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Human T-lymphotropic virus 1 (HTLV-1) is endemic worldwide and the infection results

in severe diseases, including Adult T-cell Leukemia (ATL) and HTLV-1 associated

myelopathy (HAM). There are some limitations of employing the present commercial

serological assays for both diagnostic and epidemiological purposes in different

geographical areas of the Brazil, such as the Amazon Region. Currently, methods for

diagnosis are usually expensive to adapt for routine use. The aim of this work was to

identify and characterize specific ligands to IgG that mimic HTLV-1 epitopes through

the Phage Display technique, which could be used for diagnosis and as future vaccine

candidates. Initially, IgG from 10 patients with HTLV-1 and 20 negative controls were

covalently coupled to protein G-magnetic beads. After biopanning, genetic sequencing,

bioinformatics analysis and Phage-ELISA were performed. The technique allowed the

identification of 4 clones with HTLV-1 mimetic peptides, three aligned with gp46, A6

(SPYW), B6 (SQLP) and D7 (PLIL), and one with the protease and Tax, A8 (SPPR).

Clones A6 and B6 showed higher values of accessibility, antigenicity and hydrophilicity.

The reactivity of the clones evaluated by the Receiver Operating Characteristic (ROC)

curve showed that the B6 clone had the highest Area Under Curve (0.83) and sensitivity

and specificity values (both were 77.27 %; p < 0.001). The study showed that the Phage

Display technique is effective for the identification of HTLV-1-related peptides. Clone B6

indicated to be a good marker for bioprospecting diagnostic test for HTLV-1 infection

and could be used as a possible vaccine candidate for future studies.
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INTRODUCTION

Infection with human T-lymphotropic virus 1 (HTLV-1) can
cause diseases such as adult T-cell leukemia/lymphoma (ATL)
and HTLV-1-associated myelopathy (HAM) (1, 2). It is estimated
that 5 to 10 million people are infected worldwide (3), but since
most people are asymptomatic, the infection is neglected (4).

In Brazil, the diagnosis of HTLV infection presents great
difficulties, since the tests for the virus are not fully available
in the basic health care for all people. The test is requested for
specific groups or situations, such as individuals with clinical
manifestations compatible with diseases associated with HTLV-
1, the differential diagnosis of myelopathies, during pregnancy
and for blood donors. The diagnosis follows the algorithm of
the Ministry of Health, which is still quite complex, expensive,
and not available to the entire population (5, 6). As a general
approach the laboratory diagnosis of HTLV infection includes
screening procedures for the presence of antibodies including
enzyme immunoassays or chemiluminescence assays, followed
by complementary (confirmatory and discriminatory) tests (7).
In Brazil, the national guidelines suggest the use of Western blot
or the INNO LIA assays for those laboratories which do not have
a molecular biology facility and other complex assays for those
which are able to carry molecular complementary tests, including
PCR and RT-PCR (5, 6). Complementary tests are expensive for
most countries (3), but they are presently under study for their
full inclusion in the Brazilian National Health System.

Although serological tests have been improved in recent
years (8), the lack of standardization of tests with viral epitopes
that are circulating in the country may lead to a high number
of false-positive or indeterminate cases both for HTLV-2 (9)
and to HTLV-1 (6). Antigenic differences among the molecular
subtypes circulating are also a limitation factor which prevents
the standardization of serological assays. However, the phage
display assay is one of the approaches to select more specific
peptides for improved serological tests.

The phage display technique consists of the presentation of
peptides on the surface of filamentous bacteriophages. These
peptide sequences can interact with a wide variety of target
molecules, resulting in a physical link between the displayed
peptide and the target molecule (10). The selection of exogenous
peptides exposed on the surface of the phage takes into account
its affinity for a target molecule by a process called biopanning,
in which a phage library is presented to the target molecule
(e.g., antibodies present in the serum of patients) and the phages
with high affinity bind to the target while those with low affinity
are removed. Phages with high affinity are recovered, amplified,
and subjected to genetic sequencing to identify their peptide
sequences, which are evaluated for their sensitivity and specificity
at detecting the target molecule (11, 12).

