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Abstract: The Aquilaria malaccensis (Thymelaeaceae) tree is a source of precious fragrant resin,
called agarwood, which is widely used in traditional medicines in East Asia against diseases such
as asthma. In our continuous search for active natural products, A. malaccensis seeds ethanolic
extract demonstrated antiallergic effect with an IC50 value less than 1 µg/mL. Therefore, the
present research aimed to purify and identify the antiallergic principle of A. malaccensis through
a bioactivity-guided fractionation approach. We found that phorbol ester-rich fraction was
responsible for the antiallergic activity of A. malaccensis seeds. One new active phorbol ester,
12-O-(2Z,4E,6E)-tetradeca-2,4,6-trienoylphorbol-13-acetate, aquimavitalin (1) was isolated. The
structure of 1 was assigned by means of 1D and 2D NMR data and high-resolution mass spectrometry
(HR-MS). Aquimavitalin (1) showed strong inhibitory activity in A23187- and antigen-induced
degranulation assay with IC50 values of 1.7 and 11 nM, respectively, with a therapeutic index up
to 71,000. The antiallergic activities of A. malaccensis seeds and aquimavitalin (1) have never been
revealed before. The results indicated that A. malaccensis seeds and the pure compound have the
potential for use in the treatment of allergy.

Keywords: Aquilaria malaccensis seeds; antiallergic; degranulation; phorbol ester;
bioactivity-guided fractionation
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1. Introduction

Imunoglobulin E (IgE)-mediated allergy is a common immune system disorder affecting
approximately 235 million people worldwide, particularly the population in developed countries [1].
Although today we are able to treat the symptoms of allergy, available medications have undesirable
effects, especially with a prolonged use. Therefore, there is a need to search for alternative treatment.
In general, some natural sources are considered as safe and easily available. Mast cells and their
degranulation play a crucial role in IgE-mediated allergic inflammatory responses, such as allergic
rhinitis, acute asthma, and atopic eczema [2]. β-Hexosaminidase is an enzyme released along with
histamine from mast cells (rat basophilic leukemia cells, RBL-2H3 cells) upon activation and serves as
a well-accepted in vitro model in allergy [3].

Agarwood is a priceless fragrant resinous wood from the Aquilaria species (Thymelaeaceae), which
is formed as a defense mechanism to fend off pathogens. Agarwood is widely used in religious,
aromatic, and medicinal preparations [4,5]. Aquilaria species has been traditionally used in Thai [6] and
Korean [7] medicine, in the Ayurvedic practice, as well as traditional Chinese medicine to treat various
diseases, particularly the diseases associated with inflammation [8]. Agarwood from the Aquillaria
species has been used as cardiotonic, carminative, antiasthmatic, aphrodisiac, astringent remedy, and
has been found effective against diarrhea, dysentery, gout, rheumatism, paralysis, and parasites, and
it has been beneficial for skin diseases [9]. The Aquilaria species was previously found to possess
antidepressant [10,11], antineuroinflammatory [12], analgesic, antiinflammatory [13], antioxidant,
antibacterial [6], antihyperglycemic in vivo [14], and laxative activity in vivo [15].

Aquilaria malaccensis Lam. (syn. Aquilaria agallocha Roxb.) (Thymelaeaceae) is a tropical tree
native to Malaysia, locally known as “Karas”. It is distributed in the rainforests of Indonesia, Thailand,
Cambodia, Laos, Malaysia, Philippines, and India [16]. The alcoholic extract of A. malaccensis stems and
bark exhibited cardiotonic activity [17], and cytotoxicity against Eagle’s carcinoma of the nasopharynx
and P-388 lymphocytic leukemia cells in vitro [18]. The aqueous extract showed antitrypanosomal [19],
antibacterial [20], and antiallergic activity in vitro and in vivo [7]. The study on the composition of
agarwood from A. malaccensis utilizing gas chromatography-mass spectrometry (GC-MS) revealed
the presence of chromones, aromatic compounds, sesquiterpenes, monoterpenes, steroids and fatty
acids [21]. In a previous phytochemical investigation, feruryl glyceride and phorbol ester were isolated
from A. malaccensis bark [18].

However, there was no investigation reporting on composition and bioactivity of A. malaccensis
seeds (AMS).

In the current study, we investigated antiallergic, antiinflammatory, and cytotoxic activities of
AMS extract and its fractions. Within a project of continuous screening for active natural products,
AMS showed strong antiallergic effect with an IC50 value less than 1 µg/mL in degranulation assay.
Therefore, a phytochemical investigation of AMS was undertaken through a bioactivity-guided
fractionation approach. The active components of the most active fraction were further defined
as a mixture of phorbol esters, and, moreover, the new active phorbol ester possessing polyunsaturated
fatty acid (1) was isolated.

