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An ever-increasing number of proteins have been shown to
translocate across various membranes of bacterial as well as
eukaryotic cells in their folded states as a part of physiological
and/or pathophysiological processes. Herein, we provide an
overview of the systems/processes that are established or likely
to involve the membrane translocation of folded proteins, such
as protein export by the twin-arginine translocation system in
bacteria and chloroplasts, unconventional protein secretion
and protein import into the peroxisome in eukaryotes, and the
cytosolic entry of proteins (e.g., bacterial toxins) and viruses
into eukaryotes. We also discuss the various mechanistic
models that have previously been proposed for the membrane
translocation of folded proteins including pore/channel for-
mation, local membrane disruption, membrane thinning, and
transport by membrane vesicles. Finally, we introduce a newly
discovered vesicular transport mechanism, vesicle budding and
collapse, and present evidence that vesicle budding and
collapse may represent a unifying mechanism that drives some
(and potentially all) of folded protein translocation processes.

All prokaryotic and almost all eukaryotic proteins are syn-
thesized by ribosomes inside the cytoplasm. During or soon
after their synthesis, many of the proteins must be transported
to specific subcellular locations or exported from the cell to
exert biological functions. In eukaryotes, more than one third
of the proteins are targeted to organelles, including endo-
plasmic reticulum (ER), peroxisomes, mitochondria, and
plastids (1), while in bacteria it is estimated that �8% of all
proteins are secreted to the periplasmic/extracellular space (2).
In each of the aforementioned targeting events, the protein
must travel across at least one and sometimes two or more cell
membranes. It is now clear that proteins can be transported
across cell membranes in either the unfolded or the folded
state (Fig. 1). For protein translocation in the unfolded state, a
well-studied system is the classical secretory (Sec) pathway,
which is evolutionarily conserved and operates in the plasma
membrane of bacteria, the ER membrane of eukaryotes, and
the thylakoid membrane of chloroplasts in plants. Proteins
containing hydrophobic leader sequences are bound by cyto-
solic chaperones/targeting factors and kept in their unfolded
state. Subsequently, the unfolded polypeptide is transferred to
a membrane-embedded protein channel (the translocon) and
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threaded through the channel in an energy-dependent process
or laterally released into the lipid bilayer (3). Examples of
protein-conducting channels include the Sec61 complex of the
ER membrane (SecYEG in prokaryotes) and the mitochondrial
TOM complex. For more information about the Sec pathway,
readers are referred to several reviews (4–6).

Proteins and protein complexes can also move across
cellular membranes in the folded state to reach their final
destinations inside as well as outside the cell (Fig. 1). In bac-
teria and chloroplasts, folded proteins are transported across
the plasma or thylakoid membrane by the twin-arginine
translocation (TAT) system into the periplasmic/extracellular
space and the thylakoid, respectively (7). In eukaryotes, folded
proteins are transported across the plasma membrane (i.e.,
from the cytosol to the extracellular environment) by several
different mechanisms that have been collectively termed “the
unconventional protein secretion (UPS) system” (8). Folded
proteins and protein complexes are also imported into the
subcellular organelles of eukaryotes (e.g., peroxisomes) (9). In
addition, certain viral, bacterial, and eukaryotic proteins enter
the eukaryotic cell autonomously, by crossing the plasma,
endosomal, or ER membrane (10). Recent data demonstrated
that at least some of the latter proteins enter the cell in the
folded state (11–13). How folded proteins move across the cell
membrane has been a longstanding mystery in cell biology.
One of the greatest enigmas is how folded proteins or protein
complexes, which may have a diameter of >100 Å, cross a lipid
bilayer without compromising the barrier function of the
membrane. Equally perplexing is how the same translocation
machinery (e.g., the TAT system) accommodates protein
substrates of varied sizes and different physicochemical
properties. Understanding the mechanism of membrane traf-
ficking by folded proteins will also have important applications
in biotechnology, for example, the design of cell-permeable
proteins as novel therapeutics.

This review focuses on the translocation of folded proteins
across the sealed membranes of bacteria and eukaryotes in
both directions (i.e., protein export and import). We will first
provide an updated summary of the systems involving mem-
brane translocation of folded proteins (defined here as proteins
that maintain their 3D structures throughout the membrane
translocation process) and their biological functions. We will
next discuss the various mechanistic hypotheses that have
been put forth for the membrane translocation of folded
proteins and any evidence for and/or against them. Finally, we
present evidence that a recently discovered membrane
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Figure 1. Protein translocation across various cellular membranes by
conventional and unconventional pathways. A, protein export by the Sec
(unfolded proteins) and TAT pathways (folded proteins) in bacteria. The Sec-
dependent leader peptide is shown in cyan and the Tat leader peptide in
yellow. B, protein transport pathways in eukaryotic cells. Unfolded, leader
peptide (shown in cyan)-containing proteins are transported into the ER by
the Sec61 complex, whereas folded, leaderless proteins are secreted by the
UPS pathway or imported into the peroxisome. Folded proteins also enter
the cytosol of eukaryotic cells by crossing the plasma, endosomal, or ER
membrane. Hrd1 forms a retrotranslocation channel. ER, endoplasmic
reticulum; Sec, secretory; TAT, twin-arginine translocation; UPS, unconven-
tional protein secretion.
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transport mechanism (13), vesicle budding and collapse (VBC),
may be a unifying mechanism that drives the membrane
translocation of some (and potentially all) of the folded
proteins.

Folded proteins translocate across cell membranes

Once thought as rare and an exception to the rule, an
increasing number of systems from all three domains of life have
now been shown to translocate folded proteins across different
cellular membranes. For systems that are well established (e.g.,
the TAT system, the UPS system, and protein import into the
peroxisome), we will only briefly introduce them. For systems
that were recently discovered or are not yet firmly established,
we will provide a more in-depth discussion including any evi-
dence for protein translocation in the folded state.
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Established systems that transport folded proteins

TAT system

The TAT pathway represents the best characterized system
for the transport of folded proteins in bacteria and plants
(7, 14–16) (Table 1). Initially discovered in chloroplasts
(17–19), the TAT system is present in most bacteria (20–22)
and has also been identified in archaea (23), while many
mitochondria have lost it during the evolution from their
bacterial ancestor (24). Unlike the Sec pathway, proteins
exported by the TAT pathway are characterized by having a
twin-arginine signal sequence (25) and require typically the
TatA, TatB, and TatC components (TatABC complex) or only
TatA and TatC (TatAC) (22, 26). Many of the 30 TAT
substrate proteins in Escherichia coli contain complex metal
cofactors such as Fe-S clusters and molybdopterin centers
(25, 27). These proteins are fully folded prior to export.
Further, there exist quality control systems that ensure the
proper folding of many of the TAT substrates, with unfolded
substrates rejected for export (27). Translocation of proteins in
their folded states avoids the need to reassemble complex
cofactors in the extracellular environment.

UPS pathways

Some eukaryotic proteins do not contain any leader
sequence and are yet exported into the extracellular environ-
ment by several different mechanisms that have been collec-
tively referred to as the “UPS” pathways (Fig. 1B) (28–30). UPS
is often induced by cellular stresses (e.g., nutrient starvation
(31)) or other environmental cues (e.g., infection by pathogens
(32)). A well-known example is interleukin-1β (IL-1β), a
potent proinflammatory cytokine critical for host response to
infection, while excessive secretion of IL-1β leads to a myriad
of human diseases (32). Other prominent examples include
fibroblast growth factors 1 (FGF1) and 2 (FGF2) (33, 34),
annexins (35), galectins (35), acyl-CoA–binding proteins
(AcbA and Acb1) (31, 36–40), HIV-1 transactivator of tran-
scription (HIV-Tat) (41), Tau (42) and various enzymes (e.g.,
phosphoglycerate kinase 1 (43)). A comprehensive list of
proteins known to undergo UPS can be found in several recent
reviews (29, 30, 44). Most of these proteins are derived from
higher eukaryotes (45); however, UPS has also been observed
in bacteria (46). There is compelling evidence that during UPS,
proteins move across the plasma membrane in their folded
states (47, 48).