Phage display is a low-cost method that yields relatively fast
results, characteristics that have favored the use of the technique
in the identification of peptides for use in different areas of health
(12–15). The phage display technique has been used to identify
peptides for the diagnosis of several human infectious diseases
(16, 17) and possible vaccine candidates (18–20). This strategy
is one possibility for identifying peptides that can be used in

the construction of a human immunodeficiency virus (HIV-1)
vaccine formulation (12). In this sense, this method can is a
promising way to identify new, more specific targets that can be
used in the diagnosis of HTLV-1 infection. The main objective of
the present study was to search for new biomarkers mimicking
HTLV-1 for the rapid diagnosis of infection as a portable, easy-
to-use, sensitive instrument that can be used in difficult-to-access
areas and clinics. We also hoped that these peptides could be
used to induce the production of neutralizing antibodies for the
manufacture of a future vaccine.

MATERIALS AND METHODS

Characterization of the Samples
To select peptides to screen, serum samples were taken from
people living with HTLV-1 from the Clinic of Infectious Diseases
(Tropical Diseases) of the Center for Tropical Medicine, Institute
of Health Sciences, Federal University of Pará (Universidade
Federal do Pará), and an HTLV-negative control group taken
from the general population of Belém (students, technicians, and
professors of the Federal University of Pará) as well as blood
donors from the state of Pará.

Forty individuals participated in the study; 10 individuals
were diagnosed with HTLV-1 infection, and 20 individuals in
the control group were seronegative for anti-HTLV-1/2 and anti-
HIV-1 antibodies. To increase the specificity of the selected
peptides, a subtractive selection step was performed using
pooled serum from individuals seropositive for HIV-1 (n =

10). Samples of individuals older than 18 years old, without
restriction to ethnicity, social status, or skin color, who were
not using corticosteroids were included in the study. Samples
of individuals with HTLV-1 who were coinfected with HIV,
HBV, or HCV, who had autoimmune diseases, who had an
indeterminate diagnosis, or who had a low cut-off value in the
enzyme-linked immunosorbent assay (ELISA; Murex HTLV I +
II; DiaSorin, Saluggia, Italy) were excluded from the study to
minimize potential errors during data analysis and improve the
sensitivity and specificity.

Ethical Aspects
The project was approved by the Human Research Ethics
Committee of the Haemotherapy and Hematology Center
of Pará (HEMOPA Foundation) under registration number
0011.0.324.000-11. Individuals who agreed to participate in the
study signed an informed consent form.

Phage Display
Peptide Selection
Initially, the pool of immunoglobulin G (IgG) in the different
groups was linked to magnetic beads (Dynabeads R© Protein
G; Invitrogen, Waltham, MA, USA) according to the
manufacturer’s recommendations. Next, the IgG coupled to
magnetic microspheres was incubated with a library of random
peptides (Ph.D.-C12 Phage Display (PD) Peptide Library Kit;
New England Biolabs, Ipswich, MA, USA). The Ph.D.-12 library
is a combinatorial library of random 12-mer peptides fused to a
minor coat protein (pIII) of M13 phage.

Frontiers in Medicine | www.frontiersin.org 2 June 2022 | Volume 9 | Article 884738

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Machado et al. Selection of HTLV-1 Peptides

The biopanning procedure was performed as described with
some modifications (21). The biopanning process for selection of
HTLV-1 peptides included a subtractive step, which consisted of
incubating the phage library (1 × 1011 phage particles of the PD
library) first with IgG from HTLV-seronegative individuals for
30min at room temperature. Then, the supernatant containing
unbound phages was added to IgG of HTLV-2-seropositive
individuals with incubation for 30min at room temperature.
The next step consisted of positive selection, in which the
final supernatant of the subtractive step was incubated with
purified IgG from HTLV-1-positive individuals for 30min at
room temperature. Three biopanning cycles were performed for
the selection of HTLV-1 peptides.

The phages bound to the magnetic microspheres of the
positive selections were recovered by acid elution and subjected
to steps of amplification, titration, supernatant production, DNA
extraction, and phage DNA sequencing (21).

