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Abstract: In this study Bacillus amyloliquefaciens RK3 was isolated from a sugar mill effluent-contaminated
soil and utilised to generate a potential polysaccharide with anti-Alzheimer’s activity. Tradi-
tional and molecular methods were used to validate the strain. The polysaccharide produced
by B. amyloliquefaciens RK3 was purified, and the yield was estimated to be 10.35 gL−1. Following
purification, the polysaccharide was structurally and chemically analysed. The structural analysis
revealed the polysaccharide consists of α-D-mannopyranose (α-D-Manp) and β-D-galactopyranose
(β-D-Galp) monosaccharide units connected through glycosidic linkages (i.e., β-D-Galp(1→6)β-
D-Galp (1→6)β-D-Galp(1→2)β-D-Galp(1→2)[β-D-Galp(1→6)]β-D-Galp(1→2)α-D-Manp(1→6)α-D-
Manp (1→6)α-D-Manp(1→6)α-D-Manp(1→6)α-D-Manp). The scanning electron microscopy and
energy-dispersive X-ray spectroscopy imaging of polysaccharides emphasise their compactness and
branching in the usual tubular heteropolysaccharide structure. The purified exopolysaccharide sig-
nificantly impacted the plaques formed by the amyloid proteins during Alzheimer’s disease. Further,
the results also highlighted the potential applicability of exopolysaccharide in various industrial and
pharmaceutical applications.

Keywords: Alzheimer’s disease; cognitive function; exopolysaccharide; Bacillus; biopolymer;
biomedical application

1. Introduction

Microorganisms produce exopolysaccharides (EPS) by utilising different nutrient
sources. EPS are ubiquitous and have been reported from diverse sources of microor-
ganisms [1]. The different EPS are functionally characterised as significant polymeric
substances, which are extracellularly produced by various microbial species [2]. EPS can
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execute different essential biological functions in various organisms. Microbial EPSs are
also known to exhibit antioxidant properties, anti-ulcer and anti-toxin activity [3]. They
are classified into homopolysaccharides with only one or the same type of sugar molecules,
e.g., cellulose, alternan, pullulan, mutant, levan, dextran and curdlan. Others are called
heteropolysaccharides, with two or more/different sugar moieties attached, e.g., gellan
and xanthan [4,5]. Similarly, the structure of the microbial EPS is also mainly composed of
monomer units linked by glycosidic linkages [6].

Different microorganisms produce a differential amount of exopolysaccharide content
according to their surroundings and metabolism [7]. Some Bacillus sp. are known to pro-
duce significantly more quantities of EPS than Lactobacillus sp. and also the Bacillus sp. can
produce more than one type of EPS [8]. Nature has various EPS-producing microbes such
as B. licheniformis, B. amyloliquefaciens, A. infernus and some Luconostoc sp. [9]. EPS is purely
organic, possesses higher stability to extreme conditions and is environmentally friendly
and also biodegradable [10]. Novel exopolysaccharides are extremely attractive, and it has
been shown that microbial EPS have a wide range of applications in various fields contain-
ing textile, oil recovery, food, pharmaceutical, tissue engineering, cosmetics and chemical
industries [11]. In addition, microbial EPS possesses great applications in the therapeutic
industries [12]. The substantial immunomodulatory and anticancer characteristics of EPS
have led the path for its use in a variety of biological and therapeutic applications.

In addition to controlled drug administration in EPS, potential applications include
vaccines, adjuvants and diagnostic imaging systems [13]. In commercial pharmaceuticals
and medical devices, many potential applications are expected to be developed. Based on
past and current results relevant to the medical and pharmaceutical fields, the state of EPS
in medical applications is very diverse [14]. Due to their specific material qualities, bacterial
polysaccharides are effective biomaterials. EPS has several advantages, including lubricity,
rheological and viscoelasticity, cationic interaction, ionic strength, crosslinking, gelling,
water retention and stability under a variety of circumstances [15,16]. For instance, the
critical ability of microbial cellulose in medical applications can be moulded into various
forms without losing its beneficial properties. By forming into long hollow tubes, these
tubes can be used as replacement structures in various areas like the cardiovascular system,
digestive tract, urinary tract and windpipe [17]. Microbial cellulose can also be used for
internal treatments such as bone grafting and other tissue techniques and regeneration [18].

