energy contributions in the holo systems than in the apo-FRα system, and these
residues might have a direct role in increasing the stability of holo systems.

Keywords: targeted drug delivery system; folate receptor alpha; folic acid-conjugated cyclodextrins;
molecular docking; molecular dynamics; radius of gyration (Rg); H-bonds; MM-PBSA; MM-PBSA
per residue energy decomposition

1. Introduction

Chemotherapy remains as an important option in addition to other anticancer treat-
ments including surgery and radiotherapy [1,2]. Although anticancer drugs are available
for cancer chemotherapy, many of them have significant toxicity and adverse effects. One of
the most promising approaches to overcome adverse effects of anticancer drugs is utilizing
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targeted drug delivery system (TDDS) [1,3]. This drug delivery system transports the
drug selectively to its site of action within the therapeutic concentration, restricting the
drug’s access to healthy cells, thus, minimizing the toxic side effects. A TDDS can rapidly
enter tumour cells through receptor-mediated endocytosis. One of the receptor targets for
internalization of anticancer TDDS is folate receptor alpha (FRα) [4]. This receptor is highly
expressed in many human tumour cells including ovary, kidney, breast, myeloid, brain, and
lung cancer cells [5]. Conjugation of a drug delivery system with folic acid (FA) has been
used to achieve active targeting [6,7] as FA can be recognized by FRα with high binding
constants (Kd ∼ 1010 M−1) [5]. This has led to the development of various folate-appended
drug carriers such as liposomes [8–10], dendrimers [11–13] and micelles [14–16].

Folate-conjugated cyclodextrins (FA-CDs) are another attractive drug carrier that can
potentially be useful in the TDDS for anticancer drugs. Cyclodextrins (CDs) are degradation
products of starch with α-, β-, and γ-CDs being the most common natural CDs, consisting
of six, seven, and eight glucose units, respectively. They possess a remarkable ability to
incorporate various guest molecules, via noncovalent interactions, into their hydrophobic
cavities [17]. Several FA-CD systems for anticancer drugs have been reported [18–20] with
a recent development of folic acid–polyethylene glycol–β-cyclodextrin (FA–PEG–β-CD)
nanoparticles (NPs) by Fan et al. [21], as a drug-delivery system for doxorubicin for liver
cancer therapy. The in vitro drug release results showed that the FA–PEG–β-CD NPs
improved doxorubicin’s solubility and could also control the drug release. Furthermore,
docetaxel-loaded folic acid-conjugated cyclodextrin (FA-CD) developed by Xu et al. [22]
has been shown to be more effective in inducing apoptosis in FR-expressing cells.

Ligand conjugated CD development and investigation rely mostly on trial-and-error
in the laboratory by formulation scientists, which is time-consuming and costly [23]. The
structure, dynamics, and energetics of cyclodextrin complexes may be investigated using a
molecular modelling approach [23]. Yin et al. [24], for example, investigated the potential
of a novel drug delivery system consisting folic acid-conjugated CD carriers for the delivery
of adamantane (Ada) and doxorubicin (DOX), (FACD–Ada–DOX), predicted in silico by
molecular docking. The prediction was validated in an in vitro assay where the cellular
uptake of these nanoparticles was eight-fold higher in comparison to conventional systems
in FR-positive tumour cells via endocytosis. In another study, docking was used to predict
the conformation of a POH/β-CD inclusion complex of which the predicted most stable
structure (1:1 molar ratio) was selected for formulation and in vitro and in vivo studies [25].

Hence, in this study, molecular docking and molecular dynamics simulation of conju-
gated FA to beta-cyclodextrin (βCD) were carried out to understand the effect of conjuga-
tion on the stability and interactions of FA with FRα (Figure 1). It is hoped that this study
will pave the way for the consideration of folic acid conjugation in order to provide a more
selective and targeted drug delivery systems.

Figure 1. Structure for FA–βCD. Folic acid moiety is in red and β-cyclodextrin is in black.
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2. Results and Discussion
2.1. Molecular Docking Analysis

Redocking of FA from the crystal structure was carried out first to validate the docking
procedure. The FA molecule was extracted from the crystal structure of FA in complex
with FRα (PDB ID:4LRH) [26] and redocked into the same binding site. Figure 2 shows
that the docked pose of FA was similar to its crystallographic pose (RMSD = 0.90 Å),
indicating that docking was able to reproduce the experimental result. Then, FA–βCD was
also docked into the same binding site. Table 1 shows the docking scores (free binding
energy, FEB) of the systems (FA– and FA–βCD) upon docking to FRα. Interestingly,
FA–βCD (FEB = −15.20 kcal/mol) showed more negative free binding energy than FA
(−13.20 kcal/mol), indicating a more favourable interaction between FA–βCD with FRα.
Although the RMSD value of FA–βCD is 5.04 Å, its FA moiety was bound to the active site
of FRα in a similar binding pose (Figure 2).

Figure 2. Superposition of docked models of FA (RMSD = 0.90 Å) and FA–βCD (RMSD = 5.04 Å),
shown in orange and green colours, respectively, compared to the reference structure FA (blue) with
FRα (PDB ID: 4LRH). The key amino acids that interact with the ligands are labelled in navy blue,
and the binding site is colour-coded in transparent blue. Some regions of the protein are omitted to
facilitate visualization.

Table 1. AutoDock Vina docking scores of FA and FA–βCD docked against FRα.

Ligand Free Energy of Binding, FEB (kcal/mol) RMSD *

FA −13.20 0.90 Å
FA–βCD −15.20 5.04 Å

* The calculated RMSD values were referred to as deviation of the FA structure from the crystal structure of FA in
4LRH.PDB [26]. * RMSD calculated only on the FA moiety of the molecule.

As with the FA–FRα complex (Figures 2 and 3a), the folate moiety of the FRα–FA–
βCD complex was also stabilized by polar amino acids such as ASP81, TYR60, ARG103,
HIS135, and nonpolar residues such as TRP102 and TRP171 [27]. The main interactions
of these residues were with pteroate moiety (pteridine ring with PABA (p-amino benzoic
acid)) (Figure 3b). These observations are similar to those in the crystal structure of
human FRα complexed with FA where this pteroate moietywas buried inside the deep
binding pocket of FRα [26]. It is noted that the βCD did not enter the binding site, and
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only formed an interaction with the amino acid at the surface of FRα such as LYS19.
Interestingly, conjugation to βCD resulted in the FA to elude its H-bonds interaction
between its glutamic acid moiety with LYS136, GLY137, TRP138, and TRP140, a behaviour
observed in our previous study [27]. In addition, Figure 3b shows that the residue TYR85
lost its π–π stacking interaction with the pteridine ring from the FA structure of the FA–
βCD. This could be because of the excluded volume induced by βCD. Presumably, this
affects the position of surrounding residues in the binding site, and it may cause the FA
moiety to drift a little from the binding site (Figure 2). This docked pose of FA–βCD was
then used as the starting structure for the MD simulation to investigate further on the
mechanism of binding of FA–βCD onto FRα.