Protein import into peroxisomes

Unlike protein transport into other organelles such as the
ER, mitochondria, and chloroplasts, proteins imported into the
peroxisome cross the membrane barrier in the folded states
(Fig. 1B) (9, 49). Protein targeting to the peroxisome is directed
by a C-terminal signal sequence of the consensus (S/A/C)-(K/
R/H)-L (PTS1) (50, 51) or an N-terminal sequence of R-(L/V/
I/Q-X2-(L/V/I/H)-(L/S/G/A)-X-(H/Q)-(L/A) (PTS2) (52),
which are recognized by the Pex5 and Pex7 receptors,
respectively. An early indication that proteins are imported in
a folded state originated from peroxisomal import studies of



Table 1
Characteristics of membrane translocation systems

Translocation system Signal sequence? Substrate folded? Reference

ER and bacterial Sec N-terminal No Joly and Wickner (195); van den Berg et al. (196)
ER to cytosol None ? Inoue and Tsai (111)
Bacterial and chloroplast TAT N-terminal Yes Palmer et al. (27); Albiniak et al. (197)
UPS (Type I) None Yes Rabouille et al. (198)
UPS (Type II) None Yes Rabouille et al. (198)
UPS (Type III) None Yes Rabouille et al. (198)
Cytosol to peroxisome N- or C-terminal Yes Leon et al. (9); Yang et al. (58)
Mitochondrial TOM N-terminal No Eilers and Schatz (199)
Mitochondrial Bcs1 AAA None Yes Wagener et al. (112)
Chloroplast TOC N-terminal Partially Ganesan et al. (200)
Bacterial T2SS N-terminal Yes Hirst and Holmgren (63); Pugsley et al. (64)
Bacterial T7SS C-terminal Yes Bowman and Palmer (201)
Bacterial T9SS N- and C-terminal Yes Lauber et al. (118)
Endosomal escape None Yes Sahni and Pei (13)
Cell entry by direct translocation None Yes Hariton-Gazal et al. (92);

Williams and Tsai (10)
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catalase in fibroblasts, demonstrating that the metal cofactor-
containing enzyme is imported as an oligomer (53). Later
microinjection studies in mammalian cells showed that a fol-
ded luciferase, an octameric alcohol oxidase, and the hetero-
pentameric acyl-CoA oxidase are imported into peroxisomes
(54–56). Definitive evidence for the import of folded proteins
into the peroxisome came from “piggyback” transport exper-
iments, during which multisubunit protein complexes were
imported into the peroxisome when only one of the subunits
contains a PTS motif (57). Even nonprotein cargos such as
DNA (58), polysaccharides (58), and gold nanoparticles of up
to 90 Å in diameter (59) have been imported into the perox-
isome by the “piggyback” mechanism. To date, the largest
entity that has been imported into the peroxisome is a
mCherry oligomer with a molecular weight of 619 kDa and a
diameter of 126 Å (58).
Systems that likely transport folded proteins

Secretion of bacterial proteins

Bacterial cells utilize at least nine different types of secretion
systems to export protein toxins, degradative enzymes, adhe-
sins, and other exoproteins into the extracellular medium, but
the molecular mechanisms of these systems remain incom-
pletely understood (60). There is compelling evidence that
several of the secretion systems involve translocation of folded
proteins, especially across the outer membrane of Gram-
negative bacteria. This was first demonstrated for the type 2
secretion system (T2SS), in which proteins are first exported to
the periplasm, usually by the Sec pathway but also by the TAT
pathway; as a second step, the proteins then move across the
outer membrane and into the extracellular environment (61,
62). Hirst and Holmgren showed that the fully assembled
cholera toxin (which consists of an A subunit bound to a ring
of five B subunits) was secreted by Vibrio cholerae (63). Both A
and B subunits are synthesized in a precursor form and
exported into the periplasm by the Sec pathway. While inside
the periplasm, the subunits assemble into the AB5 oligomer
(88 kDa) with a half-life of �1 min. Subsequently, the AB5

oligomer is transported across the outer membrane as a
complex with a half-life of �13 min. Other proteins secreted
by T2SS in the folded states include pullulanase, cellulase,
pectate lyase, and the dimeric proaerolysin (64–68). Some of
the secreted proteins form disulfide bonds while inside the
periplasm (64, 65). How the T2SS machinery recognizes sub-
strates is not known, but the involvement of linear secretion
signal(s) has been excluded. Current data suggest that the
secretion signal may consist of noncontiguous epitopes within
the folded protein or protein complex.

Like T2SS, the type 9 secretion system (T9SS) also trans-
ports proteins first to the periplasm and then moves them
across the outer membrane in a folded state (69, 70). It is
capable of secreting exceptionally large proteins (e.g., SprB,
which is 6497 aa in length). T9SS substrates possess an N-
terminal signal peptide which is recognized by the Sec ma-
chinery and require a folded C-terminal domain for export (71,
72). The type 7 secretion system of mycobacteria appears to
export folded proteins across the plasma membrane and their
unusual outer membrane (the so-called “mycomembrane”) in
a single step. EsxA and EsxB of Mycobacterium tuberculosis
are small proteins with a helix-turn-helix structure and form
an obligatory heterodimer in vivo. Although only one of the
monomers (EsxB) contains a secretion signal, both monomers
are secreted, apparently as a heterodimeric complex, indicating
that they are secreted in the folded state (73–76).
Endosomal escape of bacterial toxins

Bacterial protein toxins reach the cytosol of eukaryotic host
cells by crossing the plasma, endosomal, or ER membrane
(Fig. 1B). AB toxins, which are most common and best char-
acterized, typically consist of two functional units, an enzymatic
A moiety and a nonenzymatic B moiety, which mediates re-
ceptor binding (R-domain) and membrane translocation (T-
domain). For AB toxins that enter the host cell by endocytosis, it
is commonly believed that the T-domain undergoes a confor-
mational change upon endosomal acidification and inserts into
the endosomal membrane to form a pore/channel, and the
unfolded A moiety threads through the pore/channel via a
charge state–dependent Brownian ratchet mechanism (77).
Biochemical and electrophysiological studies have provided
conclusive evidence for the formation of an ion-conducting
J. Biol. Chem. (2022) 298(7) 102107 3
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channel in the endosomal membrane by different bacterial
toxins including diphtheria toxin (DT) (78), Bacillus anthracis
protective antigen (PA) (79), and the Clostridioides difficile
transferase toxin (CDT) (80). Recent cryo-EM structures of PA
and CDT show that seven copies of the toxins assemble to form
a membrane-spanning 14-stranded β-barrel 93 to 105 Å in
length and 27 Å (fromCα to Cα) in diameter (81). Themouth of
the channel has a 30 Å opening, while the main body of the
channel has inner diameters of 12 to 18 Å and is rich in hy-
drophilic residues. This suggests that the channel can accom-
modate unfolded polypeptides and perhaps protein secondary
structure elements but not folded domains. A Φ-clamp formed
by phenylalanine residues (Phe-427 in PA) just below themouth
becomes the bottleneck of the entire channel, with a solvent-
excluded inner diameter of only 6 Å, which is smaller than
protein secondary structure elements and therefore may only
allow passage of fully unfolded polypeptides.