On the other hand, alginate extracted from bacteria has its own physical and chemical
heterogeneity, which affects its quality and generates different applications [19]. Alginates
with all outstanding properties have been investigated for biomedical applications. Al-
ginate gel as inducing divalent and cations are used for wound healing, protein release
and cell transplantation [20,21]. Due to the immense potential of microbial EPS in different
sectors, they have many applications in the food, pharmaceutical and other industries.
When compared to thermophiles, psychrophilic EPS has several benefits, including greater
yield at short time and consistent emulsification [1,22]. Microbial polysaccharides are
renewable, biodegradable and biocompatible. The relevant material properties make them
attractive for various chemical, food, cosmetics and medical industries [23]. Microorgan-
isms produce biopolymers such as polysaccharides, polyesters and polyamides. Most of
them are hydrocolloids, and they are water-loving polymers that are easily dispersed in
the water [24].

In the case of rhamnose-rich bacterial polysaccharides, they provide engaging biologi-
cal activities that utilise their potential for a wide range of value-added applications for
products such as cosmetics, pharmaceuticals, medical devices and functional foods [25].
Polysaccharides have physical and chemical properties such as water-binding capacity,
high molecular weight, polyelectrolyte behaviour and in some cases, modulable molecular
structural possibilities [26]. This enables them to exhibit various functional properties such
as thickening, film formation, gelling, emulsion stabilisation, flocculation and production
capability [27]. Furthermore, several studies have evaluated the non-toxicity of bacterial
polysaccharides and their safety as cosmetic ingredients and are well documented [28,29].
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Microbial polysaccharides find their applications in a wide range of non-food products
and industrial purposes. In recent years, significant progress has been made in discovering
and developing new bacterial polysaccharides with novel functional properties [30]. For
example, microbial EPS promotes aggregation of soil particles, benefiting plants by keeping
moisture in the environment and trapping nutrients [31]. EPS are hydrogenated polymers
consisting of polysaccharides, proteins and DNA with unique properties. It possesses fea-
tures such as biocompatibility, gelling and thickening ability for industrial applications [32].
Microbial polysaccharides are ionic, non-ionic and linear polysaccharides, to which side
chains of various lengths and complexity are attached at regular intervals [33]. The same
microbial chewing gums are produced by more than 1% of organisms [34,35].

World Health Organisation report estimated that worldwide around 50 million people
have dementia, and there are nearly 10 million new cases every year [36]. The main
symptoms are memory weakening and mental complaints, characterised by deposition of
amyloid plaques in intra and extracellular neurofibrillary knots. Present treatment for AD
has only modest benefits [37]. Hence, the improvement of drugs with significant effects
has been of key importance. The current study aims to isolate and characterise an EPS
produced by a soil-borne bacteria B. amyloliquefaciens RK3 strain isolated from the sugar
industry effluent-contaminated soil, in order to assess its anti-AD potential.

2. Materials and Methods
2.1. Sample Collection and Isolation

Sugar industry effluent-contaminated soil was collected from Bhodan (18◦39′43.3′′ N
77◦54′35.2′′ E), Nizamabad district, Telangana, India. The soil was collected aseptically at a
depth of 5 cm and transported to the laboratory. The soil was dried in the oven at 30 ◦C to
remove the moisture content. The dried soil was ground well and used for isolation. The
soil was 10-fold diluted, plated on NA HiVegTM Agar (Nutrient Agar) plates and incubated
at 37 ◦C/24 h. After incubation, the strain was selected and used for further studies.

2.2. Biochemical and Molecular Identification of the Bacterial Strain

We employed conventional and molecular techniques to identify the bacterial strain.
The biochemical characterisation was done by employing various physiological tests
suggested in Bergey’s manual [38]. Molecular identification was performed by sequencing
the 16S rRNA gene of the bacterial strain. Briefly, the genomic DNA was extracted by
following the method of Palaniappan et al. [39], and the 16S rRNA gene was amplified
using universal bacterial primers 27F and 1492R. BDT (v3.1) TM cycle sequencing kit
was used to perform 16S rRNA amplicon sequencing on default parameters. Sequence
analysis was performed on ABI 3730xl genetic analyser. The taxonomic relatives was
identified by BLASTn search in the NCBI database and the ClustalW algorithm to align the
relative sequences. Phylogenetic placement of the strain was confirmed by constructing
the neighbour-joining tree in MEGA X [40].