2. Results and Discussion

2.1. Antiallergic, Antiinflammatory, Cytotoxic Effects of A. malaccensis Seeds (AMS)

The preliminary bioactivity screening of AMS ethanolic extract (A-EtOH) showed potent
antiallergic (IC50 0.92 and 3.9 µg/mL in A23187 and antigen-induced β-hexosaminidase assay,
respectively) (Table 1), and antiinflammatory activities (90.1% and 85.3% inhibition of superoxide
generation and elastase release at 10 µg/mL, respectively) (Table 2). All partitioned fractions except
water layer displayed significant antiallergic and antiinflammatory activities (A-BuOH, A-EtOAc,
A-Hexane, A-MeOH).
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Table 1. Antiallergic activity of Aquilaria malaccensis seeds extracts, fractions and aquimavitalin (1).

Sample
Viability, RBL-2H3 Inhibition of β-Hexosaminidase Release, Degranulation Assay, RBL-2H3 Cells a Inhibitory Effect on

Enzyme

IC50 (µg/mL) b

(% Viability at 100 µg/mL)
A23187-Induced
IC50 (µg/mL) b Therapeutical Index c Antigen-Induced

IC50 (µg/mL) b Therapeutical Index c β-Hexosaminidase (%) d

A-EtOH >100 (86.0%) 0.92 >109.0 3.9 >25.7 12.7 ˘ 4.2 (100 µg/mL)

A-BuOH >100 (93.3%) 1.1 >92.1 6.0 >16.7 7.3 ˘ 5.5 (100 µg/mL)

A-Water >100 (94.0%) – – – – N/A e

A-EtOAc >100 (90.3%) 0.56 >177.9 0.86 >116.8 13.3 ˘ 2.1 (100 µg/mL)

A-Hexane >100 (95.3%) 0.83 >120.1 5.1 >19.5 13.7 ˘ 2.5 (100 µg/mL)

A-MeOH 96.8 0.0089 10,910.9 0.069 1405.2 5.3 ˘ 3.2 (10 µg/mL)

AM4 98.0 0.0034 28,677.6 0.0065 15,098.4 4.7 ˘ 4.0 (10 µg/mL)

AM4-4 70.6 4.8 ˆ 10´5 1,477,328.2 6.8 ˆ 10´4 103,776.5 N/A e

AM4-4-7 73.8 7.4 ˆ 10´4 99,680.2 0.0065 11,309.9 N/A e

AM4-4-8 73.4 7.6 ˆ 10´6 9,645,374.3 8.0 ˆ 10´5 917,440.9 N/A e

Aquimavitalin (1) 71.5 0.0010 (0.0017 µM) 71,538.5 0.0068 (0.011 µM) 10,550.2 4.3 ˘ 4.5 (10 µg/mL)
a Dexamethasone (10 nM) inhibited 54.0% ˘ 4.0% of A23187-induced β-hexosaminidase release and 54.3% ˘ 7.2% of antigen-induced β-hexosaminidase release;
b IC50 values express the concentration of the sample required to inhibit cell growth or degranulation by 50%; c Therapeutic index was calculated by dividing IC50 value
from 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay with corresponding IC50 value from degranulation assay; d Results are presented as
mean ˘ SD (n = 3); e N/A, not applicable; A-EtOH: crude ethanolic extract of Aquilaria malaccensis seeds; A-BuOH: n-butanol layer from Aquilaria malaccensis seeds; A-Water: water
layer from Aquilaria malaccensis seeds; A-EtOAc: ethyl acetate layer from Aquilaria malaccensis seeds; A-Hexane: n-hexane layer from Aquilaria malaccensis seeds; A-MeOH: methanol
layer from Aquilaria malaccensis seeds, AM: subfractions of methanol layer from Aquilaria malaccensis seeds.
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Table 2. Antiinflammatory effects of A. malaccensis seeds extracts on superoxide anion generation and
elastase release in fMLP/CB-induced human neutrophils a.