Although PA and CDT channels have the proper di-
mensions to accommodate unfolded polypeptides, to our
knowledge, direct evidence that proteins (either folded or
unfolded) pass through the channel is not yet available. On the
other hand, there is compelling evidence that at least some
bacterial toxins escape the endosome in the folded state. For
example, DT is capable of delivering hyperstable cargo pro-
teins (11) as well as noncovalently associated nucleic acids
(82, 83) into the cytosol of mammalian cells. This indicates
that DT moves across the endosomal membrane in the folded
state, as unfolding of DT inside the endosome would result in
the dissociation of the noncovalently attached cargo and fail-
ure to deliver the nucleic acids into the cytosol. NleC is a Zn2+

metalloprotease produced by pathogenic E. coli and consists of
a single catalytic domain of 330 residues (84). NleC requires its
intact native structure for host cell entry, since NleC mutants
with altered 3D structures were defective in cell entry (12).
Cellular entry of viruses

While enveloped viruses are bound by a lipid bilayer
allowing them to enter host cells by membrane fusion, non-
enveloped viruses are surrounded by a proteinaceous capsid
and must rely on viral proteins to gain host cell entry. Three
major types of cell entry modalities have been found in the
“membranolytic” viral proteins: amphipathic α-helical domains
(e.g., adenovirus protein VI (85)), myristoylated proteins (e.g.,
N-myristoylated capsid protein μ1 of reovirus (86)), and
membrane-remodeling enzymatic domains (e.g., the phos-
pholipase A type 2 domain of parvovirus VP1 (87)). These
modalities allow nonenveloped viruses to enter the cytosol by
moving across the endosomal (e.g., adenovirus (88)), the Golgi
(e.g., papillomavirus (89)), or the ER membrane (e.g., SV40 (90,
91)). Their ability to travel across the lipid bilayer has often
been recapitulated with artificial membrane vesicles (85, 86).
How these structurally different modalities mediate the
membrane translocation of a mostly intact viral particle re-
mains unclear. It is clear, however, that unfolding of the viral
proteins would result in the disassembly of the viral particle
and block the cytosolic/nuclear entry of the viral genome.
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Cellular entry of eukaryotic proteins

Eukaryotic proteins have also been found to enter eukary-
otic cells autonomously by traversing the plasma or endosomal
membrane (Fig. 1B). For example, human histone proteins
(H2A, H2B, H3, and H4) directly cross the plasma membrane
and deliver macromolecules covalently attached to them into
cultured HeLa and Colo-205 cells (92). Cytosolic entry
occurred under conditions that block the endocytic pathway,
for example, at 4 �C, in ATP-depleted cells, in cells incubated
with sucrose (0.5 M), or in the presence of various endocytosis
inhibitors. Cell-to-cell transmission of α-synuclein is impli-
cated in the progression of Parkinson’s disease; it is released by
diseased cells to the extracellular fluid and is subsequently
taken up by healthy cells nearby through endocytic mecha-
nisms (93). Similarly, a splicing variant of protein and lipid
phosphatase PTEN, PTEN-long, is secreted by donor cells and
later enters recipient cells to regulate PI3K signaling in the
latter cells (94). Finally, cell-permeable autoantibodies against
nuclear DNA were discovered in patients with lupus (95). The
mechanisms of cell entry by these proteins have not yet been
established; however, our survey of the literature suggests that
they cross the plasma or endosomal membrane in the folded
state.

Cellular entry of engineered proteins

Cell-permeable proteins have been engineered as research
tools and novel therapeutics. Earlier researchers took advan-
tage of the modular structures of bacterial toxins to design
cell-permeable chimeric proteins by either replacing their
receptor-binding domains with proteins that bind selectively
to the surface of cancer cells or fusing their membrane-
translocation domains with exogenous cargo proteins. These
efforts led to several immunotoxin drugs for cancer treatment
(96). More recent efforts involved the introduction of cell-
penetrating motifs into human proteins. A widespread prac-
tice is to genetically fuse a short cell-penetrating peptide (CPP)
sequence (e.g., Tat, R9, or penetratin) to the N or C terminus
of a protein of interest (97). Proteins (e.g., protein-tyrosine
phosphatase 1B) may also be rendered cell-permeable by
grafting a short CPP sequence (e.g., RRRRWWW) into one of
their surface loops (98). Finally, inspired by Lupus-derived
autoantibodies (95), Kim et al. engineered cell-permeable an-
tibodies against challenging intracellular targets as novel
anticancer agents (99). The cell entry mechanisms of the
engineered proteins remain unknown; the available data sug-
gest that they enter the mammalian cell as folded proteins (98)
(Fig. 1B).

Retrograde protein transport in the ER

The ER possesses a quality control system, the ER-
associated degradation pathway, which ensures a misfolded
protein in the ER is transported back into the cytosol for
degradation by the proteasome (Fig. 1B) (100–103). Some
bacterial and plant AB toxins enter the host cell by endocytosis
and make their way into the ER where the complex disas-
sembles, and the enzymatically active A subunit is thought to
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hijack the ER-associated degradation apparatus to retro-
translocate into the cytosol (104). Examples include cholera
toxin, Shiga toxin, ricin, Pseudomonas exotoxin PE, Pertussis
toxin, and cytolethal distending toxins (105). It has been re-
ported that the A subunits of these toxins are transported
across the ER membrane in their partially unfolded state (106)
by the Hrd1 complex. However, some nonenveloped viruses,
for example, Polyoma and SV40 viruses (107–110), also enter
the cytosol of host cells by way of the ER. Since the viral
particles in the ER are largely intact and have dimensions of
400 to 500 Å (111), the latter observation argues that the ER
membrane may contain a system, possibly the ER retrograde
apparatus in some cases, which transports folded proteins.

Protein translocation in mitochondria

During evolution, a novel pathway arose within the mito-
chondria for translocation of a folded Fe-S protein from the
mitochondrial matrix to the intermembrane space compart-
ment (112). While in bacteria, Fe-S proteins are exported by
the TAT pathway (15, 27), the TAT pathway has been largely
lost from most fungi and animal mitochondria. Therefore, an
alternative pathway is needed to transport folded proteins. The
transport of the Fe-S protein Rip1 is required for the assembly
of the bc1 respiratory complex in the inner membrane of
mitochondria. Rip1 is a nuclearly encoded protein that is
synthesized in a precursor form with a mitochondrion-
targeting sequence and is imported into the matrix in an
unfolded state by the TOM and TIM23 complex. While inside
the matrix, a 2Fe-2S cluster is inserted into the polypeptide to
form the folded, globular C-terminal domain, which is then
transported across the inner membrane, while the N-terminal
transmembrane segment is imbedded into the inner mem-
brane. Remarkably, the Bcs1 AAA ATPase catalyzes the
translocation of the folded Fe-S domain of Rip1 that has an
effective diameter of 25 Å.

Previously proposed mechanisms for translocation of
folded proteins

Many mechanistic hypotheses have been put forth for the
transport of folded proteins across different cell membranes,
but few of them have been experimentally validated. These
mechanisms can be classified into four major categories: pore/
channel formation, local membrane disruption, membrane
thinning, and transport by vesicles. The first three mechanisms
involve a folded protein physically passing through a lipid
bilayer, whereas the last does not. We will briefly describe how
each mechanism works, its involvement to biologically rele-
vant protein transport processes, and any evidence for as well
as against it.

Pore/channel formation

Bacterial outer membrane pores

The T2SS is a molecular machine that spans the inner and
outer membranes of Gram-negative bacteria and comprises as
many as 15 proteins (113, 114). It consists of an inner mem-
brane platform with an associated cytoplasmic ATPase, a
periplasmic pseudopilus, and a piston-shaped outer membrane
secretion channel. Folded proteins cross the outer membrane
via the secretion channel GspD (115). The structure of GspD
has been solved by cryo-EM to high resolution and features a
pentadecameric channel with 60 β-strands in each barrel (116)
(Fig. 2A). The channel is gated on the periplasmic and extra-
cellular sides by the central and cap gates. During transport of
the cargo across the secretion channel, it is expected that the
gates are wide open, with diameters of 53 Å and 48 Å at the
periplasmic and extracellular sides, respectively (116). It was
hypothesized that the pseudopili would contact the substrate
in the periplasm and push the folded substrate through the
secretion channel, thereby triggering the gates to open and
even further expand the channel barrel (116, 117).

