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KEYWORDS Abstract Background/purpose: Analysis of methylomes may enable prognostic stratification
Epigenomics; in patients with head and neck squamous cell carcinoma (HNSCC). This study aimed to identify
Methylation; methylation-related differentially expressed genes (mrDEGs), and to assess their efficacy in
Computational predicting patients’ survival, tumor immune microenvironment alterations and immune check-
biology; points in patients with HNSCC.
Prognosis; Materials and methods: The methylome and transcriptome data of 528 HNSCC and 50 normal
Immune checkpoint samples from TCGA database were used as training cohort. We identified mrDEGs and consti-
molecule; tuted a risk score model using Kaplan-Meier analysis and multivariate Cox regression. The prog-
Head and neck cancer nostic efficacy of the risk score was validated in GSE65858 and GSE41613. We determined the

enrichment of previously defined biological processes of mrDEGs. We separated the HNSCC pa-
tients into low-risk and high-risk groups and compared their immune cell infiltration and im-
mune checkpoints’ expressions.

Results: The risk score model was constituted by nine prognostic mrDEGs, including LIMD2,
SYCP2, EPHX3, UCLH1, STC2, PRAME, SLC7A4, PLOD2, and ACADL. The risk score was a signif-
icant prognostic factor both in training (P < 0.001) and validation dataset (GSE65858:
P = 0.008; GSE41613 = 0.015). The prognostic mrDEGs were enriched in multiple immune-
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associated pathways. Effector immune cells were increased in low-risk patients, including
CD8+ T cells, activated CD4+ T cells, and plasma cells, whereas tumor associated M2 macro-
phages were recruited in the high-risk group. Expressions of immune checkpoints were gener-
ally higher in low-risk patients, including CTLA-4, PD-1 and LAG3.

Conclusion: The mrDEGs can stratify HNSCC patients’ prognosis, which correlates with alter-
ations in tumor immune infiltrations and immune checkpoints.

© 2022 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).

Introduction

Head and neck squamous cell carcinoma (HNSCC) is one of
the common malignant cancers worldwide. Nearly 300,000
people die of HNSCC each year." Over 63,000 new cases of
HNSCC were reported in the United Stated per year, ac-
counting for 3.6% of all sites.”? Due to radical ablation of
lesions, survivors suffered severe pain, changed voice, un-
favorable swallowing, decreased social activities, and a
lower quality of life.® It is urgent to further explore the
etiological mechanism of HNSCC and provide novel treat-
ment targets.

Over recent years it has been proved that epigenetic
mis-programming is a core component of cancer initiation
and progression.” DNA methylation remains the primary
marker of epigenetics that can be measured reliably and
genome-widely in large samples.® Analysis of methylomes
enabled prognostic stratification in patients with other
cancers.®” However, studies rarely evaluated methylation
biomarkers by analyzing methylome profiles in HNSCC
patients.

DNA methylation may be related to the tumor micro-
environment.® Infiltrating immune cells within the local
tumor microenvironment contribute to proliferation, cell
death resistance, invasion, metastasis and blood vessel
formation in the dynamic process of malignancy.’ Altered
signaling pathways in tumor cells contribute to producing a
suppressive microenvironment, mainly composed of inhib-
itory cells (such as active T cells), for tumor growth.'® The
DNA methylation may participate in alterations of infil-
trating immune cells, reflecting a specific immune response
to the cancer cell presence."” Tumor immune microenvi-
ronment (TIME) are associated with therapy responsiveness
of immune-checkpoint blockade.'?

Therefore, this study aims to perform a genome-wide
integrated transcriptome and methylome analysis to iden-
tify methylation-related differentially expressed genes and
assess their efficacy in predicting patients’ survival, TIME
alterations, and responses to immunotherapy and chemo-
therapy in HNSCC patients.

Materials and methods
Data acquisition and preprocessing

We downloaded DNA methylation (528 HNSCC samples and
50 normal samples), RNA-sequencing (500 HNSCC samples
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and 40 normal samples) and clinical information data of The
Cancer Genome Atlas Program (TCGA) HNSCC cohort from
UCSC-Xena (https://xenabrowser.net/) on August 28th,
2020. The GSE65858 (with 270 HNSCC specimens) and
GSE41613  (with 97 oral squamous cell carcinoma
specimens) dataset from Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo) comprises
96 HNSCC specimens with gene expression profiles, and
the associated clinical characteristics were included as
the validation set.