Sample Superoxide Anion Generation (Inh %) Elastase Release (Inh %)

A-EtOH 90.1 ˘ 5.3 ** 85.3 ˘ 0.8 **
A-BuOH 93.9 ˘ 8.3 ** 77.6 ˘ 2.4 **
A-Water 11.4 ˘ 1.6 * 2.7 ˘ 4.1 –
A-EtOAc 94.8 ˘ 5.6 ** 85.4 ˘ 1.8 **
A-Hexane 103.4 ˘ 1.8 ** 80.2 ˘ 4.0 **
A-MeOH 96.5 ˘ 8.0 ** 90.4 ˘ 6.0 **

AM1 54.5 ˘ 5.7 ** 99.2 ˘ 2.3 **
AM2 68.7 ˘ 5.0 ** 47.5 ˘ 5.3 **
AM3 105.9 ˘ 3.4 ** 86.8 ˘ 2.0 **
AM4 100.7 ˘ 8.1 ** 70.9 ˘ 1.0 **
AM5 102.6 ˘ 1.5 ** 93.5 ˘ 3.7 **
AM6 102.4 ˘ 2.0 ** 99.3 ˘ 2.3 **

a Percentage of inhibition (Inh %) at 10 µg/mL concentration; results are presented as mean ˘ SEM (n = 3–4);
* p < 0.05, ** p < 0.001 compared with the control value (formyl-methionyl-leucyl-phenylalanine/cytochalasin B,
fMLP/CB).

The effects of the AMS samples on degranulation in both A23187- and antigen-induced
β-hexosaminidase assays were dose-dependent (Tables S1 and S2). To clarify that antiallergic activity
of the samples was due to inhibition of β-hexosaminidase release, and not false positive as a result of
direct inhibition of β-hexosaminidase enzymatic activity [22], the enzyme was extracted and tested
with the active samples. None of the samples inhibited the enzymatic activity of β-hexosaminidase
(Table 1).

As the methanol layer proved the best antiallergic activity (IC50 0.0089 and 0.069 µg/mL in
A23187 and antigen-induced degranulation assay, respectively), it was further separated using
silica gel column chromatography to yield six fractions, AM1–AM6 (subfractions of methanol
layer from Aquilaria malaccensis seeds). Among them, fraction AM4 showed the most remarkable
antiallergic activity inhibiting β-hexosaminidase release from mast cells induced by either A23187
(IC50 0.0034 µg/mL) or antigen (IC50 value 0.0065 µg/mL).

In cytotoxicity assay against a panel of three cancer cell lines (human hepatocellular carcinoma
cells HepG2, human breast adenocarcinoma cells A549, and human lung adenocarcinoma cells
MDA-MB231), only some of the AMS fractions showed cytotoxic activities at a 20-µg/mL level
(Table 3) (A-BuOH 57.1% against A549, AM4 56.5% against MDA-MB231 and 79.3% against A549,
AM6 56.0% against MDA-MB231 cell line). Moreover, considering weak cytotoxicity of AMS towards
RBL-2H3 cells, the antiallergic active fraction AM4 exerted therapeutic index up to 28,000. To further
rule out the possibility that AM4 causes direct mast cell activation, we examined the capacity of AM4
to elicit degranulation by itself. Results showed that the AM4 treatments did not cause significant
degranulation as compared with untreated control (Figure 1). These data implied that AM4 is the best
target for further phytochemical analysis.

2.2. Chemical Analysis and Bioactivity-Guided Fractionation

Following bioactivity-guided fractionation of the active fractions, the AM4 was further separated,
yielding several active fractions, AM4-3, AM4-4, and AM4-5 (Tables S1 and S2).

AM4-4 (IC50 4.8 ˆ 10´5 µg/mL, therapeutic index 1477328, A23187-induced; and
IC50 6.8 ˆ 10´4 µg/mL, therapeutic index 103776, antigen-induced β-hexosaminidase assay) afforded
the most active fraction AM4-4-8 (IC50 7.6 ˆ 10´6 µg/mL, therapeutic index 9645374, A23187-induced;
and IC50 8.0 ˆ 10´5 µg/mL, therapeutic index 917440, antigen-induced degranulation assay), and a
new compound, aquimavitalin (1) (IC50 values of 0.0017 µM, therapeutic index 71,538, A23187-induced;
and IC50 0.011 µM, therapeutic index 10,550, antigen-induced degranulation assay) (Figure 2).
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Table 3. Cytotoxic screening of A. malaccensis seeds extracts on cancer cell lines a.

Sample HepG2 b MDA-MB231 c A549 d

A-EtOH 16.0 37.2 29.7
A-BuOH 4.2 34.4 57.1
A-Water ´9.3 6.8 13.3
A-EtOAc 1.5 41.2 23.5
A-Hexane 25.1 42.5 16.8
A-MeOH ´0.8 30.3 32.7