2.3. Production Extraction and Purification of EPS

EPS production was carried out by following the recommended method of Sivasankar
et al. [41] with some modifications. Briefly, the selected strain was inoculated in the basal
medium containing (g L−1) casein (15 g), K2HPO4 (10 g), sucrose (20 g), yeast extract (5 g),
sodium chloride (2.5 g), L-cysteine (0.5 g), MgSO4 0.3 g; KH2PO4 10 mg, pH 7.0 and Vitamin
B1 as the added supplement for the enhanced microbial growth. The flasks were incubated
in a rotary shaker (MaxQ 6000, ThermoFisher Scientific, Salem, India) at 28 ± 2 ◦C for three
days. Viscosity and EPS production were monitored every 24 h. Upon incubation, the
culture was centrifuged for 10 min at 12,000 rpm. The EPS was harvested by adding two
volume of the cold-acetone to the cell-free culture supernatant and was kept overnight at
4 ◦C [42]. The precipitates were collected by centrifugation (12,000 rpm/4 ◦C/15 min) and
used for further analysis. Subsequently, the collected precipitates were dissolved in Milli-Q
water. The precipitate was added with an equal volume of cold-ethanol, and the precipi-
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tated EPS was collected by centrifugation, as mentioned above. The collected precipitates
were pooled together, lyophilised and used for further analysis—the purification of EPS
followed by Sun [42].

2.4. Characterisation of the EPS
2.4.1. Estimation of Total Carbohydrates

The total carbohydrates present in the EPS samples were estimated using the phenol-
sulfuric acid process [43]. Glucose was used as the standard.

2.4.2. Thin-Layer Chromatography Analysis of EPS

The monosaccharide composition of the EPS was done after hydrolysis with Trifluo-
roacetic acid (TFA) [44]. First, EPS was hydrolysed with 2M TFA at 100 ◦C for two hours.
Then, the released monosaccharides were analysed by TLC (MERCK Millipore, Germany).
The solvent system was prepared by mixing ethyl acetate: acetic acid, 1-butanol and H2O in
a ratio of 4:3:2:2 (v/v). The spots developed using spray reagent were prepared by adding
0.5% (w/v) 1-naphthyl ethylenediamine dihydrochloride in methanol with 5% sulphuric
acid. The plate was dried at 120 ◦C for 10 min.

2.4.3. UV-Visible Spectra, FT-IR and GC/MS Analysis of Purified EPS

The EPS sample was dissolved in Milli-Q water (5 mg in 2.5 mL w/v) and was used for
UV-visible spectrophotometric analysis (THERMO Scientific Evolution 600). The sample
was scanned between the wavelengths of 200 and 600 nm range. The lyophilised EPS was
analysed with FT-IR to find out the functional groups present in the sample. In brief, the EPS
sample (10 mg) was homogenised with potassium bromide at room temperature and was
pelleted out by compression and analysed in FT-IR (Spectrum 100 Optica—PerkinElmer,
Shelton, CT, USA) at the frequency range of 4000–400 cm−1 [45]. GC/MS analysis was
performed to justify the monosaccharide composition of the EPS sample by following
the standard method given by Centre for Cellular and Molecular Platform (C-CAMP),
Bangalore, India. Initially, for monosaccharide composition, the EPS was treated with TFA
(2 M) and was hydrolysed. The sample and sugar standards were reduced with KBH4 and
again derivatised with MSTFA. Then, 1 µL of the sample was run on the GC/MS and the
peaks were compared with that of the RTs of standards as well as mass spectral comparison
in library. The linkage analysis was done by permethylating the sample with NaOH-DMSO
and CH3I and was hydrolysed with TFA (2 M). The hydrolysed sample and standards of
monosaccharides were reduced with NaBD4 to open up the sugar and derivatised with
acetic anhydride and pyridine. Then 1 µL of the sample was run on the GC/MS and spectral
peaks were identified based on masses and with the help of monosaccharide composition.
Perkin-Elmer (Clarus S.Q. 8 GC/MS) with an autosampler instrument equipped with a
capillary column RTX-5 30M, 0.32 mm ID was used for the analysis.