Phage Amplification
Amplification consisted of phage multiplication in Luria-Bertani
(LB) culture medium containing tetracycline (20 mg/mL) and E.
coli strain ER2738. The medium was incubated under agitation
at 37◦C until the early-log phase (OD600–0.3). Upon reaching
this stage, the bacterial culture was inoculated with the phages
and incubated at 37◦C overnight under strong agitation. The
next day, the material was centrifuged to remove the bacteria,
PEG/NaCl was added to the supernatant, the mixture was
centrifuged, and the phage pellet was washed with 1× sterile
phosphate-buffered saline (PBS).

Titration
The titration was performed to determine the amounts of input
and output of viral particles during the biopanning cycles.
Eluate containing phages from each selection cycle that were
not amplified (diluted from 10−1 to 10−5) and amplified eluate
(diluted from 10−1 to 10−12) were used. E. coli ER2738 was
cultured in LBmedium, to which dilutions containing the phages
were added. The samples were plated on LB agar containing
tetracycline and isopropyl-beta-D-thiogalactopyranoside/5-
bromo-4-chloro-3-indolyl-α-D-galactoside with the addition of
Top agar and incubated at 37◦C for 24 h.

Production of Phage Supernatant
Phage supernatants were produced by amplification of the phages
in LB medium (with tetracycline) containing E. coli ER2738 in
deep-well-plates, which were incubated under agitation in at
37◦C for 4–5 h. A different phage clone was added to each well.
The phage supernatant was used to back up the clones and extract
DNA from the phages.

DNA Extraction From Phages
DNA was extracted from the phage supernatant using iodide
buffer. The procedure consisted of viral particle lysis, protein
precipitation, DNA precipitation, and DNA hydration. The
presence of single-stranded DNA was verified by electrophoresis
in a 0.8% agarose gel containing HydraGreen Safe DNA Stain
20,000X (Hydragene, Piscataway, NJ, USA) by visual comparison

with purifiedDNA from single-stranded standardM13mp18 tape
(New England Biolabs, Ipswich, Massachusetts, USA).

Sequencing Reaction
For the sequencing reaction, phage DNA, primer −96 gIII (5’-
OH CCC TCA TAG TTA GCG TAA CG-3’) (New England
Biolabs), and Premix (DYEnamic ET Dye Terminator Cycle
Kit; Amersham Biosciences, Amersham, United Kingdom) were
used. The reaction was performed in a thermocycler (Kasvi,
São José dos Pinhais, PR, Brazil). The sequenced DNA was
precipitated and resuspended in dilution buffer and read in the
ABI PRISM 3130 Genetic Analyser (Applied Biosystems, Altham,
Massachusetts, USA).

Data Analysis by Bioinformatics
The DNA sequences obtained after sequencing were analyzed
using bioinformatics programs available online. Amino acid
sequences were detected in silico using the ExPASy Translate
Tool 6.0 (http://web.expasy.org/translate/), and the alignment of
the selected peptides was generated using the program BioEdit
7.1.5.0 (22). The similarities between the selected peptides and
the proteins deposited in GenBank were performed using the
Basic Local Alignment Search Tool (BLAST), and within BLAST,
the search was performed in the “Protein blast” database using
the “swissprot protein sequences (swissprot),” blastp (protein–
protein BLAST) algorithm restricted to HTLV (taxid: 11908).

For better characterization of mimetic peptides, B-cell
epitope prediction tools were used with the Bepipred Linear
Epitope Prediction program (http://tools.iedb.org/bcell) to
analyse their antigenicity, hydrophilicity, and accessibility
profile. The antigenicity profile was determined using the
Kolaskar and Tongaonkar antigenicity scale, a semiempirical
method that made use of the physicochemical properties of
amino acid residues and their frequency of occurrence in
experimentally known epitopes. This scale was developed to
predict antigenic determinants in proteins. According to the
authors, it can identify antigens with an accuracy of ∼75%
(23). The hydrophilicity profile was determined through
the prediction of Parker hydrophilicity. In this method, a
hydrophilic scale was constructed based on the peptide retention
times during high-performance liquid chromatography on a
reversed-phase column. Parker et al. (24) also found that the
hydrophilic surface regions represented are associated with
antigenic sites. The accessibility profile was calculated based on
the scale of surface accessibility in a product, taking into account
the probability of amino acids being exposed on the surface of a
protein (25).