AM1 8.1 1.7 ´12.6
AM2 2.4 11.5 19.8
AM3 25.5 46.3 39.5
AM4 23.4 56.5 79.3
AM5 7.9 39.9 29.2
AM6 5.3 56.0 39.5

doxorubicin e 91.3 97.7 98.0
a Percentage of inhibition (%) at 20 µg/mL concentration (n = 1); b Hep-G2: human hepatocellular carcinoma
cells; c MDA-MB231: human breast adenocarcinoma cells; d A549: human lung adenocarcinoma cells; e Positive
control (2 µg/mL).
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Figure 1. Activity of phorbol ester-rich fraction (AM4) and aquimavitalin (1) on stimulant-free
degranulation in RBL-2H3 cells. The RBL-2H3 cells were treated with AM4 (10 µg/mL) and
aquimavitalin (10 µg/mL) for 10 h. Tyrode’s buffer supplemented with glucose, bovine serum albumin
(BSA) and glutamine was used as a medium. A23187 (1 µM) was used as a positive control. Data are
expressed as mean ˘ SD (n = 3). ** p < 0.001 compared with the control value.
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According to 1H NMR of the crude (A-EtOH), methanolic (A-MeOH) and the subsequent
active fractions (AM4 and AM4-4) (Figure S1), we found the proportional relationship of the
antiallergic activity with the increase in signals typical for phorbol diterpenes (δH 7.5, H-1; δH 5.6, H-7;
δH 4.0, H-20).

2.3. Structure Elucidation of Aquimavitalin (1)

Compound 1 (Figures S2–S8) was isolated as a colorless oil. It was assigned the molecular
formula C36H50O8Na, according to high-resolution electrospray ionization mass spectrometry
(HR-ESIMS) (m/z 633.33980 [M + Na]+, calcd. 633.33979), indicating 12 degrees of unsaturation.
Its IR spectrum revealed the presence of hydroxyl (3413 cm´1), carbonyl (1710 cm´1) and olefinic
(1615 cm´1) functionalities.

The NMR data of compound 1 (1H, 13C and heteronuclear multiple quantum coherence,
HMQC, Table 4) confirmed the presence of α, β-unsaturated carbonyl (δH 7.57, s, H-1, δC 160.8,
C-1; δC 132.8, C-2; δC 209.3, C-3), trisubstituted double bond (δH 5.68, brs, H-7, δC 129.1, C-7;
δC 140.6, C-6), oxygenated methylene (δH 3.95, d, J = 12.8 Hz, 4.02, d, J = 12.8 Hz, H-20, δC

67.9, C-20), oxygenated methane (δH 5.43, d, J = 10.4 Hz, H-12, δC 75.9, C-12), four methyls, a
methylene and four methines. Furthermore, signals for acetyl group (δH 2.10, s, H-22, δC 21.1,
C-22; δC 173.9, C-21) and fatty acid moiety including six olefinic protons, six methylenes and
terminal methyl group were detected. The 1H NMR data was closely related to known compound
12-O-(2Z,4E,6E)-deca-2,4,6-trienoylphorbol-13-acetate [18] except of the length of the fatty acid moiety
(Table S3).

Table 4. 1D and 2D NMR data of aquimavitalin (1) in CDCl3 a.

Position δH, Multiplicity (J in Hz) δC, Type COSY (1H–1H) HMBC (1H–13C) NOESY (1H–1H)

1 7.57 (s) 160.8 CH 10, 19 4, 10 18
2 – 132.8 C – – –
3 – 209.3 C – – –
4 – 73.6 C – – –

5α 2.48 (d, J = 18.8) 38.3 CH2 7 4, 6, 7 5, 20
5β 2.58 (d, J = 18.8) – – – –
6 – 140.6 C – – –
7 5.68 (brs) 129.1 CH 5, 8 14, 20 14, 20
8 3.26 (t, J = 5.2) 38.8 CH 7, 14 6, 14, 15 11, 17
9 – 78.4 C – – –
10 3.22 (brs) 55.9 CH 1, 19 – –
11 2.13 (m) 43.0 CH 12, 18 – 17, 18
12 5.43 (d, J = 10.4) 75.9 CH 11 11, 13, 15, 18, 11 18
13 – 65.7 C – – –
14 1.08 (d, J = 5.2) 36.1 CH 8 7, 13, 15, 16 –
15 – 25.6 C – – –
16 1.19 (s) 23.8 CH3 – 13, 14, 15, 17 –
17 1.24 (s) 16.7 CH3 – 13, 14, 15, 16 –
18 0.88 (d, overlap) 14.0 CH3 11 9, 11, 12 –
19 1.73 (brs) 10.0 CH3 1, 10 1, 2, 3 –

20a 4.02 (d, J = 12.8) 67.9 CH2 – 5, 6, 7 –
20b 3.95 (d, J = 12.8) – – – –
21 – 173.9 C – 22 –
22 2.10 (s) 21.1 CH3 – – –
11 – 166.3 C – – –
21 5.57 (d, J = 11.2) 115.6 CH 31 – 31