Figure 3. 2D-Interaction analysis of docked models of (a) FA and (b) FA–βCD with FRα binding site.

2.2. Molecular Dynamics (MD) Simulation
2.2.1. Stability of the Simulated Systems

Understanding the atomic level interactions and the resulting structural characteristics
is important for the targeted drug delivery application of βCD conjugated with FA. In
order to explore the binding stability of the systems and gain a deeper understanding of
the dynamical behaviour of the complexes, 100 ns MD simulations of FRα in complexed
with FA and FA–βCD were performed. The behaviour of the complex systems was also
compared with that of the ligand free system (apo-FRα). Prior to the simulation, apo-FRα
was set up by removing the folic acid from the same crystal structure used as the starting
structure of the FRα–FA system. The stability of the simulated systems was investigated by
tracking the root-mean-square deviation (RMSD) of the protein backbone and ligand atoms
during the 100 ns of MD simulations, as shown in Figure 4. In general, all systems were
found to reach equilibrium after 35 ns with stable RMSD values ranging from 1.9–2.4 Å
during the simulation time.
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Figure 4. The root mean square deviation (RMSD) plots of the protein and ligand backbone atoms
for the selected systems. Apo-FRα (black), FRα–FA (red and orange), and FRα–FA–βCD (blue, cyan,
and green).

Figure 4 shows that the apo-FRα backbone has the highest RMSD compared to the holo
or ligand-bound systems (FRα–FA and FRα–FA–βCD). This observation is not surprising
as the apo-FRα was built from the FA–bound complex [26]. Removal of FA from the holo
form (folate complex) might result in the transition from one biological trafficking state to
another in the system, resulting in higher RMSF especially in regions where the ligands
are bound [26,27], which in this case is the folate-binding pocket [26]. The FRα–FA–βCD
system reached a stable and equilibrated dynamical state relatively quick, i.e., in less than 10
ns, and continued to fluctuate (protein backbone) within a stable conformational ensemble
with an average RMSD value of 1.9 Å throughout the 100 ns simulations. The high RMSD
showed by FA–βCD might be due to its βCD moiety as the FA moiety of FA–βCD (green)
showed much lower RMSD values compared to the whole ligand (light blue).

In addition, the structural flexibility of the simulated systems was also investigated by
measuring the root mean square fluctuation (RMSF) for FRα backbone atoms in all systems
throughout the 100 ns MD simulation time, as illustrated in Figure 5. The average residual
fluctuation values of the FRα backbone atoms (except for terminal residues) for all systems
were less than 2.1 Å (Figure 5). A high degree of flexibility (particularly the residues 17–30,
38–58, 95–104, and 136–150), was expected due to the high percentage of unstructured
segments inside the sequence [28].

An interesting observation was noted for the apo-FRα system, where high fluctuation
occurred within the region of residues 97–105, with its peak at SER101 (Figure 6a). In
the holo systems, SER101 was found to form strong H-bonds with the ligands (glutamate
region) together with guanidium groups of ARG103 and ARG106 with the pteridine
moiety [26]. Thus, it is expected that the loss of these interactions will affect the flexibility
of these amino acid residues. Unfavourable interactions (charge repulsions) between the
guanidium groups of ARG103 and ARG106 were also observed. The guanidium group of
ARG103 also created a donor–donor clash with the amido group of GLN100 in the holo
systems. These unfavourable interactions resulted in ARG103 to push the benzimidazole
ring of TRP102 and compelled SER101 (located between GLN100 and TRP102) to fluctuate
in order to reduce the unstable conditions (Figure 6d,f).
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Figure 5. RMSF graph of the FRα backbone atoms for the three systems throughout the 100 ns MD
simulation time.

Figure 6. (a) RMSF table plot of the FRα backbone atoms for the three systems within the regions
94–108 and 130–155 throughout the 100 ns MD simulation time. The average structure (0–100 ns)
for the most fluctuating residues in the systems apo-FRα (b,c), FRα–FA (d,e), and FRα–FA–βCD
(f,g) were illustrated using Biovia Discovery Studio Visualizer.
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TRP102 is responsible for stabilizing the folic acid aminobenzoate through hydropho-
bic interaction as well as the glutamate group through hydrogen bond interaction [26].
As such, in the holo systems, this residue did not fluctuate much as it is involved in the
binding of both FA and FA–βCD. Higher fluctuations were also observed for residues at
the N- and C-termini in all systems which were due to the fact that these regions were not
restrained [28]. Similar to that observed by Della-Longa et al., compared to apo-FRα, the
presence of FA and FA–βCD in the holo systems reduced the mobility of most residues
which are involved in both hydrophobic and electrostatic interactions with the ligands [28].

Figure 6c,e,g show the inter-residues interactions for residues 142–155, where an
increase in RMSF around GLY150 was observed. All residues in this fragment made
significant H-bond interactions with other residues surrounding them with the exception
of residues 148–152. This possibly explains the fact that these residues exhibited higher
RMSF compared to other residues in the fragment. Glycine residue is unique as it does not
carry aside chainthus providing greater freedom for flexibility for the adjacent residues [29].
Thus, it is not surprising that the adjacent residues ALA148, VAL149, ALA151, and ALA152
in the holo systems also had higher RMSF than other adjacent residues in apo-FRα system
(Figure 6a). When the RMSF values of the same fragment in apo-FRα (Figure 6b,c) were
compared to that in the FRα–FA and FRα–FA–βCD systems, only a small significant
difference in terms of its mobility (RMSF less than ~0.7 Å) was observed. The increase in
the mobility of the GLY150 in the halo system might be due to the fact that PHE144 lost its
interactions with the VAL56 (Figure 6e,g), which then led to the flipping of the phenyl ring
and might affect the conformation of the surrounding amino acids. It is worth noting that
the distances between the sulphur atoms of the cysteine residues in the region (130–155)
were almost the same for all systems with an increase or decrease of 0.1 Å. This indicates
that the disulphide bridges and the integrity of the receptor structure are still intact.

