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Abstract

Indian soils are inherently poor in quality due to the warm climate and erosion. Conversion

of land uses like forests to croplands and faulty management practices in croplands further

cause soil degradation. This study aimed to understand the extent of these impacts in a

small representative part of eastern India, covering Himalayan terai and nearing alluvial

plains. Soils were collected from (i) forests, (ii) croplands (under agricultural practices for

more than 50–60 years) and (iii) converted lands (converted from forests to croplands or tea

gardens over the past 15–20 years). Different soil quality indicators were assessed and soil

quality index (SQI) was generated to integrate, scale and allot a single value per soil.

Results indicated that continuous organic matter deposition and no disturbances conse-

quence the highest presence of soil carbon pools, greater aggregation and maximum micro-

bial dynamics in forest soils whereas high application of straight fertilizers caused the

highest available nitrogen and phosphorus in cropland soils. The SQI scorebook indicated

the best soil quality under forests (�x 0.532), followed by soils of converted land (�x 0.432) and

cropland (�x 0.301). Comparison of the SQI spatial distribution with land use and land cover

confirmed the outcome. Possibly practices like excessive tillage, high cropping intensity, no

legume in crop rotations, cultivation of heavy feeder crops caused degraded soil quality in

croplands. This study presented an example of soil quality degradation in India due to land

use change and faulty management practices. Such soil degradation on a larger scale may

affect future food security.

1. Introduction

Soil quality can be defined as soils’ potential to optimally function within the ecology and

land-use boundaries towards biological productivity and proper ecosystem services [1, 2]. The

concept of soil quality appeared very prominently in the 1990s and following that emerged the

need for tangible soil indicators to measure it [3]. Scientists considered a wide range of mea-

surable physical, chemical and biological soil parameters as the quantitative indicators of soil
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quality like soil organic carbon (C), C fractions, texture, electrical conductivity (EC), nutrient

contents, pH, aggregate stability, soil microbial characterization etc. [4–8]. The assessment of

soil quality by understanding the threshold range of these indicators in a certain ecology also

shows the sustainability potential of that soil [9].

Changes in land use and land cover (LULC) causes slow but permanent alterations in the

individual soil parameter and in overall soil quality [10]. Under continuous anthropogenic

pressure, shifts in LULC like agricultural expansion, urbanization have become a recent global

trend. Widespread deforestation has been observed in tropical areas in the last few decades

[11]. And these changes in land use, land management and landscape dynamics influenced

soil quality very prominently during this short time [4]. Studies showed that conversion of for-

est area to cultivated lands under anthropogenic pressure results in severe degradation of soil

quality in terms of porosity, aggregate stability, soil C and nitrogen (N) content, humus quality

etc. [12–14]. While, conversion of forests into grasslands and tea gardens caused a noteworthy

decline in soil C content and overall soil quality [14, 15], alteration of grasslands to croplands

led to the further curb in organic C stock as well as soil microbial biomass C, root biomass and

root C [16]. Although a lot of studies established a thumb rule of degradation in soil quality by

converting natural land to croplands, the impact of artificial fertilizer application in the agri-

cultural system sometimes improves certain soil indicators [17]. Metadata analysis indicates

that even within croplands, soil quality indicators change with crop types (annual or perennial)

and management practices [18, 19]. To accurately comprehend the quality of soils, there is a

need to establish a quality index, which integrates different soil parameters along with their

stratification and proper allotment [20, 21]. A numerical soil quality index (SQI) that can pro-

vide a single value for each soil by combining the impact of all quantitative parameters will be

considered and termed as indicators now onward [7, 22]. This SQI can also evaluate and reflect

the soil degradation due to land-use changes and management practices [21].

This study used SQI to understand the soil quality of an area of eastern India. It was impor-

tant as this area is unique in terms of LULC heterogeneity. Several forests of national impor-

tance are situated here and it is also a famous tea-belt. In the last few decades, the increase in

population pressure resulted in many-fold increases in croplands and urban settlements in this

region. New tea gardens were also established in the forest fringe areas [23]. As a result, the vir-

gin lands witnessed several folds of anthropogenic encroachments and interventions [24]. We

hypothesized that LULC change of this area significantly affected the soil quality, which can be

accurately measured by SQI. The objective of this study was to use SQI to understand the

impact of land use on soil quality. For proper visual comprehension, spatial distribution of soil

quality was also studied.