31 6.59 (t, J = 11.6) 145.6 CH 21, 41 11, 51 –
41 7.39 (dd, J = 15.2 and 11.6) 126.5 CH 31, 51 – 61

51 6.46 (dd, J = 14.8 and 10.4) 142.4 CH 41, 61 – 71

61 6.20 (dd, J = 15.2 and 10.8) 130.1 CH 51, 71 – –
71 5.92 (dt, J = 15.2 and 7.2) 141.0 CH 61, 81 – –
81 2.13 (m) 33.0 CH2 71, 91 61, 71, 91 91

91 1.38 (m) 28.9 CH2 81 101 –
101 1.26–1.28 (m, overlap) 29.1 CH2 – – –
111 1.26–1.28 (m, overlap) 29.1 CH2 – – –
121 1.26–1.28 (m, overlap) 31.7 CH2 – – –
131 1.26–1.28 (m, overlap) 22.6 CH2 – – –
141 0.86 (t, J = 7.2) 14.4 CH3 – 121, 131 –
a 1H and 13C NMR data (δ) were measured at 400 and 100 MHz, respectively; chemical shifts are in ppm;
COSY: Correlation spectroscopy; HMBC: Heteronuclear multiple bond correlation spectroscopy;
NOESY: Nuclear Overhauser effect spectroscopy.
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The 1H–1H correlation spectroscopy (COSY) correlations (Figure 3) indicated the
presence of C-10/C-1/C-19, C-5/C-7/C-8/C-14, and C-12/C-11/C-18 moieties for backbone,
C-2’/C-3’/C-4’/C-5’/C-6’/C-7’/C-8’/C-9’ for fatty acid moiety. The COSY correlations together with
long-range heteronuclear multiple bond correlation spectroscopy (HMBC) correlations (Figure 3)
from H-19/C-1, C-2, C-3; H-1/C-4; H-5/C-4; H-20/C-5, C-6, C-7; H-8/C-6, C-14, C-15; H-12 to C-11,
C-13, C-15, C-18; H-18/C-9; H-16 and H-17/ C-13, C-14, C-15 established the tigliane (phorbol) type
diterpene backbone of compound 1 [23,24].
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The relative configuration was assigned by means of nuclear Overhauser effect spectroscopy
(NOESY) correlations of 1 (Figure 4). The cross-peaks of H-8/H-11, H-11/H-17 and H-17/H-8 indicated
that they are all β-oriented. Moreover, the correlation between H-1/H18/H-12 suggested that the fatty
acid moiety is also β-oriented [23]. Additionally, 1 showed negative specific optical rotation (´3.8)
similar to 12-O-(2Z,4E,6E)-deca-2,4,6-trienoylphorbol-13-acetate (´15.3) [18].
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The fatty acid was identified as (2Z,4E,6E)-tetradeca-2,4,6-trienoic acid according to 1D
NMR and COSY correlations supported by following HMBC correlations, H-31/C-11 (δC 166.3),
C-51 (δC 142.4); H-81/C-61 (δC 130.1), C-71 (δC 141.0), C-91 (δC 28.9); H-91/C-101 (δC 29.1) and
H-141/C-121 (δC 31.7), C-131 (δC 22.6). The geometry of the double bonds was assigned by
coupling constants in 1H NMR. The NMR data were in agreement with those of (2Z,4E,6E)-ethyl
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tetradeca-2,4,6-trienoate [25]. The fatty acid moiety was attached to phorbol backbone at C-12 by
virtue of HMBC correlation from H-12 to C-11 (δC 166.3). Therefore, compound 1 was identified as
12-O-(2Z,4E,6E)-tetradeca-2,4,6-trienoylphorbol-13-acetate and named as aquimavitalin.

2.4. Antiallergic Activity of Aquimavitalin (1)

In degranulation assay, aquimavitalin (1) showed significant β-hexosaminidase release-inhibitory
activity with IC50 values of 0.0017 µM (therapeutic index 71,538) using A23187 as an inducer and
0.011 µM (therapeutic index 10,550) using antigen as an inducer. Aquimavitalin (1) did not inhibit
β-hexosaminidase enzymatic activity (Table 1), neither trigger the degranulation of unstimulated
mast cells (Figure 1). According to our results, phorbol ester-rich fractions (AM4-4, AM4-4-8) showed
stronger activity (up to pg/mL level) than a pure compound. This phenomenon may be a result of
synergistic effects of phorbol esters in the mixture.