Phage ELISA
Titration curves were generated to determine the most
appropriate phage concentration and antibody dilution to be
used, to optimize the tests. A microplate (Nunc-Immune
Plate MaxiSorp Surface) was sensitized with 10 µg/well anti-
M13 monoclonal antibody (GE Healthcare) diluted in 50mM
carbonate buffer, pH 9.6 (1:500), and incubated overnight at 4◦C.
After washing and blocking the plate, clones diluted in 1× PBS
(1:100) were added to the plate and incubated for 1 h at 37◦C.
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FIGURE 1 | Immunoreactivities of peptides selected by phage display in the Phage-ELISA assay. Peptides that showed significantly higher absorbance when

compared to the control (*) were tested against pool serum samples from individuals with HTLV-1 and the control group. WT: wild type phage (phage that does not

express any exogenous protein).

The plate was washed, and pools of HTLV-1-positive serum and
negative controls were added. After washing, anti-human IgG
diluted in 1× PBS/0.1% Tween (1:5000) was added, and the plate
was incubated for 1 h at 37◦C. Finally, tetramethylbenzidine was
added, and the reaction was stopped by the addition of H2SO4

(2M). The absorbance values were measured using a reading
filter at a wavelength of 450 nm.

A first phage ELISA was performed to evaluate the reactivity
of all identified phage clones using the pool of HTLV-1-negative
samples (control) and HTLV-1-positive samples. In the ELISA
reaction, the samples positive for HTLV-1 were arbitrarily
defined as those with an optical density value at least twice as high
as the absorbance value of the control samples.

Statistical Analysis
The calculation of the area under the receiver operating
characteristic (ROC) curve (AUC), sensitivity, specificity, and
positive likelihood ratio (LR+) was performed using the program
GraphPad Prism version 6.0 (GraphPad Prism Software Inc., San
Diego, CA, USA). The statistical test used was one-way ANOVA,
with post Bonferroni correction test, which is a two-tailed test.

RESULTS

Peptides Selected by Phage Display
After biopanning, a total of 42 selected peptides had different
amino acid sequences and were tested for immunoreactivity by
phage ELISA (Figure 1).

After the screening performed in the first Phage ELISA, the
phage clones containing the peptides that presented a ratio

TABLE 1 | Amino acid sequence of phage clones containing HTLV-1 mimetic

peptides after selection by Phage Display.

Clones Amino acid sequence

A6 AHWNPFWLATPF

A8 YWVDSSAWVAHK

B6 NNDPLQLRSQRY

D7 KLDVFTKPLVFT

between the absorbances of the positive and control samples >2
were submitted to a second Phage ELISA. Although most of the
peptides could discriminate individuals with HTLV-1 infection
from seronegative control individuals, four peptides (A6, A8, B6,
and D7) stood out from the rest (Table 1). In the phage ELISA,
dilutions of 1:50, 1:100, 1:500, and 1:1000 were used, and the best
results were obtained at a dilution of 1:1000 (Figure 2).

Subsequently, peptide reactivity analysis was performed using
individual sera from HTLV-1 seronegative (n = 20) and positive
individuals (n = 10), respectively, for each of the four most
reactive clones. For the analysis, the ROC curve, sensitivity,
specificity and likelihood ratio (LR) were used (Table 2).

Of the clones tested, only B6 had statistically significant
reactivity (p < 0.001). It had an AUC equal to 0.83, in addition
to having the highest LR+ value (3.4). Thus, this clone could be
promising for use in diagnostic immunoassays (Figure 3).
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FIGURE 2 | Phage-ELISA assay to test the immunoreactivity of the better-selected peptides against pooled sera from HTLV-1 reagent patients and controls HTLV-1

non-reagent. WT, wild type phage.

TABLE 2 | Clone reactivity when using individual sera from HTLV-1 carriers.

Peptide Sensitivity Specificity AUC Cut-off P-value LR+ LR-

A6 72.73 (49.78–89.27%) 72.73 (49.78–89.27%) 0.78 >0.109 0.069 2.7 0.4

A8 68.18 (45.13–86.14%) 72.73 (49.78–89.27%) 0.79 >0.076 0.066 2.3 0.4

B6 77.27 (54.63–92.18%) 77.27 (54.63–92.18%) 0.83 >0.092 <0.001 3.4 0.3

D7 68.18 (45.13–86.14%) 68.18 (45.13–86.14%) 0.69 >0.097 0.299 2.1 0.5

AUC (Area Under Curve), LR (Likelihood Ratio).