The T9SS SprA translocon, located in the outer membrane
of Gram-negative bacteria, represents the largest monomeric
β-barrel identified so far (36 β-strands) and transports folded
proteins. Two structures of SprA have been solved, one bound
with PorV and peptidyl-prolyl cis–trans isomerase (PPI) while
the other with the Plug protein and PPI (118). One of the
structures shows SprA open from the periplasmic side but the
lateral opening is capped by PorV, a shuttle protein that rec-
ognizes cargo proteins through their conserved C-terminal
domain signal (119, 120). In the other structure, the peri-
plasmic side of the SprA channel is sealed by the plug protein
and the channel is open to the extracellular side. The binding
of PorV and Plug are mutually exclusive, and the channel
opens alternately between the periplasmic or extracellular
sides of the outer membrane through conformational changes
within the barrel itself. This model suggests that in the SprA–
PorV state, the substrate enters the SprA channel from the
periplasm and binds to the PorV protein; after the PorV–
substrate complex is released, the Plug protein seals the
SprA channel from the periplasmic side until PorV binds again
to the lateral opening of the channel.
Plasma membrane pores

Pore formation in the plasma membrane (type I UPS) has
been hypothesized for the unconventional secretion of FGF2,
HIV-Tat, annexins, and IL-1β/gasdermin D (29). It was
proposed that FGF2 binds to negatively charged phosphatidyl-
4,5-bisphosphate (PI(4,5)P2) on the inner plasma membrane
and oligomerizes into a hexamer, which inserts into the
membrane to form a transient lipidic pore with a toroidal
architecture (Fig. 2B) (33). Upon emerging from the outer
leaflet, the membrane-inserted oligomers disassemble, bind to
heparan sulfates at the cell surface with high affinity (KD =
10 nM), and are trapped at the cell surface. This model is
supported by biochemical and biophysical evidence including
high-affinity binding of FGF2 to PI(4,5)P2 (KD = 1 μM), PI(4,5)
P2-dependent oligomerization of FGF2 on membrane surface,
and the PI(4,5)P2-dependent formation of “pores” on giant
unilamellar vesicles (GUVs) that allowed small molecules (e.g.,
Alexa488 dye) to move across the GUV membrane. The model
explains the directional transport of FGF2 from the cytoplasm
into the extracellular space and is consistent with the
J. Biol. Chem. (2022) 298(7) 102107 5



Figure 2. Proposed mechanisms for translocation of folded proteins through pore/channel formation. A, the mechanism of gate opening of the GspD
channel and a model of Vibrio cholerae GspD channel with a partially opened central gate (PDB 5WQ9). The N3 constriction sites, periplasmic central gate,
and the extracellular gap gate open by the passage of the protein substrate. Adapted from Fig. 6 in (116). B, a lipidic toroidal pore formed by hexameric
FGF2, which interacts with PI(4,5)P2 (represented by red spheres) in the inner leaflet of the plasma membrane (33). A small opening in the center allows
small molecules and ions to move through. C, cryo-EM structure of the pore formed by gasdermin D (PDB 6VFE). D, model showing the transfer of a folded
protein (Rip1) through an AAA membrane transporter. Adapted from Fig. 6 in (129). PDB, Protein Data Bank; PI(4,5)P2, phosphatidyl-4,5-bisphosphate.
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observation that membrane translocation requires FGF2 to be
properly folded during all stages of this process. HIV-Tat was
proposed to form a similar pore on the plasma membrane
(121). The hypothetical pore formed by annexins has not been
characterized.

IL-1β is mainly expressed in myeloid cells (e.g., macrophages
and monocytes) as a 31 kDa inactive form, pro-IL-1β. Acti-
vation of the inflammasome (e.g., as a result of viral infection)
recruits caspase-1, which subsequently converts pro-IL-1β into
mature IL-1β by removing the N-terminal 117 residues (44).
Removal of the highly acidic N terminus increases the pI of IL-
1β from 4.6 to 8.8 and exposes a C-terminal polybasic
sequence, 88KNYPKKK94, allowing mature IL-1β to relocate
from the cytosol to plasma membrane microdomains, which
are enriched in PI(4,5)P2 (122). In resting, nonpyroptotic
myeloid cells, IL-1β is slowly released from these micro-
domains into the extracellular environment without compro-
mising the integrity of the plasma membrane. In
inflammasome-activated macrophages, acute IL-1β secretion
is induced by the concurrent, caspase-1-mediated cleavage of
gasdermin D (122). The N-terminal domain of gasdermin D
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forms a 215 Å pore of 31- to 34-fold symmetry on the plasma
membrane (Fig. 2C) (123, 124). It was hypothesized that IL-1β
is rapidly released through the large pore, and the negatively
charged inner surface of the pore acts as an “electrostatic filter”
to prevent negatively charged proteins (e.g., pro-IL-1β) from
passing through the pore (123).

A key challenge associated with any pore/channel mecha-
nism is substrate specificity, that is, how does a lipidic or
proteinaceous pore allow structurally diverse cognate sub-
strates (e.g., FGF2 and HIV-Tat) to pass through but not other
cellular contents such as small ions and nonsubstrate proteins?
Nor can it explain how a 70 kDa fusion protein consisting of
FGF2, GFP, and dihydrofolate reductase (DHFR) (FGF2–GFP–
DHFR) is secreted with nearly the same efficiency as the 18
kDa FGF2 (47), as one would expect the attachment of a large,
folded cargo domain to sterically interfere with membrane
insertion, pore formation, and/or movement through the pore.
Further, the pore model does not reconcile the following
observations on IL-1β release: (1) the polybasic motif
(88KNYPKKK94) is required for both gasdermin
D–independent and gasdermin D–dependent release of IL-1β
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(122) or (2) the fast opening and closing of the putative pore in
a PI(4,5)P2-dependent fashion (125).

Peroxisomal membrane pores

A transient, highly dynamic pore of up to 90 Å in size has
been proposed to transport folded proteins across the perox-
isomal membrane, largely based on results from electrophys-
iological studies (126). This hypothesis is supported by the
observation that yeast Pex5 and Pex14 proteins, which are
essential for protein import into the peroxisome in vivo, can
form an ion-conducting channel in vitro (127). However, it is
unclear how the channel, whose structure is currently un-
known, adapts to transporting different-sized cargo molecules
(with diameters of up to 126 Å) while maintaining the mem-
brane barrier function. The channel mechanism also cannot
explain how the PTS receptors (Pex5 or Pex7) are recycled
back to the cytosol in a step requiring ubiquitination and ATP
hydrolysis (128).

Gated mitochondrial membrane pore

The folded Rip1 protein is translocated from the mito-
chondrial matrix into the inner membrane by the Bcs1 AAA
protein (112). How it might do so was recently illuminated
from the cryo-EM structures of the Saccharomyces cerevisiae
and mouse Bcs1 AAA proteins (129). Structurally, Bcs1 has a
distal AAA and proximal middle domain in the matrix and a
transmembrane (TM) domain spanning the inner membrane.
Bcs1 forms a homoheptameric structure and has two large
vestibules (both large enough to accommodate the folded
Rip1), one located in the matrix and one located in the inner
membrane (Fig. 2D). In the apo structure of the S. cerevisiae
Bcsa AAA complex, the entrance to the matrix vestibule is
smaller compared to that when ADP is bound (27 Å versus
40 Å). Conversely, Tang et al. (130) showed with the mouse
Bcs1 AAA protein that the entrance is dramatically smaller in
the [γ-S]ATP state compared to the apo and ADP state (20 Å
versus 40 Å). Both studies reveal dramatic nucleotide-
dependent conformational changes between the matrix vesti-
bule and the inner membrane vestibule.

Kater et al. (129) proposed an airlock-like mechanism to
account for the translocation of the folded Rip1 by Bcs1 AAA
(Fig. 2D). Step 1 is the loading step, in which the substrate can
access the matrix vestibule via the wide opening entrance, but
it cannot access the inner membrane vestibule since the gate is
mostly closed. In step 2, the gating step, the seal-forming
middle domain between the two vestibules opens, allowing
the protein to move into the inner membrane vestibule. As the
gate between the two vestibules opens, the outer matrix ves-
tibule gate facing the matrix closes. In Step 3, the release step,
the hydrophilic Fe-S domain of Rip1 is translocated across the
inner membrane vestibule to the intramitochondrial space and
the N-terminal TM segment is laterally integrated into the
inner membrane. This proposal is supported by the structure
of [γ-S]ATP-bound form (130). In the latter structure, there is
a dramatic constriction of the matrix vestibule such that it
cannot accommodate a folded structure. Further structural
studies are needed to shed light on how the inner membrane
domain can open on the intramembrane side to allow the
folded cargo to transfer to the intramitochondrial space.