In general, phorbol esters, particularly phorbol-12-myristate-13-acetate (PMA), are well-known as
irritant, proinflammatory and cocarcinogenic. Nevertheless, phorbol esters were previously reported
to exert antiinflammatory, anti-HIV, antiparasitic and anticancer activities [26]. Both free C-20 hydroxy,
and C-12 and/or C-13 ester moieties were important for the activities of phorbol esters [26]. Importantly,
it was suggested that unsaturation of ester functionality may play a crucial role in bioactivity of
phorbols [26,27]. Previously, 12-O-(2Z,4E,6E)-deca-2,4,6-trienoylphorbol-13-acetate, a phorbol ester
possessing similar conjugated fatty acid moiety as 1, was isolated from A. malaccensis bark and exerted
cytotoxic activity in P-388 lymphocytic leukemia cells in vitro [18]. In structure-activity relationship
study on phorbol esters containing fatty acids with different level of unsaturation and carbon chain
length, phorbol esters carrying conjugated unsaturated fatty acid as acyl group showed irritant but
very weak tumor-promoting activities. [27]. This is the first study to report on the antiallergic potential
of pure phorbol ester with the therapeutic index up to 71,000. The antiallergic activity of AMS together
with identification of its active component provides scientific support for the folk use of A. malaccensis
against asthma.

3. Materials and Methods

3.1. General Procedures

Sephadex LH-20 (Merck KGaA, Darmstadt, Germany), silica gel 60 (Merck KGaA) and Geduran
Si 60 (Merck KGaA) were used for column chromatography. TLC plates (Silica Kiesel 60 F254)
were from Merck KGaA. Jasco V-530 ultraviolet spectrophotometer (Jasco International Co., Ltd,
Tokyo, Japan) was used to measure UV spectra. IR spectra were obtained on an FT-IR-4100 Jasco
spectrophotometer (Jasco). Optical rotations were achieved by a Jasco P-2000 digital polarimeter
(Jasco). NMR spectra were obtained by JEOL JNM ECS 400 MHz. Electrospray ionization mass
spectrometry (ESIMS) data were collected on a Waters micromass ZQ mass spectrometer (Waters
Corporation, Milford, MA, USA). High-resolution ESIMS data was accomplished by a Bruker APEX II
spectrometer (FT-ICR/MS, FTMS) (Bruker Daltonics Inc., Billerica, MA, USA). Dulbecco’s modified
Eagle’s medium (high glucose) powder (DMEM), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT), p-nitrophenyl-N-acetyl-D-glucosaminide (p-NAG), penicillin and streptomycin,
dexamethasone, calcium ionophore A23187, and dimethyl sulfoxide (DMSO) were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Fetal bovine serum (FBS) was obtained from Hyclone (Logan,
UT, USA). Mouse anti-DNP IgE antibody was a generous gift from Dr. Daniel H. Conrad (Virginia
Commonwealth University, Richmond, VA, USA).

3.2. Plant Material

The seeds of A. malaccensis were obtained from Hsue-Yin Hsu, Tzu Chi University, Hualien,
Taiwan, in November 2014. The plant material was identified by Hsue-Yin Hsu, Department of Life
Sciences, Tzu Chi University, Hualien, Taiwan. A voucher specimen (code no. KMU-AMS 1) was
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deposited in the Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical
University, Kaohsiung, Taiwan.

3.3. Extraction and Isolation

Air-dried and powdered seeds of A. malaccensis (462 g) were extracted with 90% EtOH at room
temperature (3 ˆ 5 L) and then concentrated under reduced pressure. The combined extracts were
concentrated and obtained crude ethanolic extract (A-EtOH, 27.7 g) was suspended in water and
partitioned with ethyl acetate (3 ˆ 1 L). The water layer was partitioned with n-butanol (3 ˆ 1 L)
to yield water layer (A-Water, 1654.0 g) and n-butanol layer (A-BuOH, 398.2 g). The EtOAc layer
(A-EtOAc, 25.6 g) was further partitioned with n-hexane and 90% aqueous MeOH to obtain n-hexane
layer (A-Hexane, 7.1 g) and MeOH layer (A-MeOH, 16.2 g). The MeOH layer (A-MeOH) was subjected
to a column chromatography over silica gel (23 cmˆ 4 cm, silica gel 60, 0.063–0.200 mm, Merck) under a
gradient elution of n-hexane/CH2Cl2/MeOH to yield six fractions (AM1, 6:3:1; AM2, 6:4:1; AM3, 6:6:1;
AM4, 6:8:1; AM5, 6:10:1 and AM6, 6:10:2). Following bioactivity data, fraction AM4 (3212.0 g) was
further fractionated over a Sephadex LH-20 column (CH2Cl2/MeOH, 1:1) to obtain eight sub-fractions
(AM4-1 to AM4-8). Fraction AM4-3 (762.0 mg) was subjected to column chramtography (17 cm ˆ 4 cm,
Geduran Si 60, 0.040-0.063 mm, Merck) under gradient elution of EtOAc/n-hexane (from 1:10 to 4:1)
yielding 15 fractions. Fraction AM4-4 (173.7 mg) was further separated by column chromatography
on silica gel (30 cm ˆ 1.5 cm, Geduran Si 60, 0.040–0.063 mm, Merck) under gradient elution of
EtOAc/n-hexane (from 1:15 to 4:1) to obtain fraction AM4-4-7 (37.6 mg) and AM4-4-8 (6.8 mg) and
aquimavitalin (1) (43.9 mg) together with other 8 subfractions. The yield of aquimavitalin (1) was
0.0095% from dry plant material, 0.16% from crude EtOH extract.