Superimposition of the average structure of the protein complexes from the stable
region (90–100 ns) with the best docked pose (Figure 7) revealed that conjugation with βCD
still allowed FA to maintain its binding with FRα, with the pteridine ring located within
the FRα binding site, and the gamma carboxylate group from the glutamate portion at the
entrance of the binding site as with that observed in the crystal structure (4LRH.PDB) [26].
ASP81 form two strong H-bonds with FA–βCD; one with a pteridine ring at N5 at a
distance of 2.01Å and the other with N7 (1.84 Å) (Figure 7b). This observation is consistent
with previous studies that showed that ASP81 interacted with the pteridine ring and is
considered as a key contributor to the high folate affinity [26,27,30]. In FA–FRα (Figure 7a),
two H-bonds were also observed between the pteridine ring with ASP81 (1.93 Å and 2.15 Å).
However, in FRα–FA–βCD, the H-bond with HIS135 was lost, together with the H-bond
formed by GLY137 with the glutamic acid moiety; but the GLY137–FA H-bond at this site
was replaced by SER101–FA. Nonetheless, the H-bond formed between TRP140 and the
PABA moiety was still preserved. In addition, TRP102 also formed π−π interaction with
the phenyl ring of PABA. The π−π interactions were also formed between the pteridine
ring and TYR85 and TRP171. Besides these H-bonds, conjugation with βCD had allowed
additional H-bonds to be formed between the βCD moiety with SER101, ARG61, LEU59,
and HIS20. This increased the number of H-bond interactions in the FA–FRα complex
from 7 to 11 in the FRα–FA–βCD system. This suggests that βCD conjugation to FA did
not adversely affect the stability of the ligand’s interaction with the FRα binding site.
On the contrary, the conjugation with βCD improved the stability as seen from Figure 5,
where the RMSF values for all the residues (except the residues 100–104 and 149–151) in
FRα–FA–βCD are lower than in the FRα–FA system.

2.2.2. Radius of Gyration Analyses

Radius of gyration (Rg) is a parameter that determines the steady-state conformation
of a total system and the macromolecule’s compactness [31]. Figure 8 illustrates that
the three systems showed consistent Rg values of around 16.8 Å throughout the MD
simulation time of 0–100 ns, with an exception for the apo-system, where a higher Rg value
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was observed from 0–35 ns. Similar to the RMSD observation, this is possibly due to the fact
that the system was adjusting itself after the removal of FA in the initial crystal structure.

Figure 7. 2D-Interaction analysis (models on the left) of average simulated structures (90–100 ns) for
(a) FRα–FA (orange) and (b) FRα–FA–βCD (lime green), and superimposition with docked structures
(models on the right) for FRα–FA (red) and FRα–FA–βCD (dark green). These models were generated
using UCSF Chimera 1.13 and BIOVIA Discovery Studio Visualizer.

Figure 8. Radius of gyration (Rg) plots of the FRα backbone atoms of the three systems at MD
interval time (0–100 ns); Apo-FRα (black), FRα–FA (red), and FRα–FA–βCD (blue).

2.2.3. Hydrogen Bond (H-Bond) Properties

H-bonds are essential for protein folding and protein–ligand interactions [32,33]. It is
well known that ASP81 is the key residue in the FRα binding site, playing a critical role in
increasing ligand binding affinity and anchoring the FA pteridine region deep within the
site [27,30,34]. Specifically, the crystal structure used in this study demonstrated that ASP81
formed strong H-bonds with N1 and N2 atoms in the pteridine ring of FA. The pteridine
ring also formed two H-bonds with the arginine residues, ARG103 and ARG106, as well as
with SER174 and HIS135 [26,28]. Hence, the current study was performed to explore the
effect of the conjugated FA–βCDs on their mechanism of binding with FRα throughout
the MD simulation time (100 ns), by analyzing the number of H-bonds created with the
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protein (Figure 9). Moreover, the H-bond occupancy of the conjugated systems was also
analyzed throughout the MD simulation time (0–100 ns) and is presented in Table 2.

Figure 9. Hydrogen bond profile obtained from MD simulation (0–100 ns) for (a) FRα–FA and
(b) FRα–FA–βCD.

In the FRα–FA system, the H-bond profile revealed consistent interactions throughout
the MD simulation time with an average of five bonds (Figures 9a and 10). In contrast to
the FRα–FA system, the H-bond profile of FRα–FA–βCD (Figure 9b) showed ten H-bonds
in the initial stage which fluctuated until 90 ns. At 74.4 ns and 74.5 ns, the system produced
the best H-bond interactions (15 H-bonds) (Figure 11a,b). Subsequently, the H-bond profile
abruptly decreased to an average of six bonds until 100 ns (Figures 9b and 11c). It is worth
noting (Figure 11a,b) that, except with HIS135, the folate moiety created six H-bonds with
the amino acid residues, i.e., ASP81, ARG103, ARG106, and SER174, as observed in the
crystal structure [27] and in our previous MD simulation [26].

Figure 10. Models (2D-interactions) illustrate that the H-bonds of FA interacted with amino acids in the FRα binding site;
(a) at 20.8 ns which demonstrated the optimum H-bond interactions (9 H-bonds), (b) 98.3 ns, (c) the average H-bonds
(5 H-bonds) at 71.2 ns, and (d) 100 ns (6 H-bonds). These models were generated using Biovia Discovery Studio Visualizer.
FA is shown as sticks (yellow C, red O, and blue N), and the residues of FRα are shown in green colour.



Molecules 2021, 26, 5304 10 of 17

Figure 11. Models (2D-interactions) illustrating the H-bond interactions between FA–βCD and amino acids in the FRα
binding site; optimum H-bond interactions (15 H-bonds) at (a) 74.4 ns and (b) 74.5 ns, (c) the average H-bonds (6 H-bonds)
at 95.8 ns, and (d) at 100 ns (8 H-bonds). These models were generated using Biovia Discovery Studio Visualizer. FA–βCD
is shown as sticks (yellow C, red O, and blue N), and the residues of FRα are shown in green colour.

It is interesting to note that βCD participated in forming nine H-bonds with the
surrounding amino acids at the entrance of the binding site (Figure 11a,b). This could be
due to the highly free rotation at the FA/βCD NH-CH2 junction and the massive network
of hydroxyl groups present in βCD, which contributed to the ability to form high number
of H-bonds with the surrounding amino acids. Consequently, in a βCD loaded system,
in particular where host–guest interactions involved hydrophobic drug, the presence of
many H-bond interactions between βCD and the protein target could aid in expanding the
torus-shape of βCD, thus affecting the stability of the loaded system and leading to the
release of the loaded hydrophobic drug outside the cell [35,36]. However, during the last
MD simulation time (90–100 ns), the βCD’s capacity to form H-bonds had decreased on
average from nine to two (Figure 11c), indicating the capability of the βCD loaded system
to contain the drug upon binding to the receptor.

Table 2 shows the average H-bond occupancy, distance, and angles for the conjugated
systems (FA and FA–βCD) in their interactions with key amino acids in the binding site
throughout the MD simulation time (0–100 ns). In this analysis, hydrogen bonds were
classified as strong (more than 60% occupied), moderate (30–60% occupied), and weak
(10–30% occupied) based on their percentage of occupancy throughout the specific region
of MD simulation [27,37,38]. The results showed that FA and FA–βCD bound to the FRα
active site via H-bonds with varying tendencies, and ASP81 remaining as the key amino
acid in the H-bond interaction. Interestingly, FA–βCD formed more H-bonds compared to
FA during the MD simulation time (0–100 ns). The findings from FA–FRα system revealed
the existence of two strong H-bonds between the OD1 and OD2 of ASP81 and the hydrogen
atoms (H1 and H2) at the N1 and NE2 of FA’s pteridine ring, with 71.57% and 61.60%
occupied during the 100 ns simulation, respectively, and an average distance of 2.81 Å
and 2.81 Å, and an angle of 158.54◦ and 163.32◦, respectively. Furthermore, there are two
moderate H-bonds between HIS135 and ARG103 residues with hydrogen atom (H12) at N
and O4 of the FA structure with occupancies of 57.68% and 37.07%, respectively.