Data preprocessing

All data were normalized in the R computing environment
(version 4.1.0) (https://www.r-project.org) using the
limma package. Methylation data were in the form of B
value, representing the ratio of the methylation probe
data vs total probe intensities. The average DNA
methylation value for all CpG sites correlated with a gene
was calculated using the MethylMix and DESeq2 packages.
Data were utilized according to the data access policy of
TCGA and GEO.

Development of risk score model

Kaplan-Meier analysis was utilized to evaluate the rela-
tionship between mrDEGs and the survival time of HNSCC
patients using glmnet, survival, and survminer packages.
We adopted the multivariate Cox regression after primary
filtration to further narrow the scope of the candidate
prognostic mrDEGs. The risk score for each patient was
calculated based on the risk score formula: risk
score exp(genes) x B; + exp(gene;) x B2 + . . .
exp(gene,) x Bn. Herein, exp(gene,) means expression of a
mdDEG, B, means the gene’ coefficient in the linear model.

Testing and validation of risk score model

Samples were stratified into high-risk and low-risk groups by
setting the median value of risk scores as the cutoff value.
The overall survival (0S), disease-specific survival (DSS),
and progression-free survival (PFS) of these two groups
were calculated by the Kaplan-Meier method with the log-
rank test. The expressions of mrDEGs in this risk score
model were visualized by pheatmap package. Multivariate
Cox regression and Receiver operating characteristic (ROC)
curve were used to determine whether the risk score was


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://xenabrowser.net/
https://www.ncbi.nlm.nih.gov/geo
https://www.r-project.org

Journal of Dental Sciences 18 (2023) 57—64

independent prognostic factors for HNSCC patients after
considering other clinical features, including age, gender
and stage. In the validation analysis, we verified the
Kaplan-Meier plot by using GSE65858 and GSE41613.

Relationship between risk model and tumor
immune microenvironment

Gene set enrichment analysis (GSEA) was performed using
R package “clusterprofiler” to determine the enrichment
of previously defined biological processes of mrDEGs
using RNA-sequencing data from TCGA-HNSCC cohort.
The collection of annotated gene sets in Molecular Signa-
tures Database (http://software.broadinstitute.org/gsea/
msigdb/index.jsp) was chosen as the reference gene sets
in R, and the P value < 0.001 was set as the cutoff.
Cibersort (https://cibersort.stanford.edu) was used to
provide an estimation of the abundances of member cell
types in a mixed cell population and analyze the fraction
of immune cells in high-risk and low-risk samples with
HNSCC."® We compared the counts of low-risk and high-
risk groups. We also compared the gene expressions of
immune checkpoints, including CTLA4, LGALS9, LAG3,
HAVCR2, TIGIT, PD-1, and CD274.

Results

The flow chart of this study was shown in Fig. 1A. We
identified 2104 downregulated differentially expressed
genes (DEGs), and 1633 upregulated DEGs (Fig. 1B). A total
of 1620 genes have significant methylation level alter-
ations, in which 284 were downregulated genes and 286
were upregulated genes. 570 mrDEGs were identified by
intersecting DEGs and genes with methylation alterations
(Fig. 1C). To determine the prognostic role of these
mrDEGs, univariate analysis was performed in the TCGA
cohort with the cutoff of P < 0.01. 26 mrDEGs had signifi-
cantly improved or decreased hazard ratio in the univariate
analysis (Fig. 1D). Then nine mrDEGs were screened out in
the multivariate regression.

We then built a predictive model using the
9 survival-relevant mrDEGs. The mrDEGs risk score for each
patient could be calculated using the following formula:
Risk score = - 0.02673exp(LIMD2) + 0.00126exp(UCHLT) +
0.006452exp(STC2) + 0.006518exp(PRAME ) - 0.02482exp
(SYCP2) + 0.013019exp(SLC7A4) - 0.00543exp(EPHX3) +
0.006065exp(PLOD2) + 0.060995exp(ACADL) (Fig. 2A). We
divided the HNSCC patients into low-risk and high-risk
groups by the median risk score (Fig. 2B). Low-risk pa-
tients yielded longer OS (P = 8.587e-10) (Fig. 2C), PFS
(P = 1.755e-4) (Fig. 2D), and DSS (P = 7.799e-8) (Fig. 2E)
than high-risk patients. The risk score was more effective in
survival stratification than age, gender, histopathological
grade, and clinical stage (Fig. 2F). The prognostic value of
the mrDEGs was also validated in OS of GSE65858
(P = 8.151e-3) (Fig. 2G; Fig. S1) and GSE41613 (P = 1.474e-
2) (Fig. 2H; Fig. S2). These results indicated that mrDEGs
signature have considerable prognostic values for HNSCC
patients.