3.4. Experimental Data of Aquimavitalin (1)

Aquimavitalin (1): Colourless oil; rαs25
D ´3.75 (c 0.067, CHCl3); UV (MeOH) λmax (log ε) 303 (2.78),

233 (2.75) nm; IR (neat) vmax 3413, 2965, 2922, 1710, 1615, 1377, 1258, 1092, 802; 1H NMR (CDCl3,
400 MHz) and 13C NMR (CDCl3, 100 MHz): see Table 4; ESIMS found m/z 611.3 [M + H]+ and 633.3
[M + Na]+; HR-ESIMS found (m/z 633.33980 [M + Na]+, (calcd. for C36H50O8Na: 633.33979).

3.5. Cell Culture

The mucosal mast cell-derived rat basophilic leukemia (RBL-2H3) cell line was purchased from
the Bioresource Collection and Research Center (Hsin-Chu, Taiwan). Cells were grown in DMEM
medium supplemented with 10% FBS and 100 U/mL penicillin plus 100 µg/mL streptomycin. Cells
were cultured in 10 cm cell culture dishes at 37 ˝C in a humidified chamber with 5% CO2 in air.

3.6. Cell Viability Assay

A methylthiazol tetrazolium (MTT) assay was used to measure the potential toxic effects of the
samples on RBL-2H3 cells [28]. Briefly, RBL-2H3 cells (2ˆ 104 cells/well) were seeded in a 96-well plate
overnight and treated with various concentrations of samples (10–100 µg/mL) for 24 h. MTT solution
(0.5 mg/mL) was added to the wells (80 µL per well) and incubated for 1 h. The formed formazan
crystals were dissolved in DMSO (80 µL). The absorbance at 595 nm was measured using microplate
reader (Multiskan Ascent, Thermo Scientific, Waltham, MA, USA). The degree of cell viability of each
sample was calculated as the percentage of control value (untreated cells). The maximal tolerated dose
of DMSO was 0.5%. All experiments were repeated at least two times.

3.7. Degranulation β-Hexosaminidase Assay Induced by A23187 or Antigen

The degree of A23187- and antigen-induced degranulation in RBL-2H3 cells was determined by a
β-hexosaminidase release assay as described previously [28,29] with following modifications. RBL-2H3
cells were seeded in a 96-well plate (2 ˆ 104 cells/well) for A23187-induced and in 48-well plate
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(3 ˆ 104 cells/well) for antigen-induced experiment. Cells were treated with various concentrations
of the samples for 20 h. Dexamethasone (10 nM) was used as a positive control. The cells for
the antigen-induced experiment were first sensitized with anti-DNP IgE (5 µg/mL) for at least 2 h.
After thorough washing by pre-warmed Tyrode’s buffer (135 mM NaCl, 5 mM KCl, 1.8 mM CaCl2,
1.0 mM MgCl2, 5.6 mM glucose, 20 mM HEPES at pH 7.4), the cells were stimulated by either calcium
ionophore A23187 (1 µM) or antigen DNP-BSA (100 ng/mL) in Tyrode’s buffer for 1 h. Unstimulated
cells were either lysed with 0.5% Triton X-100 solution for the total amount of β-hexosaminidase
release or left untreated for spontaneous release of β-hexosaminidase. Then aliquots of supernatants
(50 µL) were incubated with equal volume of 1 µM of p-NAG (50 µL) prepared in 0.1 M citrate buffer
(pH 4.5) serving as a substrate for the released β-hexosaminidase. After 1 h of incubation at 37 ˝C,
the reaction was quenched by the addition of 100 µL of stop buffer (0.1 M Na2/NaHCO3, pH 10.0).
Absorbance was measured at 405 nm on a microplate reader (Multiskan Ascent, Thermo Scientific).
The inhibition percentage of β-hexosaminidase release was calculated as the percentage of control
value (untreated stimulated cells). The maximal tolerated dose of DMSO was 0.5%. All experiments
were repeated three times.