The findings also showed that the FRα–FA–βCD system exhibited only one strong
H-bond between OD1 of ASP81 and the hydrogen atom (H93) at the N7 of the pteridine
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ring of FA, with 62.16% occupancy, and with an average distance and angle of 2.81 Å and
163.10◦, respectively. Furthermore, five moderately strong H-bonds were formed with
ASP81 (OD2), SER174 (HG at OG), TYR58 (O), ARG103 (HH12 at NH1), and ASP (OD1)
with an average occupancy of 54.81%, 46.72%, 46.64%, 44.15%, and 30.83%, respectively.
The rest of the H-bond interactions, on the other hand, were relatively weak (Table 2).

Table 2. H-bond occupancies for the complexed systems FRα–FA and FRα–FA–βCD in the MD simulations (0–100 ns).

System
H-Bond
Acceptor

(Atom ∼= Res)

H-Bond Donor
(Atom ∼= H)

Donor
(Atom ∼= Res)

H-Bond
Occupancy (%)

Average
Distance (Å) Average Angle

FA

ASP81 ∼= OD1 ASP81 ∼= OD1 ASP81 ∼= OD1 ASP81 ∼= OD1 ASP81 ∼= OD1 ASP81 ∼= OD1
ASP81 ∼= OD2 ASP81 ∼= OD2 ASP81 ∼= OD2 ASP81 ∼= OD2 ASP81 ∼= OD2 ASP81 ∼= OD2
HIS135 ∼= O HIS135 ∼= O HIS135 ∼= O HIS135 ∼= O HIS135 ∼= O HIS135 ∼= O

FA ∼= O4 FA ∼= O4 FA ∼= O4 FA ∼= O4 FA ∼= O4 FA ∼= O4
ASP81 ∼= OD2 ASP81 ∼= OD2 ASP81 ∼= OD2 ASP81 ∼= OD2 ASP81 ∼= OD2 ASP81 ∼= OD2

FA ∼= O1 FA ∼= O1 FA ∼= O1 FA ∼= O1 FA ∼= O1 FA ∼= O1
FA ∼= OE1 FA ∼= OE1 FA ∼= OE1 FA ∼= OE1 FA ∼= OE1 FA ∼= OE1
FA ∼= N3 FA ∼= N3 FA ∼= N3 FA ∼= N3 FA ∼= N3 FA ∼= N3

ASP81 ∼= OD2 ASP81 ∼= OD2 ASP81 ∼= OD2 ASP81 ∼= OD2 ASP81 ∼= OD2 ASP81 ∼= OD2

FA–βCD

ASP81 ∼= OD1 FA ∼= H93 FA ∼= N7 62.16 2.81 163.10
ASP81 ∼= OD2 FA ∼= H92 FA ∼= N5 54.81 2.81 159.98

FA ∼= N4 SER174 ∼= HG SER174 ∼= OG 46.72 2.85 160.9
TYR58 ∼= O FA ∼= H10 FA ∼= O20 46.64 2.74 160.27
FA ∼= O38 ARG103 ∼= HH12 ARG103 ∼= NH1 44.15 2.85 151.81

ASP81 ∼= OD1 FA ∼= H92 FA ∼= N5 30.83 2.82 159.09
ASP81 ∼= OD2 FA ∼= H93 FA ∼= N7 28.96 2.82 162.8

TYR58 ∼= O FA ∼= H17 FA ∼= O27 27.29 2.71 161.37
SER101 ∼= O FA ∼= H24 FA ∼= O34 21.77 2.79 154.15

FA ∼= O1 TRP102 ∼= HE1 TRP102 ∼= NE1 21.43 2.85 153.57
FA ∼= O37 TRP140 ∼= HE1 TRP140 ∼= NE1 17.82 2.86 148.2

SER101 ∼= OG FA ∼= H22 FA ∼= O32 16.09 2.79 157.44
FA ∼= O29 TYR58 ∼= HH TYR58 ∼= OH 15.6 2.79 161.48

SER101 ∼= O FA ∼= H25 FA ∼= O35 15.37 2.72 159.55
GLY143 ∼= O FA ∼= H1 FA ∼= O18 14.29 2.76 163.16

FA ∼= O38 SER174 ∼= HG SER174 ∼= OG 11.27 2.86 148.02
FA ∼= O20 HIS20 ∼= HE2 HIS20 ∼= NE2 11.23 2.88 152.09
FA ∼= O18 ARG61 ∼= HH11 ARG61 ∼= NH1 10.43 2.88 158.11

2.2.4. Binding Free Energy (MM-PBSA)

In this study, the Molecular Mechanics-Poisson Boltzmann surface area (MM-PBSA)
program implemented in AMBER 18 [39,40] was used to calculate the free binding energies
of FA and FA–βCD with FRα, with a neglected entropic contribution. Table 3 shows the cal-
culated free binding energies (∆Gbind∗) computed using the Molecular Mechanics-Poisson
Boltzmann surface area (MM-PBSA) method implemented in AMBER 18 [41]. The predicted
MM-PBSA energy of FA and FA–βCD toward FRα were −57.17 and −74.25 − kcal/mol,
respectively. The corresponding energetic values revealed that the electrostatic term is the
main contributor to the binding energies, in addition to the van der Waals term. However,
the solvation energies, particularly the polar solvation energy, produced an unfavourable
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binding contribution. The MMPBSA results also show that the conjugation with βCD
improved the binding affinity of FA towards FRα.

Table 3. Binding free energies (MM-PBSA) for FRα–FA and FRα–FA–βCD from MD simulation trajectories (90–10 ns).
Molecular docking values from AutoDock (ADT) Vina for the complexes are also included in the table.

Complex with
FRα

∆Gbind*

kcal/mol
VDW

kcal/mol
EEL

kcal/mol
Gpolar

kcal/mol
Gnon-polar
kcal/mol

ADT Vina
kcal/mol

FA −57.17 ± 0.12 −56.14 ± 0.10 −89.17 ± 0.26 94.61 ± 019 −6.47 ± 0.01 −13.20
FA–βCD −74.25 ± 0.26 −92.71 ± 0.16 −119.47 ± 0.63 148.87 ± 0.48 −10.95 ± 0.01 −15.20

∆Gbind∗ : binding free energy, VDW: van der Waals, EEL: electrostatic, Gpolar: polar solvation energy, Gnon-polar: non-polar solvation energy.