Local membrane disruption

Some proteins enter the cell directly by translocating across
the plasma membrane. An example is the adenylate cyclase
toxin (CyaA) secreted by Bordetella pertussis, the causative
agent for whooping cough (131). CyaA contains an N-terminal
adenylate cyclase (AC) domain followed by a C-terminal hy-
drophobic hemolysin domain, which is responsible for trans-
locating the AC domain across the plasma membrane. AC
translocation has been reconstituted in vitro using an artificial
lipid bilayer (designed to mimic the plasma membrane),
requiring only the presence of Ca2+ ions and a negative mem-
brane potential but no additional host factors (132). It has been
proposed that an α-helical peptide located within the hemolysin
domain locally disrupts membrane bilayer integrity to allow the
AC domain to cross the membrane (133, 134). Local destabili-
zation and/or disruption of the endosomal membrane has also
been invoked to explain the endosomal escape of nonenveloped
viruses (135) and other biological cargos, such as nucleic acids
delivered by cationic polymers (136). In addition, membrane
destabilization has been proposed to mediate the transport of
folded proteins across the plasma membrane in the opposite
direction, for example, during the unconventional secretion of
FGF1 (48). However, this model faces the same difficulties that
have been described for the pore/channel mechanism. It is
currently unknownhow the proteins disrupt the cell membrane,
how the disrupted membrane structure allows the “intended”
proteins to cross (but not othermolecules), or how the disrupted
membrane is subsequently repaired.

Protein-induced membrane thinning

A new paradigm in the protein transport field is the trans-
location of a protein across a distorted or thinned membrane
(137). Membrane distortion and thinning may be caused by
the presence of short TM segments and/or the formation of a
hydrophilic groove open to the lipid bilayer and the aqueous
compartment outside the membrane. This model has been
invoked to rationalize the transport of folded proteins by the
TAT system and the ER-to-cytosol translocation of non-
enveloped viruses as largely intact particles (111). For the
poliovirus SV40, there are structural changes that are triggered
by protein disulfide isomerase that expose the hydrophobic
surfaces of VP2 and VP3 (107, 108). The hydrophobic virus
binds and inserts into the ER membrane after being released
by BiP and other chaperones. For the insertion across the
membrane, the ER membrane protein EMC1, a key compo-
nent of the multisubunit ER membrane protein complex is
required, which is known to thin the membrane (110). In
addition, the cytosolic extraction machinery (Hsc70-Hsp105-
SGTA-Bag2) is required to eject the viral particle from the
ER membrane to the cytosol (138–141).

The E. coli TAT system consists of three integral membrane
proteins TatA, TatB, and TatC (20, 22, 142, 143). TatA and
J. Biol. Chem. (2022) 298(7) 102107 7
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TatB each contain a single TM helix and a cytoplasmic
amphipathic helix, with the N terminus facing the periplasm.
TatA forms oligomeric rings of different sizes (144). NMR
studies of the TatA oligomer in detergent show that Gln8
located in the TM helix is in an aqueous environment and
points toward the center of the oligomer, resulting in a short
hydrophobic pore in the center of the complex (145). The
amphipathic helix of TatA extends outward permitting the
formation of different sized oligomers. TatB and TatC also
form an oligomeric complex (TatBC) (146) and function as the
receptors for substrates (147–149). Upon substrate binding to
TatBC through their twin-arginine signal sequence, multiple
TatA oligomers are recruited to the TatBC–substrate complex
to form a large multimeric assembly as the functional trans-
locase (148, 150–152). The TM helix of TatA is very short, and
it is believed that hydrophobic mismatch between the mem-
brane bilayer and the oligomeric TM helices cause the mem-
brane to thin (Fig. 3). Molecular dynamics simulation studies
of a 4- and 9-mer oligomer revealed dramatic membrane
thinning in an E. coli lipid membrane. The hydrophobic lipid
phase decreases to about half the normal size of a regular
membrane. The TM helices are perpendicular to the mem-
brane while the amphipathic helices are parallel to the mem-
brane (145). The TatABC–substrate complex is subsequently
believed to be translocated through the destabilized mem-
brane, possibly by a pulling force. After translocation is com-
plete, the twin-arginine signal peptide is cleaved by a signal
peptidase and the TatABC complex is disassembled.

It was hypothesized that TatA oligomers of varied sizes form
different sized hydrophobic pores that enable different-sized
substrates to be translocated by the TAT system. In the cen-
ter of the pore, the lipids are distorted compared to bulk lipids
(145) and must move to the side during the transport of a
folded protein. The substrate protein is surrounded by lipid
molecules as it is being translocated across the pore; this may
help seal the membrane, although some ion leakage is
expected. The phage shock protein A (pspA) and its homolog
in chloroplasts, both of which are implicated in the mainte-
nance of membrane integrity, have been proposed to minimize
the leakage of ions during Tat-dependent transport (153, 154).
This model is supported by the observations that PspA binds
Figure 3. Membrane-thinning mechanism. A model of a TatA oligomer
(9-mer) in a detergent micelle (PDB 2LZS) (145) is positioned in a phos-
pholipid bilayer. The hydrophobic mismatch between the short TatA TM
segment and membrane causes thinning of the bilayer around the TatA
oligomer. This figure was adapted from Figure 3D in (7). PDB, Protein Data
Bank; TM, transmembrane.
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to E. coli TatA protein and that the Bacillus subtilis homolog
LiaH copurifies with the TatAyCy complex (155, 156). Addi-
tional evidence that TatA destabilizes the E. coli membrane
upon substrate binding came from the studies by Bruser et al.
(157), who showed that the TM helix of TatA causes desta-
bilization of the membrane due to its short length. However,
this destabilizing effect of the TM segment is normally
compensated for by the amphipathic helix that has its amino-
terminal half embedded into the membrane. They showed that
the addition of substrate causes a reorientation of the
amphipathic helix, which leads to a weakening of the mem-
brane. A major limitation of the membrane-thinning hypoth-
esis is that it cannot explain how proteins without any TM
segment (e.g., NleC, FGF2, and IL-1β) move across cellular
membranes. It also has difficulty in explaining why (or how)
the TatABC complex translocates up to eight substrate pro-
teins simultaneously (vide infra).

Transport by membrane vesicles

Instead of physically passing through a lipid bilayer, proteins
may be packaged into membrane-bound vesicles or structures
and transported across a cell membrane. Three different
vesicular transport mechanisms have been proposed: (1)
secretion by microvesicles pinching off from the plasma
membrane, (2) entering the endolysosomal system through
incorporation into multivesicular bodies (MVBs) or lysosomes,
and (3) engulfment by autophagosomes or autophagy derived
structures such as amphisomes (Fig. 4). The latter two
mechanisms constitute the type III UPS pathway (45, 46). After
crossing the membrane barrier, the protein may be released
into the solution or remain enveloped inside the vesicular
structure.

Microvesicle formation

Microvesicles are shed directly from the plasma membrane
by pinching the plasma membrane outward in a process like
viral budding (Fig. 4). Cytosolic and membrane proteins are
recruited into microvesicles as they form. Microvesicles differ
from exosomes by having larger sizes (typically 50–1000 nm
versus 30–150 nm in diameter) and different protein contents.
The shedding of microvesicles from the plasma membrane is
partially responsible for the UPS of IL-1β in P2X7 receptor–
stimulated lipopolysaccharide-treated THP-1 cells (158) and
thrombin-activated platelets (159). In THP-1 cells shedding of
IL-1β-containing microvesicles is preceded by flip of phos-
phatidylserine to the outer leaflet of the plasma membrane
(158). The IL-1β contained in shed microvesicles is bioactive
and may be released following contact with IL-1 receptor
(IL-1RI) expressing cells (158). Stimulation of the micro-
vesicles (which express P2X7R) with extracellular ATP induces
lysis of the microvesicles and the release of their contents into
the extracellular environment (160). This provides a mecha-
nism for release of the protected IL-1β at target sites to elicit
cellular responses. Other examples of proteins secreted by this
mechanism include Fas-associated protein with death domain
(161) and focal adhesion kinase (162). Enveloped viruses adopt



Figure 4. Membrane transport of folded proteins by vesicular structures. The conventional secretion pathway (ER–Golgi –transport vesicle–plasma
membrane) is shown on the left, while the unconventional secretion pathways (microvesicle shedding, exosome, and amphisome secretion) are on the
right. ER, endoplasmic reticulum.
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the reverse process, membrane fusion with the plasma or
endosomal membrane, to transfer their proteins and genetic
materials into eukaryotic cells (163). Researchers have also
encapsulated protein and nucleic acid cargos into membrane
vesicles and delivered them into the cell (164).