2.4.4. NMR and SEM Analysis

The nuclear magnetic resonance (NMR) analysis of purified EPS was performed
using a 5 mm reverse probe Bruker AVANCE 400 MHz NMR spectrometer. The EPS
was dissolved in deuterium oxide (D2O) at 10 mg mL−1 concentration and 1H NMR and
13C NMR spectra were measured. The NMR data were processed using Bruker TopSpin
software (Waltham, MA, USA). In addition to that, scanning electron microscopy (SEM)
and energy-dispersive X-ray spectroscopy (EDX) were also performed. The morphological
aspect of EPS was studied through SEM. The EPS (1 mg mL−1) with aluminium stubs
was dried in the air. The sample was sputtered using an SC7620 sputter coater. Field
emission scanning electron microscopy (FE-SEM) coupled with EDX (TESCAN, VEGA 3
LMU instrument, Seoul, Korea) was used for this analysis.
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2.5. Anti-Alzheimer Study of the EPS
2.5.1. Anti-Alzheimer Activity in Mice Models

The anti-Alzheimer activity of the EPS was assessed by following the recommended
protocol [46,47]. In short, adult male albino mice (15–18 g) were purchased from the
Madras medical college animal house, and work was carried out at Pharmacies college
of Kakatiya University, Telangana state of India. All the animals were maintained under
laboratory conditions and provided with the proper diet. The optimum temperature of the
chamber was maintained at 25± 2 ◦C, while the humidity was maintained at 60 ± 5%. The
Institutional Animal Ethics Committee approved the procedure and directions for carrying
out this research (IAEC) (approval No. IAEC/53/UCPSC/KU/2018) and the animals
were maintained according to the Committee’s regulations for control and supervision
of experiments on animals (CPCSEA), Ministry of Environment and Forest, Government
of India. The animals were housed in polypropylene cages for one week before starting
the experiment, and every cage contained four or five mice. The animals were grouped
into five groups, and each group contained 15 mice. Merely two lessons using mouse
representations of AD have been evaluated by an exercise training effect. The experimental
set-up was designed and executed as follows:

Group I: For three weeks, mice ingested 1 mL of saline via an oral path for Alzheimer’s
activity control group.

Group II: Beta-amyloid solution was directly induced in the mice brain through
stereotypic apparatus for three weeks (negative control).

Group III: Standard Rivastigmine was given (IP) (40 mg/kg) three weeks after beta-
amyloid solution induction.

Group IV: Test solutions 200 mg/kg as given (IP) for three weeks after beta-amyloid
solution induction.

Group V: Test solutions 400 mg/kg as given (IP) for three weeks after beta-amyloid
solution induction.

Mice were fasted overnight and given anaesthesia to facilitate blood collection and
the brain samples of mice. Subsequently, the brain tissue was quickly separated and
further washed by isotonic saline solution. Weighing and homogenising the brain was
done with 10% (w/v) ice cold 50 mM Tris-HCl and 300 mM sucrose-containing medium
at pH 7.4. At 4 ◦C the samples were centrifuged at 2000 rpm for homogenisation. The
supernatant was collected and stored at −80 ◦C for further use. Biochemical analyses were
conducted to check the oxidative stress biomarker by nitric oxide concentration analysis,
malondialdehyde (MDA) concentration, glutathione concentration and hydrogen peroxide
concentration [48,49].

2.5.2. Cognition and Behaviour Analysis of Mice Models

The behavioural studies were also conducted on mice infected with disease and mice
without symptoms as a negative control. The cognition and change in behaviour of different
groups of mice were confirmed by various tests viz., jumping box test, rectangular maze
test, y maze test study [50]. Histopathology of infected, controls and EPS-treated mice and
acetylcholine esterase activity in the mice models were also performed [51].

3. Results and Discussion
3.1. Isolation and Identification of the EPS Producing Strain

The strain RK3 was isolated from the soil samples collected from the area polluted
by sugar factory effluents near Nizamabad, Telangana, India. The EPS production nature
of the strain RK3 was initially confirmed on sucrose supplemented basal media [52,53].
Followed by the results, RK3 was selected for further studies. In addition, the strain RK3
was characterised by morphological tests. It was found to be a rod-shaped (Figure 1a)
Gram-positive strain, growing well in 5% NaCl concentration and at 30 ◦C as the optimum
growth temperature. Besides, the strain RK3 was found to be positive for the Voges-
Proskauer test and citrate utilisation.
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Interestingly the strain hydrolysed the starch very efficiently. Based on the morpho-
logical and biochemical test results, the strain RK3 was found to belong to the genus
Bacillus [54]. Further, the strain was identified by using a molecular technique. The 16S
rRNA gene sequence of the strain revealed that the strain RK3 has the closest similarity with
the Bacillus amyloliquefaciens, and it was confirmed in the phylogenetic analysis (Figure 1b).
The sequence was submitted to GenBank under the accession number MH553074. Based
on the above justifications, the strain RK3 was identified as B. amyloliquefaciens.