FA–βCD showed more favourable ∆Gbind∗ , with the highest contribution from the
electrostatic and van der Waals terms, compared to that of FA (Table 3). This system was
also more stable, as demonstrated by the RMSD of the protein backbone (Figure 4). The
conjugated ligand, however, had higher RMSD values compared to unconjugated ligand.

The partitioning of free energy into additive contributions originating from different
groups of atoms or force field terms has the potential to provide a relationship between
the structure and biological activity of molecules [42]. This free energy contribution was
further decomposed into the sum of free energies originating from the interactions of the
protein with itself, its substituents, water, and ions [43]. Figure 12 illustrates the MM-PBSA
per residue decomposition values for FRα residues in the holo systems (FRα–FA and FRα
-FA–βCD). The analysis was carried out on the protein binding site residues [26,27], and on
the highest mobile residues throughout the RMSF analysis. The plot revealed that ASP81
had the most negative energetic values (high interactions with the surrounding residues)
in both the FRα–FA and FRα–FA–βCD systems with relatively the same contribution
(~−7.10 kcal/mol), followed by TRP171. It was noted that residues LYS19, TYR58, LEU59,
TYR60, ARG61, TRP140, and GLY143 demonstrated more favourable energy contributions
in the FRα–FA–βCD system than those in the FRα–FA system, and they were also less
mobile (dynamically stable), as shown by the RMSF values (Figure 5). This indicates that
these residues may have a direct role in increasing the stability of the conjugated system.

Figure 12. Individual amino acid binding free energy plots that significantly contribute to the
interactions into the FRα pocket with the ligands (FA- and FA-βCD) in the last 50 frames of the MD
trajectories. The X-axis represents the ID of the residue, and the Y-axis represents the binding free
energy in kcal/mol.
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3. Materials and Methods
3.1. Molecular System Setup
3.1.1. Protein Preparation

The human FRα crystal structure (PDB ID: 4LRH) was downloaded from the Protein
Data Bank database [26]. All water molecules and heteroatoms were eliminated using
Biovia Discovery Studio Visualizer (San Diego, CA, USA, 2019) [44]. In order to prepare
the molecular system, the PDB2PQR web service (https://pdb2pqr.poissonboltzmann.org/
pdb2pqr, accessed on 14 April 2021) was utilized for additional calculations to the protein
such as reconstructing missing atoms, adding hydrogens, and assigning atomic charges and
radii with the SWANSON force field (AMBER ff99 charges with optimised radii) [45]. The
protein was subjected to the most commonly used empirical pKa predictor (PROPKA3) to
assign the protonation states for the ionizable groups, set at pH 7.00 [46]. Finally, the protein
was uploaded to the MolProbity web service (http://molprobity.biochem.duke.edu/,
accessed on 14 April 2021) to correct bad contacts, add hydrogen atoms, and flip HIS, GLU,
and ASN residues [47].

3.1.2. Ligand Preparation

In this study, FA was taken from the crystal structure [26] and conjugation to beta-
cyclodextrin (βCD) (PubChem ID: 444041) was drawn at the gamma carboxylate group
of the glutamic acid residue [24,48] using PerkinElmer ChemDraw 17.1 (PerkinElmer,
Waltham, MA, USA) (Figure 1) [27]. Then, the ligands were subjected to energy mini-
mization using Molecular Mechanics 2 (MM2) force field by PerkinElmer Chem3D 17.1
(PerkinElmer, MA, USA) [27].

3.1.3. Molecular Docking

AutoDock Tool (The Scripps Research Institute, La Jolla, CA, USA) was used to add
polar hydrogens and Kollman charges to the protein while Gasteiger charges were assigned
to the ligands [49]. The rotatable bonds for the ligands were decreased to 8 based on
the essential rotatable bonds in the FA scaffold. AutoDock Vina (The Scripps Research
Institute, CA, USA) was used to simulate the docking process [50], where the grid box
coordinate was set at center x = 44.532, y = 41.058 and z = 69.243 [27]. The size of the grid
box was 40 × 40 × 40 (x, y, and z) with a spacing of 0.375Å, number of conformations =
20, exhaustiveness of the global search = 4, and maximum energy difference = 3. Biovia
Discovery Studio Visualizer [44] and UCSF Chimera 1.13 (University of California San
Francisco, CA, USA) [51] were used to visualize the 3D molecular interactions between the
ligands and the protein.

3.2. Molecular Dynamics and Mechanics Simulations

The best-docked pose of the FRα–FA–βCD system was used as the starting structure
to run the 100 ns MD simulation, while the apo-FRα system was created by removing
FA from the crystal structure leaving FRα alone without the ligand to be simulated. MD
simulations were performed using AMBER 18 (University of California San Francisco, CA,
USA) [27,41]. The AMBER ff14SB force field and the general AMBER force field (GAFF)
were applied on FRα and the ligands, respectively. All ligands were subjected to AM1-BCC
model charges using the ANTECHAMBER tool in the AMBER suite. Apo-FRα system
was developed from the same human FRα crystal structure. Each system was solvated
by dipping it in an octahedral box of TIP3P water, where distance between the protein
edge and box was 10 Å, and the system was neutralized by adding four counter ions
(chlorine Cl−). After solvation and neutralization, the followings were recorded for each
system: FRα–FA–βCD system consisted of 9327 atoms while apo-FRα (ligand free) system
consisted of 8980 atoms.

The simulation protocol consisted of three minimization steps, whereby the first step
includes 5000 cycles of conjugate gradient, 2000 for the second step, and 1000 for the third
step, with periodic boundary conditions at constant volume to eliminate the collision

https://pdb2pqr.poissonboltzmann.org/pdb2pqr
https://pdb2pqr.poissonboltzmann.org/pdb2pqr
http://molprobity.biochem.duke.edu/
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contacts between the macromolecule and the solvent, and to relax the system. The system
was then gradually heated in three steps from 0–310 K for 1 ns on all backbone atoms in
each step using the Langevin dynamics thermostat with a coupling time of 0.2 ps. During
the heating process, the NVT ensemble was used. Next, the equilibration of the protein
atoms and the surrounding solvent was performed in three steps for 2 ns each, and the
SHAKE algorithm [33] was also utilized to constrain all bonds involving hydrogen.

MD simulation was carried out for 100 ns. Trajectory analysis was done using CPP-
TRAJ to inspect the Root Mean Square Deviation and Fluctuation (RMSD and RMSF)
values, radius of gyration (Rg), and hydrogen bond (H-bond) that were involved in the
interaction between each ligand and the protein. QtGrace 0.2.6 (Boston, MA, USA) was
used to create the graphs.