To further characterize the potential signaling pathways
involved in the influences on the risk score model, GSEA was
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performed to enrich the kyoto encyclopedia of genes and
genomes (KEGG) pathways in genes relation value with the
risk score. Many enriched pathways were associated with
TIME, including leishmania infection, systemic lupus ery-
thematosus, B cell receptor signaling, natural killer cell-
mediated cytotoxicity, autoimmune thyroid disease, anti-
gen processing and presentation, asthma, T cell receptor
signaling, intestinal immune network for IgA production,
graft versus host disease, allograft rejection, primary im-
munodeficiency (P < 0.01) (Fig. 3).

As we understood that the risk score model was associ-
ated with TIME, we next analyzed immune infiltrations in
samples. The low-risk group had higher proportions of CD8-+
T cells, activated CD4+ T cells, resting mast cells, T helper
cells, plasma cells, B cells, regulatory T cells, monocytes,
M1 macrophages, eosinophils, dendritic cells. The high-risk
group had higher proportions of MO macrophages, CD4+ T
cells, activated mast cells, activated dendritic cells, NK
cells, M2 macrophages (Fig. 4A; Fig. S3). This indicated that
the risk score was related to the immune infiltration cell
recruiting of HNSCC, which may contribute to its prognostic
stratification. Then we explored the expression levels of
immune checkpoints and found that CTLA-4, LGALS9, LAG3,
TIGIT, PD-1, and HAVCR2 were more expressed in the low-
risk group (Fig. 4B; Fig. S4; Fig. S5), which indicated more
benefits of low-risk patients from immunotherapy.

Discussion

Epigenetic changes, such as DNA methylation, can drive
abnormal gene expression of crucial genes involved in
cancer development and progression, including HNSCC.'* 1>
Hypermethylation of tumor suppressor genes and hypo-
methylation of proto-oncogenes at the promotor sites were
associated with carcinogenesis and progression.'®!”
Considering the cancer type-specific methylation pattern,
we analyzed the effects of methylation alterations on gene
expressions and patients’ survival and found a series of
methylation-related oncogenes or tumor suppressor genes.
Herein, we found that LIMD2, SYCP2, and EPHX3 were
associated with better prognosis, while higher expression of
UCLH1, STC2, PRAME, SLC7A4, PLOD2, and ACADL implied
undesirable prognosis.

Functions of some mrDEGs in the risk model have been
identified in previous studies. PRAME expression was
significantly associated with tumor stage, and positive
lymph node metastasis, suggesting PRAME is a tumorigenic
biomarker.'® Though studies rarely address SLC7A4, one of
its family members, SLC7A5 is a transporter dedicated to
essential amino acids and overexpressed in cancer cells to
meet the increased demand for nutrients that include
glucose and essential amino acids. Recently studies have
identified PLOD2 as a glycolysis-related gene and silencing
of PLOD2 suppresses tumor proliferation and invasion.'®2°
STC2 was a direct target of miR-381, which suppresses
cell proliferation, migration and invasion in HNSCC.?" In
addition, EPHX3 have been ever addressed in previous
survival prediction model of HNSCC or OSCC, and hyper-
methylation of EPHX3 will lead to downregulated expres-
sion and favorable survival.?>2* SYCP2 is involved in the
nuclear structure and meiosis, which is found upregulated
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Fig. 1  Selection of methylation-related differentially expressed genes (mrDEGs) in head and neck squamous cell carcinoma
(HNSCC) samples. (A) Flow chart of this study. (B) Volcano plot of DEGs using the cutoff of |log-fold change (logFC)| > 1 and false
discovery rate (FDR) < 0.05. logFC<1 were downregulated DEGs colored by blue and logFC>1 were upregulated differentially
expressed genes (DEGs) colored by red. (C) Venn plot of upregulated DEGs, downregulated DEGs and methylation-related genes.
The overlapping region showed the methylation-related upregulated or downregulated genes. (D) Kaplan-Meier analysis of mrDEGs
using the cutoff of P < 0.01 in HNSCC patients. Green labeled survival-favorable mrDEGs, red labeled survival-unfavorable mrDEGs.
K-M analysis, Kaplan-Meier analysis; GSEA, gene set enrichment analysis; TIME, tumor immune microenvironment. (For interpre-

tation of the references to colour in this figure legend, the reade

in Human papillomavirus (HPV)-positive HNSCC,?> when
clinical follow-up has shown that HPV positivity was asso-
ciated with improved survival.