3.2. Production and Characterisation of the EPS
3.2.1. Yield and Carbohydrate Content

Produced EPS was characterised for its chemical composition. The total yield of the
EPS produced by B. amyloliquefaciens RK3 was 10.35 g L−1, better than EPS 7.75 g L−1

formed by L. lactis L2 [55]. The total carbohydrate content of the B. amyloliquefaciens RK3
EPS was 82.7%, and the higher carbohydrate content justifies the polysaccharide nature of
the sample.

3.2.2. Estimation of Total Carbohydrates and Monosaccharide Composition

The total sugar carbohydrates content was estimated and is shown in the Supplemen-
tary Material (see Figure S1). The monosaccharide composition of the EPS was analysed
in TLC plate and the B. amyloliquefaciens RK3 EPS was found to contain mannose and
galactose as the monosugar (Figure 2a). These results have been similar to previous stud-
ies from B. amyloliquefaciens LPL061 on EPS [56]. The results suggested that most of the
carbohydrate was hydrolysed in the presence of TFA, due to its potential of hydrolysing
glycosidic bonds without causing any drastic damage to monosaccharide units [57].



Polymers 2021, 13, 2842 7 of 19

Polymers 2021, 13, x FOR PEER REVIEW 7 of 19 
 

 

3.2.2. Estimation of Total Carbohydrates and Monosaccharide Composition  
The total sugar carbohydrates content was estimated and is shown in the supplemen-

tary material (see Figure S1). The monosaccharide composition of the EPS was analysed 
in TLC plate and the B. amyloliquefaciens RK3 EPS was found to contain mannose and ga-
lactose as the monosugar (Figure 2a). These results have been similar to previous studies 
from B. amyloliquefaciens LPL061 on EPS [56]. The results suggested that most of the car-
bohydrate was hydrolysed in the presence of TFA, due to its potential of hydrolysing gly-
cosidic bonds without causing any drastic damage to monosaccharide units [57].  

 
Figure 2. Shows the TLC analysis (a), UV-visible spectra (b) and the FT-IR analysis of the EPS produced by B. amylolique-
faciens RK3 (c). 

3.2.3. UV-Visible Spectra and FT-IR Spectra 
The UV spectrum of the EPS was recorded at the 200–800 nm absorption range, using 

methanol as blank. A strong absorption peak was obtained at 264 nm, representing the 
polysaccharide presence (Figure 2b). The absorption wavelength can correspond to –OH, 
–OCH3, –CO2, –COOH functional groups attached to an aromatic ring. The FT-IR spec-
trum of the EPS clearly shows peaks of carbonyl compounds. The peaks identified at 3428 
cm−1 (–O–H), 1451 cm−1 (CH bending vibration) and 1032 cm−1 (C–O) can be related to the 
hydroxyl function group, like glucose or galactose, bending carbon functional group vi-
brations of alkanes and ether groups (Figure 2c). IR Spectrum at 2926.30 cm−1 and 1032.30 
cm−1 represent aliphatic and C–O linkage that confirms the presence of polysaccharides 
[58,59]. The existence of phosphate, mannose, uronic acid, proteins, α or β as a whole, 
furanose or pyranose in EPSs can be preliminary to creating FT-IR spectra [60]. 

3.2.4. GC/MS Spectra of Exopolysaccharide 
GC/MS analysis was majorly used to decipher the attached monomeric units of pol-

ysaccharides [61]. GC/MS analysis possesses certain advantages to utilise it, such as rapid 
analysis with high selectivity, accuracy and fidelity with simple instrumentation [62]. The 
monosaccharide units present in the EPS were galactose with RT 12.79 and mannose with 
RT 12.88 (Figure 3). Similarly, in a previous study, mannose, sucrose, fructose and galac-
tose were reported in the B. circulans EPS [54]. In another study, Liu et al. showed GC/MS 
trimethylsilylated EPS derivatives in a 33:1 molar ratio in the GC/MS assessment follow-

Figure 2. Shows the TLC analysis (a), UV-visible spectra (b) and the FT-IR analysis of the EPS produced by B. amyloliquefaciens
RK3 (c).