Endosomal secretion

Cytosolic proteins can also be secreted in a protected form
by being packaged and secreted via exosomes (165). Exosomes
are small vesicles that are secreted from MVBs (or late
endosomes). They are formed by the inward budding of the
endosomal membrane and contain the cytosol proteins to be
secreted (Fig. 4). The resulting intraluminal vesicles (which
contain the cargo protein) have two fates. They can be un-
conventionally secreted as exosomes upon fusion of the MVB
with the plasma membrane (166, 167). Alternatively, proteins
in intraluminal vesicles can be degraded upon fusion of the
MVB with the lysosomes. Several unconventionally secreted
proteins, including IL-1β (168) and enolase (165), have been
reported to utilize exosomes as one of the secretory mecha-
nisms (type III UPS). Note that proteins secreted by this
mechanism remain enveloped inside the exosome and are not
immediately available for function in the extracellular envi-
ronment. It has been hypothesized that the membrane coating
may protect IL-1β from degradation, increasing its lifetime in
circulation and allowing it to travel to and initiate signaling
processes at sites distant to the local inflammatory lesion (169).
But how the cargo proteins are released from the exosomes to
function in the extracellular environment is currently
unknown. Recently, Zhang et al. showed that some leaderless
proteins (e.g., IL-1β) are translocated into the ER–Golgi
intermediate compartment by the integral membrane protein
TMED10 and subsequently transported via small vesicles to
the plasma membrane (170). Fusion of the vesicles with the
plasma membrane releases the leaderless proteins in their free
form into the extracellular environment.

Amphisome secretion

Eukaryotic cells can leverage the autophagy pathway to se-
cret some proteins unconventionally (Fig. 4). During classical
autophagy, damaged proteins or organelles in the cytosol are
enveloped into a double-membrane structure. The resulting
vesicle (or autophagosome) fuses with the lysosome to form an
autolysosome resulting in the proteolytic degradation of its
contents (171). However, autophagosomes sometimes fuse
with MVBs to form structures called amphisomes (172).
Amphisomes then fuse with the plasma membrane and deliver
cargo to the external environment as a type III mechanism of
UPS, or fuse with the lysosome, where their contents are
degraded. The specific molecular signal that causes amphi-
somes to fuse with the plasma membrane rather than the
lysosome remains unknown.

Histone H3 is one of the best characterized proteins that are
unconventionally secreted by this mechanism (165). Histone
H3 is taken up into an LC3 (an autophagy marker)-positive
autophagosome. Next, the autophagosome matures and its
inner membrane is degraded. The autophagosome fuses with
CD63 (an MVB marker)-positive endosomes to form an
amphisome. Finally, the amphisome fuses with the plasma
membrane and releases H3 in a nonvesicular form. Acyl-CoA–
binding protein (AcbA in Dictyostelium, Acb1 in yeast, and
ACBP in mammalian cells) is another well-studied cargo
protein using the type III UPS pathway. Malhotra et al. used
Dictyostelium as a model system to study the role of GRASP
protein (GrpA in Dictyostelium and Grh1 in yeast) and found
that a GRASP KO strain failed to form viable spores (40). They
J. Biol. Chem. (2022) 298(7) 102107 9
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showed that grpA- cells cannot secrete AcbA, which is
required for spore formation. Similarly, upon starvation, yeast
secretes Acb1 (the yeast ortholog of AcbA) via a cup-shaped
(termed as CUPS) compartment in a Grh1-dependent
manner (39). This CUPS structure represents a subpopula-
tion of autophagosomes whose formation depends on PI(3)P,
ESCRT-I, II, III components but is independent of AAA-
ATPase Vps4 function (31, 38, 39). ESCRT-III component
Snf7 is recruited to CUPS compartment and the plasma
membrane t-SNARE Sso1 is required for the subsequence
membrane fusion of CUPS and release of Acb1 protein
(37, 39). These studies provide a paradigm of how the un-
conventional secretion of Acb1 is related to the CUPS
compartment, which depends on autophagosome, ESCRTs,
and Grh1.
Translocation of folded proteins by VBC

The VBC mechanism was first discovered during our
investigation of the endosomal escape of CPPs (173, 174). We
subsequently showed that bacterial toxins DT and NleC also
escape the endosome by the VBC mechanism (13). A survey of
the literature led us to hypothesize that VBC may be a novel,
fundamental membrane transport mechanism that drives the
translocation of a variety of biomolecules/systems including
peptides, folded proteins, nonenveloped viruses, and various
synthetic drug delivery vehicles (e.g., polyplexes, lipoplexes,
and lipid nanoparticles) across different cellular membranes
(175). During VBC, the biomolecules bind to the phospho-
lipids of a membrane and cluster the phospholipids into a lipid
domain(s) (Fig. 5). The formation of the lipid domain gener-
ates line tension between the lipid domain and the sur-
rounding membrane, which causes the lipid domain to bud out
as a small vesicle (176). The budded vesicle then spontaneously
and rapidly collapses, presumably because of the inherently
unstable nature of the small vesicle. In some cases, the vesicle
collapses as it buds off the cell membrane (173). The
Figure 5. Membrane translocation by the VBC mechanism. Biomolecules (in
evenly distributed over the membrane. They then cluster together to induce th
the vesicle releases the biomolecules (and phospholipids) to the trans side of
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disintegrated vesicle initially forms an amorphous aggregate
consisting of both membrane lipids and biomolecules, which
slowly dissolves into the bulk solution on the other side of the
membrane.
What structural features facilitate VBC?

To promote VBC, the biomolecule must be able to bind to
the cell membrane and induce the clustering of biomolecule-
bound phospholipids into lipid domains. Immediately before
the budded vesicle pinches off, the budding neck requires
distortion of the membrane structure from the lamellar shape
into the “saddle-splay” shape, which features negative Gaussian
curvature (i.e., simultaneous positive and negative curvatures
in orthogonal directions) and has higher potential energy than
the “ground states” present before or after the budding event.
To “catalyze” the budding event, the biomolecules must bind
selectively to the budding neck and reduce the energy barrier
of the VBC event. To do so, the biomolecules need to induce
positive and negative membrane curvatures simultaneously. A
key observation was that biomolecules highly effective in
inducing VBC are typically amphipathic and conformationally
constrained (177), as exemplified by cyclic CPP12 (cyclo(Phe-
D-Phe-Nal-Arg-D-Arg-Arg-D-Arg-Gln), where Nal is L-
naphthylalanine) (173). Conformational rigidity increases the
membrane-binding affinity of a biomolecule, while amphipa-
thicity facilitates the formation of negative Gaussian curvature
at the budding neck. Insertion of hydrophobic groups (e.g., the
side chains of Nal and Phe) in between phospholipid molecules
generates positive membrane curvature, while polybasic
groups (e.g., arginine residues and, less effectively, lysine resi-
dues) induce negative curvature by hydrogen bonding to and
bringing together the phosphate head groups of phospholipids
(177). Time-lapse confocal microscopic experiments
confirmed that CPPs (173, 174) and bacterial protein toxins
(13) are indeed concentrated at the budding neck during VBC.
A linear correlation between the endosomal escape efficiency
dicated by the cyan spheres) first bind to the cis side of a membrane and are
e formation of a lipid domain, which buds off as a small vesicle. Collapse of
the membrane. VBC, vesicle budding and collapse.
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and the endosomal membrane-binding affinity was observed
for a panel of structurally diverse CPPs (173).