3.3. Free Binding Energy Calculation by MM-PBSA

The free binding energy (FEB) of the different complex systems was calculated using
the Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA) method in the
AMBER 18 program (University of California San Francisco, CA, USA). MM-PBSA method
combines the molecular mechanics and continuum solvent models, and the Gibbs free
binding energy (∆G) calculated using the MM-PBSA method [40]. All energetic analyses
were done using a single trajectory approach, where snapshots were taken for each of
the protein–ligand complexes, protein, and ligands of the performed MD simulations.
Energy calculation was performed for every 10 ps (total 1000 snapshots) from the last 10 ns
of the trajectory (90–100 ns) using the MM-PBSA.py module of AMBER 18, with a salt
concentration of 0.150 M, and without quasi-harmonic entropy approximation, in order to
obtain a close approximation to true molecular volume, albeit in an average sense [27].

In addition, free energy decomposition for each complex system was examined to
obtain information on the important binding site residues involved in ligand binding.
The energy contribution of each residue (per residue decomposition) was divided into
three parts: van der Waals energy (∆Gvdw), intermolecular electrostatic energy (∆Gele),
and solvation energy (∆Gsol) due to solvent effect, which was a sum of the polar solvation
energy (∆GPB) and the non-polar solvation energy (∆GSA) [41–43].

∆Gresidue_pair = ∆Gvdw + ∆Gele + ∆Gsolvation = ∆Gvdw + ∆Gele + ∆GPB + ∆GSA (1)

where ∆Gvdw and ∆Gele are nonbonded van der Waals and electrostatic interactions be-
tween two residues, respectively [41]. As a result, the combination of those energetic
components may have a correlation with experimental binding affinity values [39]. The
per-residue energy was calculated using the MM-PBSA.py implemented in the AMBER 18
package to calculate the per-residue decomposition for the last 50 frames of the trajectory.

4. Conclusions

In this study, the systems apo-FRα, and two holo systems of FRα bound with FA and
FA conjugated beta-cyclodextrins (FA–βCD) were successfully simulated. Our findings
suggest that FA–βCD is more dynamically stable than FA. The docking results showed
that all ligands entered into the binding site of FRα (docking score < −15 kcal/mol) and
relatively bound with the same binding pose. Molecular dynamic simulation showed that
the binding of FA and FA–βCD on FRα did not affect protein stability. FA–βCD had more
consistent interactions and more favourable individual residue binding energies than the
FA. The holo systems’ residues HIS20, TRP102, HIS135, TRP138, TRP140, and TRP171 were
revealed to have more favourable energy contributions and were less mobile than those in
the apo-FR system (dynamically stable). This shows that these residues may play a direct
role in the system stability. H-bond analysis and per residue free energy decomposition
analysis support the previous finding of ASP81 as the key residue that influence the binding
of ligands into the binding site of FRα. This work serves to provide an understanding on
the effect of conjugation of βCD to the activity and stability of folic acid to FRα. This is
important in the understanding of the targeted mechanism of folic acid and the folic acid
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conjugated drug delivery system in the treatment of cancer, thus this can be the basis for
future studies on the inclusion complex or drug loading studies.
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7. Jurczyk, M.; Jelonek, K.; Musiał-Kulik, M.; Beberok, A.; Wrześniok, D.; Kasperczyk, J. Single-Versus Dual-Targeted Nanoparticles
with Folic Acid and Biotin for Anticancer Drug Delivery. Pharmaceutics 2021, 13, 326. [CrossRef]

8. Riviere, K.; Huang, Z.; Jerger, K.; Macaraeg, N.; Szoka, F.C., Jr. Antitumor effect of folate-targeted liposomal doxorubicin in KB
tumor-bearing mice after intravenous administration. J. Drug Target. 2011, 19, 14–24. [CrossRef]

9. Kumar, P.; Huo, P.; Liu, B. Formulation strategies for folate-targeted liposomes and their biomedical applications. Pharmaceutics
2019, 11, 381. [CrossRef]

10. Ran, R.; Middelberg, A.P.; Zhao, C.-X. Microfluidic synthesis of multifunctional liposomes for tumour targeting. Colloids Surf. B
Biointerfaces 2016, 148, 402–410. [CrossRef]

11. Amreddy, N.; Babu, A.; Panneerselvam, J.; Srivastava, A.; Muralidharan, R.; Chen, A.; Zhao, Y.D.; Munshi, A.; Ramesh, R.
Chemo-biologic combinatorial drug delivery using folate receptor-targeted dendrimer nanoparticles for lung cancer treatment.
Nanomed. Nanotechnol. Biol. Med. 2018, 14, 373–384. [CrossRef] [PubMed]

12. Pillay, N.S.; Daniels, A.; Singh, M. Folate-Targeted Transgenic Activity of Dendrimer Functionalized Selenium Nanoparticles In
Vitro. Int. J. Mol. Sci. 2020, 21, 7177. [CrossRef] [PubMed]

13. Kaur, A.; Jain, K.; Mehra, N.K.; Jain, N. Development and characterization of surface engineered PPI dendrimers for targeted
drug delivery. Artif. Cell Nanomed. B 2017, 45, 414–425. [CrossRef] [PubMed]

14. Wang, M.; Long, J.; Zhang, S.; Liu, F.; Zhang, X.; Zhang, X.; Sun, L.; Ma, L.; Yu, C.; Wei, H. Folate-Targeted Anticancer Drug
Delivery via a Combination Strategy of a Micelle Complex and Reducible Conjugation. ACS Biomater. Sci. Eng. 2020, 6, 1565–1572.
[CrossRef] [PubMed]

15. Luong, D.; Kesharwani, P.; Alsaab, H.O.; Sau, S.; Padhye, S.; Sarkar, F.H.; Iyer, A.K. Folic acid conjugated polymeric micelles
loaded with a curcumin difluorinated analog for targeting cervical and ovarian cancers. Colloids Surf. B Biointerfaces 2017, 157,
490–502. [CrossRef] [PubMed]

http://doi.org/10.1039/C6TB01743F
http://www.ncbi.nlm.nih.gov/pubmed/32263571
http://doi.org/10.3390/cancers13030400
http://www.ncbi.nlm.nih.gov/pubmed/33499040
http://doi.org/10.3390/cancers13143539
http://doi.org/10.1016/j.addr.2012.09.041
http://www.ncbi.nlm.nih.gov/pubmed/23026636
http://doi.org/10.1016/j.ab.2004.12.026
http://doi.org/10.1016/j.addr.2018.05.008
http://doi.org/10.3390/pharmaceutics13030326
http://doi.org/10.3109/10611861003733953
http://doi.org/10.3390/pharmaceutics11080381
http://doi.org/10.1016/j.colsurfb.2016.09.016
http://doi.org/10.1016/j.nano.2017.11.010
http://www.ncbi.nlm.nih.gov/pubmed/29155362
http://doi.org/10.3390/ijms21197177
http://www.ncbi.nlm.nih.gov/pubmed/33003288
http://doi.org/10.3109/21691401.2016.1160912
http://www.ncbi.nlm.nih.gov/pubmed/27027686
http://doi.org/10.1021/acsbiomaterials.9b01920
http://www.ncbi.nlm.nih.gov/pubmed/33455375
http://doi.org/10.1016/j.colsurfb.2017.06.025
http://www.ncbi.nlm.nih.gov/pubmed/28658642


Molecules 2021, 26, 5304 16 of 17

16. Wang, F.; Chen, Y.; Zhang, D.; Zhang, Q.; Zheng, D.; Hao, L.; Liu, Y.; Duan, C.; Jia, L.; Liu, G. Folate-mediated targeted and
intracellular delivery of paclitaxel using a novel deoxycholic acid-O-carboxymethylated chitosan–folic acid micelles. Int. J.
Nanomed. 2012, 7, 325.