3.8. Effect on Enzymatic Activity of β-Hexosaminidase

To test the possible effect of the sample on enzymatic activity, following assay was performed.
The cell suspension (2 ˆ 106 cells) in 2 mL of Tyrode’s buffer was sonicated for 5 min. The solution was
then centrifuged, and the supernatant was diluted with 8 mL of Tyrode’s buffer. The enzyme solution
(45 µL) and test sample solution (5 µL) were transferred into a 96-well microplate and enzyme activity
was examined as described above (Section 3.7). All experiments were repeated three times.

3.9. Direct Degranulation β-Hexosaminidase Assay Induced by the Sample

The degree of β-hexosaminidase release triggered by the sample in RBL-2H3 cells was determined
by a modified β-hexosaminidase release assay. Briefly, RBL-2H3 cells (4 ˆ 104 cells/well) were seeded
in a 48-well plate and treated with the samples for 10 h. Tyrode’s buffer supplemented with 5.6 mM
glucose, 2 mg/mL BSA and 2 mM glutamine was used to prepare the samples and treat the cells. Then,
50 µL of supernatants were transferred into a 96-well microplate and examined as described above
(Section 3.7). A23187 (1 µM) was used as a positive control. All experiments were repeated three times.

3.10. Preparation of Human Neutrophils

Human neutrophils from venous blood of healthy, adult volunteers (20–30 years old) were
isolated using a standard method of dextran sedimentation prior to centrifugation in a Ficoll-Hypaque
gradient and hypotonic lysis of erythrocytes [30]. Purified neutrophils containing >98% viable cells,
as determined by the trypan-blue exclusion method [31], were resuspended in a Ca2+-free Hank’s
buffered salt solution (HBSS) at pH 7.4 and were maintained at 4 ˝C prior to use.

3.11. Superoxide Anion Generation Assay and Elastase Release Inhibition Assay

Neutrophil superoxide anion generation was determined using superoxide dismutase
(SOD)-inhibitory cytochrome reduction according to described procedures [32,33]. Degranulation of
azurophilic granules was determined by measuring the elastase release as described previously [33].
All experiments were repeated at least three times.

3.12. Cytotoxic Assay

MTT assay was used according to the method described before [34]. Briefly, HepG2 (1 ˆ 104 cells),
A549 (5 ˆ 103 cells), and MDA-MB-231 (1 ˆ 104 cells) were seeded into 96-well plates, followed by
treatment with the AMS samples at concentration of 20 µg/mL. After 72 h, the medium was removed
and 100 µL of MTT solution (0.5 mg/mL) was added to each well. The plates were then incubated at
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37 ˝C for 1 h and then, the MTT dye was detected by the addition of DMSO (100 µL). The absorbance
was recorded at 550 nm. Doxorubicin was used as a positive control.

3.13. Statistics

The results were expressed as mean ˘ SD unless otherwise specified. The IC50 values were
calculated using the Microsoft Office (linear function). Statistical significance was calculated by
one-way analysis of variance (ANOVA), followed by Dunnett’s test (SigmaPlot, Jandel Scientific,
San Rafael, CA, USA). Values with * p < 0.05, ** p < 0.001 were considered statistically significant.

4. Conclusions

The present investigation revealed bioactive fractions and pure principle from the extract of AMS.
It resulted in the isolation of the active pure compound, aquimavitalin (1). The remarkable inhibitory
activity of 1 on mast cell degranulation with nanomolar IC50 values provides evidence that phorbol
ester could possess antiallergic activity.

Moreover, high potency of phorbol esters may shed light on the use of A. malaccensis seeds in the
treatment diseases related to allergy. However, further studies are needed to examine the safety of
these materials in therapy.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/
17/3/398/s1.
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Abbreviations

AMS Aquilaria malaccensis seeds
A-EtOH Crude ethanolic extract of Aquilaria malaccensis seeds
A-BuOH n-Butanol layer from Aquilaria malaccensis seeds
A-Water Water layer from Aquilaria malaccensis seeds
A-EtOAc Ethyl acetate layer from Aquilaria malaccensis seeds
A-Hexane n-Hexane layer from Aquilaria malaccensis seeds
A-MeOH Methanol layer from Aquilaria malaccensis seeds
AM Subfractions of methanol layer from Aquilaria malaccensis seeds
RBL-2H3 Rat basophilic leukemia cells
HepG2 Human hepatocellular carcinoma cells
A549 Human breast adenocarcinoma cells
MDA-MB231 Human lung adenocarcinoma cells
fMLP/CB Formyl-methionyl-leucyl-phenylalanine/cytochalasin B
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