VBC is uniquely suited for the membrane transport of folded
proteins

Compared with other membrane translocation mechanisms,
the VBC mechanism has several unique features. First, the
biomolecule/system crosses the membrane topologically (i.e.,
from one side to the other side of the membrane) but not
physically (i.e., without going through the lipid bilayer). This
feature renders VBC compatible with biomolecules of any size
or physicochemical property, so long as they contain structural
elements that interact with and induce negative Gaussian
curvature on the target membrane. The VBC mechanism thus
readily explains how FGF2 (18 kDa) and FGF2–GFP–DHFR
(70 kDa) were unconventionally secreted with similar effi-
ciencies (47) or how 90 Å gold nanoparticles and 126 Å olig-
omeric proteins are imported into the peroxisome (178).
Second, membrane translocation by VBC does not require
unfolding of the protein and therefore explains how cofactor-
containing enzymes and noncovalent protein complexes are
transported across the plasma (e.g., export of Ni-Fe hydroge-
nase (179) by the TAT system), endosomal (e.g., the delivery of
noncovalently associated nucleic acids by DT (82, 83)), or the
peroxisomal membrane (e.g., the “piggyback” transport of
proteins without PTS1/PTS2 into the peroxisome (57, 178,
180, 181). The conformational rigidity of folded proteins may
serve as a potential quality control mechanism during their
translocation by the TAT and UPS pathways—folded proteins
bind effectively to the budding neck and are translocated,
whereas unfolded proteins do (are) not. However, it should be
stressed that a folded structure is not a prerequisite for VBC, as
linear CPPs and nonpeptidic molecules also cross the endo-
somal membrane by VBC (173–175). Third, the cell mem-
brane remains intact before, during, and after each VBC event.
The VBC mechanism therefore reconciles one of the most
perplexing observations—that different-sized proteins, protein
complexes, and nanoparticles are transported across a cell
membrane without compromising its barrier function. In
contrast, any mechanism that involves a protein physically
traversing a cell membrane would require partial or total
disruption of the membrane. Note that a limited transfer of
ions and other contents is expected during VBC, as each VBC
event results in the release of a small volume of the donor
compartment into the recipient compartment. Finally, the
VBC mechanism is energy independent, although it may be
facilitated by the presence of membrane potentials and/or
transmembrane pH gradients (e.g., across the endosomal
membrane). This makes VBC highly versatile and potentially
operative in any cellular compartment.

Bacterial toxins escape the endosome by VBC

We recently demonstrated that bacterial toxins DT and
NleC escape the endosome by inducing VBC (13). Binding of
the R-domain of DT to its receptor on the host cell surface, the
heparin-binding EGF-like growth factor (HB-EGF) receptor,
results in the endocytosis of the receptor–DT complex.
Endosomal acidification induces a conformational change of
the T-domain, which inserts into the endosomal membrane to
form an ion-conducting pore/channel. Instead of the T-
domain acting as a pore to translocate the unfolded A-domain
as previously proposed (77), we hypothesize that membrane
insertion of the T-domain serves to increase the binding af-
finity of DT for the endosomal membrane, so that a minimum
number of DT molecules can be concentrated into a single
endosome to induce VBC (13). We estimated that a minimum
of 80 to 360 biomolecules is required for each VBC event
(175), corresponding to an endosomal concentration of 2 to
9 μM, which is much higher than physiological DT concen-
trations in the extracellular environment (pM to nM). Addi-
tional interactions between the endosomal membrane and
other elements of DT, including amphipathic helices 1 and 2 of
the T-domain (which contain both positively charged and
hydrophobic residues), probably cause the DT-bound lipids to
cluster into a toxin-enriched lipid domain. VBC from the lipid
domain results in the simultaneous release of multiple DT
molecules into the cytosol. At high DT concentrations, mul-
tiple VBC events may occur on the same endosome, either
simultaneously or sequentially, until the vesicle is mostly
depleted of the cargo.

DT- and NleC-mediated VBC events have been observed in
real-time in HeLa (human cervical cancer) cells by live-cell
confocal microscopy (13). Briefly, HeLa cells were simulta-
neously treated with a fluorescently (green) labeled phosphati-
dylserine and pHAb-labeled DT (or NleC). pHAb is a pH-
sensitive dye (pKa = 6.0), which fluoresces (red) in the acidic
endosomes/lysosomes (pH4.5–6.5) but not in the extracellular or
cytosolic environment (pH 7.4). This resulted in the selective and
dual labeling (both green and red) of the endosomes/lysosomes,
allowing direct visualization of vesicle budding from the endo-
somal membrane. Collapse of the budded vesicles was indicated
by the sudden lossof the red (but not thegreen)fluorescence from
the budded vesicle (or its remnant). Further, the endosomeswere
enlarged by the treatment with a kinase inhibitor, allowing the
VBC intermediates to be captured by confocal microscopy (13).
Additional support for the VBCmechanism came from an earlier
observation that the endosomal release of DT follows a “quantal”
kinetics:�80 DTmolecules are simultaneously released from an
endosome (i.e., as a “bolus”), irrespective of the extracellular DT
concentration (182).
Potential involvement of VBC in the UPS system

The experimental evidence used to support the pore
model for the type I UPS pathway are also consistent with
the VBC mechanism. For example, FGF2, HIV-Tat, and IL-
1β (which all undergo type I UPS) share the common
properties of membrane binding and PI(4,5)P2-dependent
oligomerization. These properties also facilitate phospho-
lipid clustering and the formation of lipid domains during
VBC. Protein oligomerization is likely the consequence of
their binding to and clustering of phospholipids, as observed
for CPPs and bacterial toxins (13, 174, 175). The transport of
J. Biol. Chem. (2022) 298(7) 102107 11
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small molecules (e.g., Alexa488 dye) across the GUV mem-
brane through PI(4,5)P2-dependent “pores” (33) can be
alternatively explained by VBC events. A key difference be-
tween the two mechanisms is the kinetics of protein trans-
location—translocation through a pore is sequential, whereas
a “bolus” of biomolecules is simultaneously transported by
each VBC event. Dimou et al. recently employed high-
resolution total internal reflection fluorescence microscopy
to visualize single events of FGF2-GFP recruitment at the
inner leaflet and FGF2-GFP translocation to the outer leaflet
of the plasma membrane in living cells (183). Oligomeriza-
tion of FGF2-GFP on the inner leaflet was found to be a
relatively “slow” process, whereas translocation of the olig-
omers to the outer leaflet occurred instantaneously (in
<200 ms), suggesting that the FGF2-GFP oligomers were
transported across the plasma membrane as a “bolus.”

In the case of IL-1β, cleavage by caspase-1 increases its pI
from 4.6 to 8.8 and exposes a polybasic motif for membrane
binding and possibly inducing VBC (122). The gasdermin D–
independent IL-1β release is slow, presumably because the
polybasic motif (88KNYPKKK94) is not optimal for inducing
VBC (e.g., the lack of arginine residues). In the presence of
gasdermin D N-terminal domain, which contains several
arginine-rich motifs, the IL-1β–gasdermin D complex may
induce more robust VBC. Indeed, the expression of gasdermin
D N-terminal domain in HeLa cells resulted in robust budding
and collapse of large vesicles from the plasma membrane,
which was previously described as membrane “swelling” and
“rupture” (124). The VBC mechanism explains why the poly-
basic motif of IL-1β is necessary for both gasdermin
D–independent and gasdermin D–dependent IL-1β release
(122). It offers a possible explanation for the gasdermin
D–induced “calcium flares” inside the cells, usually near the
plasma membrane (i.e., VBC in the inward direction), which
were previously interpreted as calcium influx following the
opening of a 215 Å gasdermin D pore (125). It reconciles the
phosphoinositide-dependent “pore dynamics” and the superi-
ority of PI(3,4,5)P3, which should further enhance the binding
affinity of IL-1β and gasdermin D for the plasma membrane,
for inducing the gasdermin D activity (125). Finally, it provides
a potential avenue for gasdermin D to selectively release
certain proteins (e.g., IL-1β) but not others (e.g., pro-IL-1β and
lactate dehydrogenase).