3.2.3. UV-Visible Spectra and FT-IR Spectra

The UV spectrum of the EPS was recorded at the 200–800 nm absorption range,
using methanol as blank. A strong absorption peak was obtained at 264 nm, representing
the polysaccharide presence (Figure 2b). The absorption wavelength can correspond to
–OH, –OCH3, –CO2, –COOH functional groups attached to an aromatic ring. The FT-IR
spectrum of the EPS clearly shows peaks of carbonyl compounds. The peaks identified
at 3428 cm−1 (–O–H), 1451 cm−1 (CH bending vibration) and 1032 cm−1 (C–O) can be
related to the hydroxyl function group, like glucose or galactose, bending carbon functional
group vibrations of alkanes and ether groups (Figure 2c). IR Spectrum at 2926.30 cm−1

and 1032.30 cm−1 represent aliphatic and C–O linkage that confirms the presence of
polysaccharides [58,59]. The existence of phosphate, mannose, uronic acid, proteins, α or β
as a whole, furanose or pyranose in EPSs can be preliminary to creating FT-IR spectra [60].

3.2.4. GC/MS Spectra of Exopolysaccharide

GC/MS analysis was majorly used to decipher the attached monomeric units of
polysaccharides [61]. GC/MS analysis possesses certain advantages to utilise it, such as
rapid analysis with high selectivity, accuracy and fidelity with simple instrumentation [62].
The monosaccharide units present in the EPS were galactose with RT 12.79 and mannose
with RT 12.88 (Figure 3). Similarly, in a previous study, mannose, sucrose, fructose and
galactose were reported in the B. circulans EPS [54]. In another study, Liu et al. showed
GC/MS trimethylsilylated EPS derivatives in a 33:1 molar ratio in the GC/MS assessment
following hydrolysis of EPS by B. licheniformis. In addition, it has been abridged that
polysaccharide can stimulate the anti-colon cancer effect with β-(1-6) linkages or lower
Mw. In contrast, the arctic marine bacteria producing extracellular polysaccharides mainly
comprises glucuronic acid, N-acetyl glucosamine, medium fructose, galactose, a small
amount of rhamnose, glucose and mannose [63]. Chromatographic analysis has also shown
that EPS from the RH-7 strain (marine bacterium Rhodobacter) is a heteropolysaccharide
composed of galactose, glucose, glucuronic acid and rhamnose [64]. The monosaccharide
hexopyranoside (galactosidase) and α-D-glucose were detected at RT 16. 28, 16.60, β-D-
mannofuranose (RT 20.703, 23.41) and 43.101. β-GlcNac derivative (RT 14.890) and all the
detected monosaccharides showed D-configuration [65].
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Linkage Analysis of GC/MS

The EPS are generally heteropolysaccharides, and their structural heterogeneity makes
them resistant to various stress conditions [66]. Therefore, the identification through reten-
tion times of samples was compared with sugar standards, showing peaks for mannose and
galactose. Further, linkage patterns were estimated based on mass spectra, monosaccharide
compositions, and relative retention time. Results showed that EPS is a polysaccharide
of majorly abundant residues as 2-links-Man, 2-links-Gal, T(terminal)-Gal, 6-links-Man,
6-links-Gal and 2,6-links-Gal (Figure 4 and Table 1).

Branch points and substitutions linkage and GC/MS results further provide the struc-
tural arrangement of EPS. The EPS was found to have 2- or 6-linked galactose with mannose
branching at galactose residue. In another study, the monosaccharide composition from
B. amyloliquefaciens GSBa-1 EPS suggested that it might possess D-galactose, D-mannose.
Additionally, their unique properties in structure influence the functional behaviour of
microbe [67]. Similarly, the EPS of L. plantarum NTU 102 contained various monosaccharide
units (arabinose, fructose, glucose, galactose, maltose and mannose) [68].

3.2.5. 1H and 13C NMR Spectra Interpretation of EPS

The 1H NMR spectrum (Figure 5) displayed the characteristic anomeric (H1) signals
in the anomeric region 4.0–5.4 ppm. In this anomeric region, a doublet was found at
4.55 ppm and another doublet was found at 4.58 ppm and these two peaks were identified
β-D-Galactopyranose (β-D-Galp), which should contain a linkage at its 6th/2nd position,
and a Terminal (0) β-D-Galp [69]. Since these peaks are slightly overlapped with the
water signal, the intensities are incorrect and not shown in the figure (Magnified portion).
Another doublet was found at 5.14 ppm identified as α-D-Mannopyranose (α-D-Manp)
which contains the linkage at its 2nd and/or 6th position [70,71].