FIGURE 3 | ROC curve of mimetic peptides with AUC values (Area Under Curve).
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FIGURE 4 | Linear alignment of the amino acid sequences of the four

peptides (A6, A8, B6, and D7) with the amino acid sequences of HTLV-1 from

various regions of the world available in GenBank.

Alignment of HTLV-1-Mimetic Peptides
With HTLV-1 Amino Acid Reference
Sequences Available at GenBank
After linear alignment of the amino acid sequences of the four
most reactive peptides in the ELISA with the HTLV-1 amino
acid sequences from various regions of the world available in
GenBank, we saw that peptides D7, A6, and B6 aligned with
sequences of amino acids from different regions of the viral
envelope glycoprotein (gp46), while the A8 peptide was aligned
with the amino acid sequence of the HTLV-1 protease and Tax
protein (Figure 4).

Antigenicity, Hydrophilicity, and
Accessibility Tests
For the antigenicity, hydrophilicity, and accessibility tests, only
the Brazilian strain (AY563954.1) was used. In the accessibility
profile scale, values above 1 denote regions accessible to
antibodies. In the HTLV-1 gp46, the peptide that showed
the highest accessibility value was clone A6 (score 2.732),
corresponding to the region ranging from amino acids 132–135
(SPYW). Regarding the antigenicity profile, the D7 peptide was
themost antigenic (score of 1.176), with a location corresponding
to the region between amino acids 13 and 19 (PLIL) of gp46.
Hydrophilicity was lowest for peptide D7 (-1.029). In Table 3,
we summarize the accessibility, antigenicity, and hydrophilicity
values using the Emini, Kolaskar, and Parker scales, respectively,
for the clones located in the envelope protein (gp46), protease,
and Tax protein.

DISCUSSION

The immunodiagnostic assays used for peptide detection have
evolved with the use of tests such as ELISA and Western blot,
although there are false-positive as a consequence of cross-
reactions with other aetiological agents (26, 27) and the extensive
distribution of different molecular subtypes of HTLV-1 (28) and
HTLV-2 (9). The serological assays currently used are based

on the detection of antibodies against matrix, nucleocapsid,
and envelope proteins, though none of these markers for
HTLV-1 have been identified using the phage display technique.
The technique has been used in only one study (29), which
investigated peptides mimicking HTLV-1 in the cerebrospinal
fluid of individuals with HAM. The present study used serum
samples from patients with HAM for the bioprospecting of
serological markers for the diagnosis of HTLV-1 in symptomatic
and asymptomatic individuals, using the phage display technique
in the first attempt of this kind in Brazil.

Four peptides characterized as linear mimetopes
corresponding to the envelope (gp46), Tax, and protease regions
were identified. HTLV-1 envelope glycoproteins, especially gp46,
play important roles in the infectious process and are exposed
on the surface of viral particles and infectious cells, making
them accessible to the immune system (30, 31). Recombinant
gp46 proteins from immunogenic regions effectively induce an
immune response and the use of a peptide in the outermost
region of gp46 (region from amino acid 190–209) was capable to
induce antibody responses in 90% of infected individuals (32).
In the present study, three mimetopes were mapped to the gp46
region: clones A6, B6, and D7. Clone A6 aligned in two regions
(positions 132–135 and 269-273 of the HTLV-1 reference strain
AY563954.1). Clones A6, B6, and D7 aligned with gp46 regions
corresponding to amino acids 130-133/267-271, 181-184, and
1-4, respectively. These sequences are very close to the regions
found by Fujimori et al. (29), which were considered highly
homologous to HTLV-1 gp46 in regions 192–199, 237–243,
and 255–261.

It was not possible to analyse the 3D structure because the
gp46 structure is not available in the RCSB ProteinData Bank, but
accessibility, antigenicity, and hydrophilicity of the mimetopes
were investigated. Clones A6 and B6 showed values above the
cut-off point for all three analyses which is a good indication for
using in diagnostic platforms.