17. Zheng, Y.; Wyman, I.W. Supramolecular nanostructures based on cyclodextrin and poly (ethylene oxide): Syntheses, structural
characterizations and applications for drug delivery. Polymers 2016, 8, 198. [CrossRef] [PubMed]

18. Mizusako, H.; Tagami, T.; Hattori, K.; Ozeki, T. Active drug targeting of a folate-based cyclodextrin–doxorubicin conjugate and
the cytotoxic effect on drug-resistant mammary tumor cells in vitro. J. Pharm. Sci. 2015, 104, 2934–2940. [CrossRef]

19. Okamatsu, A.; Motoyama, K.; Onodera, R.; Higashi, T.; Koshigoe, T.; Shimada, Y.; Hattori, K.; Takeuchi, T.; Arima, H. Design
and evaluation of folate-appended α-, β-, and γ-cyclodextrins having a caproic acid as a tumor selective antitumor drug carrier
in vitro and in vivo. Biomacromolecules 2013, 14, 4420–4428. [CrossRef]

20. Zhang, H.; Cai, Z.; Sun, Y.; Yu, F.; Chen, Y.; Sun, B. Folate-conjugated β-cyclodextrin from click chemistry strategy and for
tumor-targeted drug delivery. J. Biomed. Mater. Res. A 2012, 100, 2441–2449. [CrossRef]

21. Fan, W.; Xu, Y.; Li, Z.; Li, Q. Folic acid-modified β-cyclodextrin nanoparticles as drug delivery to load DOX for liver cancer
therapeutics. Soft Mater. 2019, 17, 437–447. [CrossRef]

22. Xu, J.; Xu, B.; Shou, D.; Qin, F.; Xu, Y.; Hu, Y. Characterization and evaluation of a folic acid receptor-targeted cyclodextrin
complex as an anticancer drug delivery system. Eur. J. Pharm. Sci. 2016, 83, 132–142. [CrossRef] [PubMed]

23. Wang, R.; Zhou, H.; Siu, S.W.; Gan, Y.; Wang, Y.; Ouyang, D. Comparison of three molecular simulation approaches for
cyclodextrin-ibuprofen complexation. J. Nanomater. 2015, 2015, 267. [CrossRef]

24. Yin, J.-J.; Sharma, S.; Shumyak, S.P.; Wang, Z.-X.; Zhou, Z.-W.; Zhang, Y.; Guo, P.; Li, C.-Z.; Kanwar, J.R.; Yang, T. Synthesis and
biological evaluation of novel folic acid receptor-targeted, β-cyclodextrin-based drug complexes for cancer treatment. PLoS ONE
2013, 8, e62289. [CrossRef] [PubMed]

25. Rezende, A.A.; Santos, R.S.; Andrade, L.N.; Amaral, R.G.; Pereira, M.M.; Bani, C.; Chen, M.; Priefer, R.; da Silva, C.F.; de
Albuquerque Júnior, R.L. Anti-tumor efficiency of perillylalcohol/β-cyclodextrin inclusion complexes in a sarcoma S180-induced
mice model. Pharmaceutics 2021, 13, 245. [CrossRef] [PubMed]

26. Chen, C.; Ke, J.; Zhou, X.E.; Yi, W.; Brunzelle, J.S.; Li, J.; Yong, E.-L.; Xu, H.E.; Melcher, K. Structural basis for molecular recognition
of folic acid by folate receptors. Nature 2013, 500, 486. [CrossRef]

27. Al-Thiabat, M.G.; Saqallah, F.G.; Gazzali, A.M.; Mohtar, N.; Yap, B.K.; Choong, Y.S.; Wahab, H.A. Heterocyclic Substitutions
Greatly Improve Affinity and Stability of Folic Acid towards FRα. an In Silico Insight. Molecules 2021, 26, 1079. [CrossRef]

28. Della-Longa, S.; Arcovito, A. Structural and functional insights on folate receptor α (FRα) by homology modeling, ligand docking
and molecular dynamics. J. Mol. Graph. Model. 2013, 44, 197–207. [CrossRef]

29. Yan, B.X.; Sun, Y.Q. Glycine residues provide flexibility for enzyme active sites. J. Biol. Chem. 1997, 272, 3190–3194. [CrossRef]
30. Jiang, Y.; Wang, C.; Zhang, M.; Fei, X.; Gu, Y. Interacted mechanism of functional groups in ligand targeted with folate receptor

via docking, molecular dynamic and MM/PBSA. J. Mol. Graph. Model. 2019, 87, 121–128. [CrossRef]
31. Lobanov, M.Y.; Bogatyreva, N.; Galzitskaya, O. Radius of gyration as an indicator of protein structure compactness. Mol. Biol.

2008, 42, 623–628. [CrossRef]
32. Chen, D.; Oezguen, N.; Urvil, P.; Ferguson, C.; Dann, S.M.; Savidge, T.C. Regulation of protein-ligand binding affinity by

hydrogen bond pairing. Sci. Adv. 2016, 2, e1501240. [CrossRef]
33. Yotmanee, P.; Rungrotmongkol, T.; Wichapong, K.; Choi, S.B.; Wahab, H.A.; Kungwan, N.; Hannongbua, S. Binding specificity of

polypeptide substrates in NS2B/NS3pro serine protease of dengue virus type 2: A molecular dynamics study. J. Mol. Graph.
Model. 2015, 60, 24–33. [CrossRef]

34. Sampogna-Mireles, D.; Araya-Durán, I.D.; Márquez-Miranda, V.; Valencia-Gallegos, J.A.; González-Nilo, F.D. Structural analysis
of binding functionality of folic acid-PEG dendrimers against folate receptor. J. Mol. Graph. Model. 2017, 72, 201–208. [CrossRef]

35. Wickstrom, L.; He, P.; Gallicchio, E.; Levy, R.M. Large scale affinity calculations of cyclodextrin host–guest complexes: Under-
standing the role of reorganization in the molecular recognition process. J. Chem. Theory Comput. 2013, 9, 3136–3150. [CrossRef]
[PubMed]

36. Wankar, J.; Kotla, N.G.; Gera, S.; Rasala, S.; Pandit, A.; Rochev, Y.A. Recent advances in host–guest self-assembled cyclodextrin
carriers: Implications for responsive drug delivery and biomedical engineering. Adv. Funct. Mater. 2020, 30, 1909049. [CrossRef]