13C NMR spectra displayed NMR peaks in the range from 57.85 ppm to 104.18 ppm
(Figure 6). The characteristic anomeric peak at 104.18 ppm was identified as anomeric C1
signal of β-D-Galp which should be a terminal β-D-Galp [72]. Another C1 anomeric peak
at 103.59 ppm was identified as β-D-Galp which should have a linkage at its 6th position
and another peak at 103.48 ppm was also identified as β-D-Galp [73,74]. Other anomeric
peaks at 98.04 ppm, 95.8 ppm and 92.06 ppm were identified as α-D-Manp with the help of
published literature and Carbohydrate Structure Database [75–78].
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Table 1. Linkage analysis of the EPS produced by the B. amyloliquefaciens RK3.

RT Compound Area ~Relative %

11.31 2-linked mannose 1,715,051 7.84
11.39 2-linked galactose 2,186,404 9.99
11.8 T-Galactose 2,327,302 10.64
12.79 6-linked mannose 8,432,888 38.54
12.88 6-linked galactose 5,788,062 26.45
14.3 2,6-linked galactose 1,430,488 6.54

Based on the linkage analysis, monosaccharide composition analysis, NMR spectro-
scopic data, with the help of Carbohydrate Structure Database (CSDB) and simulations
with the help of CSDB, the structure of the exopolysaccharide was elucidated and presented
below (Figure 7) [78].
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3.2.6. SEM Analysis of the EPS

The morphological analysis of the EPS was done using SEM coupled with EDX.
The SEM analysis investigated the morphological nature of EPS from B. amyloliquefaciens
(Figure 8). The dense, porous and irregular design of EPS is discovered by the SEM
study, used as a textured, thickening and stabilising agent to enhance water power and
viscosity by the formulation of the matrix consistent with a hydrated polymer [79,80]. The
porous nature of EPS has also been reported in the surface morphology and the elemental
composition of EPS made from S. thermophiles [81]. EDX was carried out to study the
elementary structure of EPS, showing different organic constituents in EPS, such as C and
O (Figure 8).

3.3. Anti-Alzheimer Study
3.3.1. EPS Significantly Reduce the Convolutions of Alzheimer in Mice

AD is a neurodegenerative disease related to the loss of neurons, amnesia and reduced
intellectual ability in affected individuals [82]. Many factors cause these diseases, especially
oxidative stress, one of AD’s fugitive agents in various organisms [83]. The EPS showed a
significant effect on cognition and aggregation of β-amyloid protein in mice brains with an
effective dose of 200 mg/kg and 400 mg/kg (w/w) (Figure 9). Furthermore, after injecting
the EPS directly into the mice, it significantly improved memory retention of learned mouse
model tasks [68]. In the present study, the amnesic and antioxidant effect of EPS on mice
was investigated at concentrations of 200 mg/kg and 400 mg/kg, showing EPS has a
significant anti-amnesic effect.

3.3.2. Acetylcholine Esterase Activity

Biochemical analysis revealed that the acetylcholinesterase (AChE) levels are in-
creased in the negative groups (0.97 ± 0.015 µg/mL) when compared to the control
(0.68 ± 0.24 µg/mL) (Figure 10). Decreased AChE levels are observed in the EPS test sam-
ple and high inhibition was found in EPS 0.34 ± 0.01, 0.23 ± 0.04 µg/mL compared with
respective samples. Nevertheless, there is a suggestion that AChE inhibitors may slow
hippocampal atrophy, and disease progression may have disease-changing effects [84,85].
The AChE is the key enzyme responsible for the breakdown of the acetylcholine (ACh) in
the normal brain. Inhibition of AChE is seen as a potential neurological condition treatment
strategy for AD, ataxia, senile dementia, myasthenia gravis and Parkinson’s disease. Cog-
nitive dysfunction together with AD treatment is used based on natural product donepezil
and tacrine; these are synthetic medicines [86]. Researchers have reported that having
adverse effects is associated with bioavailability and gastrointestinal disturbances, which
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are essential factors in finding best AChEIs from natural resources [87]. These findings
revealed that the EPS of the B. amyloliquefaciens RK3 could be a better natural source advised
for AD treatment.
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3.4. Effects of EPS on Behavior and Cognition of Mice Model
3.4.1. Jumping Box Test