Investigations aimed at the development of vaccines have
used animal models and in vitro assays, but the clinical
results have not been satisfactory (33–35). Sequences other than
that of HTLV-1 investigated by bioinformatics have predicted
epitopes corresponding to Tax and gp62 to be used in the
development of vaccines against HTLV-1 (36, 37). The mimetic
peptide B6, corresponding to the gp46 sequence, identified from
antibodies present in the serum of HTLV-1 infected persons
would be a possible candidate for use in future vaccine tests,
as it showed satisfactory values of accessibility, antigenicity,
and hydrophilicity.

HTLV-1 protease is a nonstructural protein responsible for
processing protein precursors into new viral components and is
essential for the replication cycle of HTLV-1 (38, 39). Mamoun
et al. (40) produced a monomeric form of HTLV-1 protease
fused to the maltose-binding protein (MBP-PR) and obtained
three monoclonal antibodies capable of recognizing the epitope
in different regions of themolecule. Two antibodies were directed
against the NH2-terminus, a region that contributes to the
dimerization interface, and the other was specific to a peptide that
lines the substrate-binding region. In the present study, clone A8
showed homology with the protease region, showing accessibility
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TABLE 3 | Accessibility, antigenicity and hydrophilicity values using the Emini, Kolaskar and Parker scales for the clones located in the envelope protein (gp46), protease

and Tax.

AY563954.1 Position Peptide sequence Accessibility Antigenicity Hydrophilicity Peptide HTLV-1 protein

16–19 PLIL 0,364 1,176 −1,029 D7 Env

132–135 SPYW 2,732 1,084 0,743 A6 Env

183–186 SQLP 2,366 1,054 2,929 B6 Env

269–273 LTLPF 0,631 1,105 −1,600 A6 Env

28–31 SPPR 1,580 1,022 4,286 A8 Pro

273–278 SFIFHK 0,470 1,068 −0,800 A8 Tax

and positive hydrophilicity, though the antigenicity was below
the cut-off point.

Clone A8 showed homology with the Tax region. Tax
activates viral and cellular gene expression. Its oncogenic
potential depends on its ability to alter the expression of
cellular genes involved in cell growth and proliferation and
their direct interactions with the cycle regulators (41, 42).
Although antigenic, clone A8 was not an accessible mimetic and
hydrophilic peptide.

The phage ELISA method was used to assess the reactivity of
clones against the sera of HTLV-1 infected persons. Screening
was initially performed, and the clones with the highest optical
density and those with HTLV-1 consensus sequences were
selected (clones A6, A8, B6, and D7) for the evaluation
of sensitivity and specificity by calculating the ROC. The
mimetic peptide (KLDVFTKPLVFT) of clone D7 showed low
accessibility and hydrophilicity, which may have hindered the
interaction between the peptide and the anti-HTLV-1 antibodies.
The best clone in the sensitivity and specificity tests was B6
(NNDPLQLRSQRY), with a sensitivity and specificity of 77.27%,
an accuracy of 0.83 (p ≤ 0.01), and the highest LR+ value (3.4),
all due to its good accessibility, antigenicity, and hydrophilicity.

The study has some limitations such as the sample size, the
genetic background of the study population, which included
only part of a tri-hybrid Brazilian population, and low HTLV-
1 antigenic variation in the study population, since the study
did not include samples from areas with other distinct HTLV-1
strains circulating elsewhere. The experiments were performed
with peptides fused to the M13 phage. Thus, immunogenicity,
antigenicity, positive and negative predictive values, must be
further investigated with different conformations of the peptides
in order to evaluate their possible use as vaccines for HTLV-1.

In summary, bioprospection of peptides mimicking HTLV-
1 using phage display led to the identification of four
clones, three related to gp46 (A6, B6, and D7) and one
related to protease and Tax (A8). The analysis of accessibility,
antigenicity, and hydrophilicity showed that clones A6 and
B6 are potentially suitable for diagnostic use and that clone
B6 has great potential for use in vaccine tests. The best
reactivity, evaluated by phage ELISA, was that of clone B6, which
showed good AUC, sensitivity, specificity, and LR. Thus, the
successful testing of the B6 clone peptide would be relevant to
diagnostic tests on platforms that allow rapid results and to the
availability of more affordable testing for the overall population,
and it would contribute to the prevention and control of
HTLV-1 infection.
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