However, the role of other mrDEGs may be controversial
among different cancers. LIMD2 is a component of the
signal transduction cascade that links integrin-mediated
signaling to cell motility or metastatic behavior in multi-
ple cancers,?® while our study identified LIMD2 as a
survival-favorable gene. ACADL plays a tumor-suppressor
role by targeting Hippo/YAP signaling in hepatocellular
carcinoma, while another report shows that ACADL
expression is associated with esophageal squamous cell
carcinoma progression and poor prognosis.?”"?% Several po-
tential reasons may explain the controversy. First, it may
be possible that the same molecule expresses and functions
in a cancer-specific pattern. Second, molecules down-
regulated in cancers may be necessary for the tumor pro-
gression and metastasis. For example, it is well-known that
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r is referred to the Web version of this article.)

E-cadherin is downregulated in cancers, but a recent study
found it was required for metastasis of breast cancer.?’
Overall, further studies are needed to elucidate these
controversies.

The mrDEGs risk score is highly associated with and
enriched in TIME pathways. A previous study found that
PRAME expression is more frequent in soft tissue sarcomas
with low tumor-infiltrating lymphocyte counts.*° PLOD2 was
positively correlated with the activities of tumor-
infiltrating immune cells, including macrophages, neutro-
phils, CD4+ T cells, B cells and dendritic cells.>" Our study
has subclassified the macrophages into MO, M1 and M2
phenotypes, in which M2 phenotype was generally consid-
ered as tumor associated one.*” We found that both MO and
M2 phenotypes increased in the high-risk group while M1
phenotype was higher in the low-risk group. Similarly, the
resting or activated CD4+ T cells, B cells and dendritic cells
distributed differently in groups. Our results suggested the
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Fig. 2 Survival prediction by risk factor model of methylation-related differentially expressed genes (mrDEGs) in head and neck

squamous cell carcinoma (HNSCC) samples. (A) expressions of mrDEGs in HNSCC patients divided by median mrDEGs risk scores. (B)
Survival time in HNSCC patients sequenced with increasing risk score. (C) Kaplan-Meier analysis of overall survival (OS) in the
training set. (D) Kaplan-Meier analysis of progression-free survival (PFS) in the training set. (E) Kaplan-Meier analysis of disease-
specific survival (DSS) in the training set. (F) Multivariate Cox regression of risk score and clinical factors in HNSCC patients in
the training set. (G) Kaplan-Meier analysis of OS in the validation set (GSE65858). (H) Kaplan-Meier analysis of OS in the validation

set (GSE41613).

potential of immunomodulation functions of other mrDEGs,
which might need more experimental confirmation.

T-cell Receptor Signaling is the essential basis of arising
immunotherapy and may participate in the resistance to
chemotherapy.®*3* The current immunotherapy was mainly
achieved by antibodies blocking CTLA-4 or PD-1 pathway.*”
Evidence is cumulating that LAG3, LGALS9, HAVCR2 and
TIGHT could be the next-generation immunotherapy
checkpoints.®**° Previous studies found a significant cor-
relation among PD-L1 and PD-1 expression in immune cells
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and PRAME expression in tumor cells of salivary duct car-
cinoma.“® No published studies have addressed the associ-
ation between other mrDEGs and immunotherapy
checkpoints. Our study firstly revealed that methylation
might also drive the alterations in TIME and could be a
potential target of immunotherapy.

However, this study has some limitations. First, the risk
score model’s validation could not be performed in multiple
populations due to the limited data source. We validated its
efficacy in an independent GEO dataset, and we expected
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Fig. 3 Pathway enrichment of methylation-related differentially expressed genes (mrDEGs) in head and neck squamous cell
carcinoma (HNSCC) samples. A false discovery rate (FDR) less than 0.05 and an absolute value of the enrichment score (ES) greater
than 0.5 were defined as the cutoff criteria. P.adjust, adjusted P value.

that genomic databank with more HNSCC samples could be surgery. Further validation should be conducted when late-
established. Second, we did not test our risk score’s pre- stage samples are cumulative.

diction efficacy on the immunotherapy in late-stage HNSCC In conclusion, risk score constructed by mrDEGs could
patients exclusively. Early-stage HNSCC patients are not predict HNSCC patients’ prognosis, which may correlate
indicated to the immunotherapy due to the efficiency of with TIME and immune checkpoint expressions.
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Fig. 4

Relationship between methylation-related differentially expressed genes (mrDEGs) and immunomodulation. (A) Fractions

of immune cell infiltrations in low-risk and high-risk head and neck squamous cell carcinoma (HNSCC) groups. (B) gene expressions
of immune checkpoints in low-risk and high-risk HNSCC groups.
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