37. Yusuf, M.; Mohamed, N.; Mohamad, S.; Janezic, D.; Damodaran, K.; Wahab, H.A. H274Y’s effect on oseltamivir resistance: What
happens before the drug enters the binding site. J. Chem. Inf. Model. 2016, 56, 82–100. [CrossRef] [PubMed]

38. Xie, H.; Li, Y.; Yu, F.; Xie, X.; Qiu, K.; Fu, J. An investigation of molecular docking and molecular dynamic simulation on
imidazopyridines as B-Raf kinase inhibitors. Int. J. Mol. Sci. 2015, 16, 27350–27361. [CrossRef] [PubMed]

39. Miller, B.R., III; McGee, T.D., Jr.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA. py: An efficient program for
end-state free energy calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [CrossRef] [PubMed]

40. Petukh, M.; Li, M.; Alexov, E. Predicting binding free energy change caused by point mutations with knowledge-modified
MM/PBSA method. PLoS Comput. Biol. 2015, 11, e1004276. [CrossRef]

41. Case, D.; Ben-Shalom, I.; Brozell, S.; Cerutti, D.; Cheatham, T., III; Cruzeiro, V.; Darden, T.; Duke, R.; Ghoreishi, D.; Gilson, M.K.;
et al. AMBER 2018; University of California: San Francisco, CA, USA, 2018.

42. Bren, U.; Martínek, V.; Florián, J. Decomposition of the solvation free energies of deoxyribonucleoside triphosphates using the
free energy perturbation method. J. Phys. Chem. B 2006, 110, 12782–12788. [CrossRef]

http://doi.org/10.3390/polym8050198
http://www.ncbi.nlm.nih.gov/pubmed/30979290
http://doi.org/10.1002/jps.24428
http://doi.org/10.1021/bm401340g
http://doi.org/10.1002/jbm.a.34169
http://doi.org/10.1080/1539445X.2019.1624265
http://doi.org/10.1016/j.ejps.2015.11.008
http://www.ncbi.nlm.nih.gov/pubmed/26577995
http://doi.org/10.1155/2015/193049
http://doi.org/10.1371/journal.pone.0062289
http://www.ncbi.nlm.nih.gov/pubmed/23658721
http://doi.org/10.3390/pharmaceutics13020245
http://www.ncbi.nlm.nih.gov/pubmed/33578857
http://doi.org/10.1038/nature12327
http://doi.org/10.3390/molecules26041079
http://doi.org/10.1016/j.jmgm.2013.05.012
http://doi.org/10.1074/jbc.272.6.3190
http://doi.org/10.1016/j.jmgm.2018.12.003
http://doi.org/10.1134/S0026893308040195
http://doi.org/10.1126/sciadv.1501240
http://doi.org/10.1016/j.jmgm.2015.05.008
http://doi.org/10.1016/j.jmgm.2017.01.004
http://doi.org/10.1021/ct400003r
http://www.ncbi.nlm.nih.gov/pubmed/25147485
http://doi.org/10.1002/adfm.201909049
http://doi.org/10.1021/acs.jcim.5b00331
http://www.ncbi.nlm.nih.gov/pubmed/26703840
http://doi.org/10.3390/ijms161126026
http://www.ncbi.nlm.nih.gov/pubmed/26580609
http://doi.org/10.1021/ct300418h
http://www.ncbi.nlm.nih.gov/pubmed/26605738
http://doi.org/10.1371/journal.pcbi.1004276
http://doi.org/10.1021/jp056623m


Molecules 2021, 26, 5304 17 of 17

43. Bren, M.; Florián, J.; Mavri, J.; Bren, U. Do all pieces make a whole? Thiele cumulants and the free energy decomposition. Theor.
Chem. Acc. 2007, 117, 535–540. [CrossRef]

44. Biovia Discovery Studio. Discovery Studio Visualizer; Biovia: San Diego, CA, USA, 2017; Volume 936.
45. Dolinsky, T.J.; Czodrowski, P.; Li, H.; Nielsen, J.E.; Jensen, J.H.; Klebe, G.; Baker, N.A. PDB2PQR: Expanding and upgrading

automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 2007, 35, W522–W525. [CrossRef]
46. Olsson, M.H.; Søndergaard, C.R.; Rostkowski, M.; Jensen, J.H. PROPKA3: Consistent treatment of internal and surface residues

in empirical p K a predictions. J. Chem. Theory Comput. 2011, 7, 525–537. [CrossRef]
47. Williams, C.J.; Headd, J.J.; Moriarty, N.W.; Prisant, M.G.; Videau, L.L.; Deis, L.N.; Verma, V.; Keedy, D.A.; Hintze, B.J.; Chen, V.B.

MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 2018, 27, 293–315. [CrossRef]
[PubMed]

48. Giglio, V.; Oliveri, V.; Viale, M.; Gangemi, R.; Natile, G.; Intini, F.P.; Vecchio, G. Folate–Cyclodextrin Conjugates as Carriers of the
Platinum (IV) Complex LA-12. ChemPlusChem 2015, 80, 536–543. [CrossRef] [PubMed]

49. Forli, W.; Halliday, S.; Belew, R.; Olson, A.J. AutoDock Version 4.2. J. Med. Chem. 2012, 55, 623–638. [CrossRef]
50. Nguyen, N.T.; Nguyen, T.H.; Pham, T.N.H.; Huy, N.T.; Bay, M.V.; Pham, M.Q.; Nam, P.C.; Vu, V.V.; Ngo, S.T. Autodock vina

adopts more accurate binding poses but autodock4 forms better binding affinity. J. Chem. Inf. Model. 2019, 60, 204–211. [CrossRef]
[PubMed]

51. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualiza-
tion system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [CrossRef] [PubMed]

http://doi.org/10.1007/s00214-007-0264-z
http://doi.org/10.1093/nar/gkm276
http://doi.org/10.1021/ct100578z
http://doi.org/10.1002/pro.3330
http://www.ncbi.nlm.nih.gov/pubmed/29067766
http://doi.org/10.1002/cplu.201402342
http://www.ncbi.nlm.nih.gov/pubmed/31973417
http://doi.org/10.1021/jm2005145
http://doi.org/10.1021/acs.jcim.9b00778
http://www.ncbi.nlm.nih.gov/pubmed/31887035
http://doi.org/10.1002/jcc.20084
http://www.ncbi.nlm.nih.gov/pubmed/15264254

	Introduction 
	Results and Discussion 
	Molecular Docking Analysis 
	Molecular Dynamics (MD) Simulation 
	Stability of the Simulated Systems 
	Radius of Gyration Analyses 
	Hydrogen Bond (H-Bond) Properties 
	Binding Free Energy (MM-PBSA) 


	Materials and Methods 
	Molecular System Setup 
	Protein Preparation 
	Ligand Preparation 
	Molecular Docking 

	Molecular Dynamics and Mechanics Simulations 
	Free Binding Energy Calculation by MM-PBSA 

	Conclusions 
	References