The type III UPS pathway and microvesicle shedding have
been reported to release cytosolic proteins into the extra-
cellular environment in the nonvesicular form (8). Note that
the collapse of exosomes and microvesicles after their release
from the cell represents a variation of the VBC mechanism.
Interestingly, a new type of nonvesicular nanoparticles
secreted by eukaryotic cells, termed “exomeres,” has recently
been discovered (184). Exomeres (typically <50 nm in
diameter) are enriched in extracellular matrix proteins,
components of the proteasome, metabolic proteins (e.g.,
hexokinase, glucose-6-phosphate isomerase, GAPDH, pyru-
vate kinase, and enolase), and nucleotide-binding proteins
(e.g., Argonaut and APP) and contain trace amounts of lipids
that are common to microvesicles. It is tempting to suggest
12 J. Biol. Chem. (2022) 298(7) 102107
that these exomeres may come from collapsed microvesicles
(and/or exosomes).
Potential involvement of VBC in the TAT system

To our knowledge, the VBC mechanism is consistent with
the literature on the TAT system. TatA contains an amphi-
pathic, polybasic α-helix, which lies parallel to the inner leaflet
of the plasma membrane and interacts with the membrane
(145, 185). The α-helix therefore possesses the requisite
structural elements and is properly oriented for binding to the
plasma membrane and potentially inducing negative Gaussian
curvature on the membrane. Indeed, the insertion of TatA
alone into the lipid bilayer of large unilamellar vesicles (LUVs)
caused “quantized,” partial, and temporary leakage of calcein (a
fluorescent dye) from the vesicles (186). Translocation of
substrate proteins requires the oligomerization of TatA (187).
In the resting state, TatA is evenly distributed on the plasma
membrane; upon substrate binding to TatBC, TatA protomers
cluster around the TatBC receptor complex to form a large,
multimeric complex as the functional translocase, which is
readily visible by fluorescence microscopy (188). In thylakoid
membranes, the fully assembled TAT translocase is a 2.2 MDa
complex consisting of 208 Tha4 (TatA), eight Hcf106 (TatB),
and eight cpTatC protomers and capable of transporting up to
eight protein substrates at a time (187). This phenomenon is
consistent with the formation of a protein-bound lipid domain,
which is a prerequisite for VBC. The number of TatA proto-
mers in a functional translocase (208) agrees with our previous
estimate that each VBC event requires a minimum of 80 to 360
curvature-inducing molecules (175).

The VBC mechanism reconciles previous observations that
cannot be explained by any of the competing models (e.g., the
membrane pore and thinning models). For example, the VBC
mechanismdoes not cause any loss ofmembrane integrity and is
compatible with protein substrates of any size, oligomeric state,
or folding status. It thus explains how the TAT system exports
protein substrates of varied sizes without causing significant
membrane leakage (189, 190). On the other hand, each VBC
event results in the transfer of a small volume from the cis to the
trans side of the membrane, therefore explaining the “quan-
tized,” temporary release of calcein from TatA-treated LUVs
(186). Calcein release through a pore in the LUV membrane
would be continuous, until an equilibrium is reached between
the two sides of the membrane. The VBC mechanism allows
multiple cargo molecules to be transported as a “bolus” and is
consistent with the observation that the TAT translocase is
capable of transporting protein oligomers (either noncovalent
or covalent) by engaging multiple TatBC receptors simulta-
neously (191, 192). The TAT system has been shown to trans-
port protein substrates that are covalently attached to the TatBC
receptor complex (193). This is fully consistent with the VBC
mechanism, during which the TatABC complex and the sub-
strate move together as a unit, but more difficult to explain by a
pore or membrane thinning mechanism, during which the
substrate must shift in position relative to TatABC and covalent
crosslinking would be expected to interfere with this relative
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movement. After the translocation of substrate proteins, some
of the TatABC components may need to be recycled back to the
cytosol. Since TatA alone apparently induces VBC in vitro (186),
it is conceivable for the exported TatA to recycle back into the
cytoplasm through an inward VBC event. A potential difficulty
with theVBCmechanism is that the narrowperiplasmic space of
Gram-negative bacteria (�20 nm between the outer and inner
membranes in E. coli) may not be able to accommodate the
budded vesicles, which have diameters of 50 to 100 nm (174).
However, local separation of the outer and plasma membranes
of bacterial cells by as much as 100 nm has been observed by
electron microscopy (194). Moreover, the locally expanded
periplasmic regions contained large vesicle-like objects (194).

Potential involvement of VBC during the cellular entry of other
proteins

The cell-permeable proteins previously discussed usually
contain amphipathic or polybasic sequence motifs that can
induce negative Gaussian curvature and VBC. For example,
histone proteins are highly basic because of their need to bind
to nucleic acids. PTEN-long contains an N-terminal hex-
aarginine motif that mimics CPPs (e.g., R9) and was shown to
be critical for the cellular entry of PTEN-long (94). The
RRRRWWWmotif used to engineer cell-permeable proteins is
an efficient CPP in isolation (98). Cell-permeable antibodies
(e.g., TMab4) contain a hydrophobic motif, WYW (or similar
sequences), in the CDR3 loop and polybasic sequences in the
CDR1 and CDR2 loops of their VL domain (99). Adenovirus
protein VI, which is responsible for the endosomal escape of
the virus, contains a 20 aa amphipathic α-helix at its N ter-
minus (85). This peptide binds to GUVs mimicking the
endosomal membrane with an apparent KD value of 3 μM,
induces membrane curvature, and causes the GUVs to frag-
ment into smaller vesicles or form tubular structures and
peptide/lipid aggregates (85). These properties are reminiscent
of those of cyclic CPPs, which exit the endosome by VBC
(174). The phospholipase A type 2 domain of parvovirus
protein VP1 mediates the endosomal escape of parvoviruses
(87). It likely promotes VBC by producing lipid molecules that
stabilize the negative Gaussian curvature at the budding neck.
PLA2 hydrolyzes phosphatidylcholine into lysophosphati-
dylcholine and fatty acids. While phosphatidylcholine has an
intrinsic lipid curvature of �0, lysophosphatidylcholine and
fatty acids generate positive and negative membrane curva-
tures, respectively. Further experimentation will be necessary
to ascertain whether these proteins/viruses escape the endo-
some by VBC, for example, by labeling them with pHAb and
monitoring their intracellular trafficking by time-lapse
confocal microscopy.
Conclusion and future directions

It is now clear that membrane translocation of folded pro-
teins is an integral component of cellular biogenesis and
function in all three domains of life. In addition to the previ-
ously established systems (TAT, UPS, and protein import into
the peroxisome), we survey the evidence that folded proteins
are also transported through the endosomal membrane and
possibly the ER membrane of eukaryotic cells as well as the
outer membrane of Gram-negative bacteria. Protein transport
in the folded state provides an important alternative to the
conventional pathways such as the Sec system, which is inef-
fective for transporting proteins containing complex metal
cofactors or noncovalent protein complexes. Compared with
the Sec pathway, the TAT and UPS systems allow functional
proteins to be transported across a cellular membrane, without
competing for the same translocon (e.g., SecYEG) with many
other proteins. However, this alternative pathway is likely
limited to only a subset of proteins, presumably those that
contain proper amphipathic/polybasic sequences (or surfaces)
and their associated cargo proteins. The molecular mechanism
by which folded proteins translocate across cell membranes
remains incompletely understood. Our analysis of the litera-
ture data suggests that some of the systems discussed in this
review (including TAT, UPS, and cellular entry of proteins) are
potentially mediated by the VBC mechanism. However, addi-
tional research is warranted to validate or disprove this
hypothesis as well as the alternative mechanisms previously
proposed by others (e.g., pore/channel formation and mem-
brane disruption/thinning). Additionally, many molecular de-
tails of the VBC mechanism, for example, how proteins (and
other biomolecules) interact with a lipid bilayer to induce
negative Gaussian curvature during VBC and why or how the
budded vesicle collapses, are currently unresolved. Finally, the
discovery of VBC as a novel mechanism for the membrane
translocation of CPPs and bacterial toxins opens a door to the
rational design of cell-permeable peptides, proteins, and other
drug delivery vehicles.
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