In the jumping box test, the effect of the EPS on the latency period of Alzheimer’s
activity in mice was checked. There was an increase in the latency period in the negative
control group, i.e., 26.51 ± 0.84 s, which was not treated with either EPS or any other
effector molecule (Table 2). However, there is a reduction in the latency time in the
population tested with EPS compared to a positive control (6.62 ± 0.37 s) and negative
control. Thus, the jumping box test showed that the EPS reduced the Alzheimer latency
period in mice. The decline in transfer latency time (TLT) indicates the memory-enhancing
effect of drugs [88,89].
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Table 2. Representation of the latency period for control, negative, standard and test sample analysed
by the jumping box test.

Samples Group (mg/kg) Mean ± SEM (s)

EPS 200 12.54 ± 0.60
EPS 400 08.48 ± 1.13

Control 10 6.62 ± 0.37
Negative (Aβ) (10 µL, 3 mg/kg) 26.51 ± 0.84
Standard (5 mg/kg) 7.3 ± 0.15

3.4.2. Rectangular Maze and Y Maze Results

In the rectangular maze task, there was an increase in maze transverse period in the
negative (110.6 ± 0.12 s) control group (89.91 ± 0.67 s) when compared to the control,
and there is a decrease in a transverse period in groups treated with EPS (56.15 ± 0.32 s
and 48.48 ± 1.25 s) (Table 3). Thus, our analysis compares to the maze test, and each trial
represents a particular level of learning in mice [90].

Table 3. Representation of the latency period and improvement in the spatial working memory for
control, negative, standard and test samples.

Rectangular Maze Test

Samples Group (mg/kg) Mean ± SEM (s)

EPS 200 56.15 ± 0.32
EPS 400 48.48 ± 1.25

Control 10 89.91 ± 0.67
Negative (Aβ) (10 µL, 3 mg/kg) 110.6 ± 0.12
Standard (5 mg/kg) 40.41 ± 0.83

Y-Maze Test

Samples Group (mg/kg) Mean ± SEM (s)

EPS 200 10.31 ± 0.24
EPS 400 6.18 ± 0.35

Control 10 30.21 ± 0.14
Negative (Aβ) (10 µL, 3 mg/kg) 3.64 ± 0.24
Standard (5 mg/kg) 5.01 ± 0.31

In the Y maze test, there was an increase in maze transverse period in the negative
(30.21 ± 0.14 s), control group (3.64 ± 0.24 s) when compared to control, and there is a
decrease in a transverse period in groups treated with EPS (10.31± 0.24 s and 6.18 ± 0.35 s)
(Table 3). The proportion of other references observed was estimated to be the ratio of
factual to possible alternations [91].

3.5. Histopathology of Mice Brain

After reperfusion for 24 h, mice were anaesthetised and killed by quick decapitation.
The brains were separated and dipped in ice-cold saline solution for 10 min, kept overnight
in fixation with 10% formalin at 28 ◦C, observed under a microscope at 100×magnification
(Figure 11). The significant structures of memory development are the cerebral cortex and
the hippocampus; the Hippocampal Aβ injection can result in a discrepancy in plasticity
and synaptic transmission [92].
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Figure 11. Representation of the histopathology of the mice brain samples (100× magnification). (a) Group-1 (control)
received normal saline and did not expose to β-amyloid induction, and it appeared normal. (b) Group-2 received normal
saline and did not expose to β-amyloid induction, and it has shown senile plaque formation (encircled portion showing the
presence of accumulation of beta amyloid plaque). (c) Group-3 (Exopolysaccharide) received ethanolic fraction at a dose of
200 mg/kg orally and showed the plaque disappeared (encircled portion showing the absence of beta amyloid plaque).

4. Conclusions

In this study, a novel EPS was isolated and characterised from the B. amyloliquefaciens
RK3. The total yield of EPS after the purification was 10.35 g/L−1. The purified EPS
showed medicinal applicability as anti-AD effects in mice models. A comparison of the
treated and untreated mice indicated that EPS considerably decreased the amyloid level in
the animals. The multiple repetitive mice model analysis shows that the EPS is an excellent
anti-AD agent compared to some commercially available drugs. The anti-AD activity of
the EPS might be a breakthrough in the treatment of other neurodegenerative disorders
that occur due to oxidative stress.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13172842/s1, Figure S1: Represents the presence of total carbohydrates in the analysed
EPS sample.
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