2. Materials and methods

2.1. Study area and soil sampling

This study was conducted in the northern part of West Bengal state (26–27˚N; 88–90˚E) of

India, south to the Bhutan Himalaya and north to the plains of Bangladesh (Fig 1). It comes

under humid to per-humid bioclimate [25] and covers three entire districts viz. Cooch Behar,

Jalpaiguri and Alipurduar. Physiographically the area can be divided into Himalayan Terai

and flat plains, formed by the alluvial deposition Teesta, Torsa, Jaldhaka, Sankosh, Mahananda

rivers. These all are tributaries of the Brahmaputra River and being in their upper and middle

courses, deposit mainly sand and silt (coarse particles) in this region. The soils of the area are

Entisols (in floodplains) and Inceptisols (above the floodplains) [26]. There are several mixed

semi-evergreen forests and grasslands here, including national parks (like Buxa Tiger Reserve,

Jaldapara, Garumara, Neora Valley) and wildlife sanctuaries (such as Chapramari, Jorepokhri,
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Mahananda). Croplands, tea gardens and urban sprawls are the other types of land uses. In

Terai and alluvial plains, the cropping system is solely rice-based and the average cropping

intensity is >200%. An increase in population pressure, the subsequent need for the more cul-

tivated area and socio-economic development has caused a change in LULC of this region in

the last 2–3 decades with the rapid conversion of open, unprotected forests to newly cultivated

lands (dominantly) and tea-gardens (in some places) [23, 24]. These converted lands are situ-

ated at the fringe of present-day forests and cultivation practices have started only in the last

15–20 years. However, the cropping system of converted lands is a bit irregular.

A total of 450 surface soil samples (0–20 cm depth) were collected from the area using hand

trowel [27]. Each of these soils was a composite sample, prepared from 4 soil subsamples of the

same/nearby fields. Soils were collected from 3 different land-use ecologies viz. (i) forests, (ii)

croplands (under agricultural practices for more than 50–60 years) and (iii) converted lands (con-

verted from forest to croplands or tea gardens over the past 15–20 years) with 150 samples from

each of the ecology. Deliberately, the sampling was restricted to the Terai and alluvial plains only

(Fig 1), as the Himalayan hills have very different physiography and subsequent soil-forming pro-

cess. In some places (mainly under forest), the thin surface organic layer (O horizon) was gently

scraped aside to collect the mineral soil only. The soil samples were collected during the pre-mon-

soon season (April-May 2016) when the fields were fallow and the soils were dry.

2.2. Land use and land cover analysis from satellite data

Cloud free Landsat 8 OLI data (collection 2 level 2) of 10th March 2016 (Path 138, Row 41, 42)

and 17th March 2016 (Path 139, Row 41, 42) were downloaded from the United States Geolog-

ical Survey data hub (https://earthexplorer.usgs.gov). No preprocessing was done as these data

were already geometrically, radiometrically and atmospherically corrected. After mosaic for-

mation and selection of area of interest, supervised classification was conducted on the image

using the maximum likelihood algorithm in ERDAS Imagine 2016 software [24, 28]. A detailed

ground survey was done for the selection of training sites. Different prominent LULC classes

were identified and to avoid misclassification, they were cross-checked with ground observa-

tions and the author’s prior knowledge about the study area. Finally, spatial filters (3 × 3) were

applied to eliminate the isolated pixels [24].

2.3. Soil analysis

The collected soil samples were air-dried. After removing the visible plant roots, clods were

broken and the soils were passed through 5.0 mm and 2.0 mm sieves. For each soil, a

Fig 1. Study area indicating soil sampling locations.

https://doi.org/10.1371/journal.pone.0275062.g001
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subsample of<2.0 mm size was used for Physico-chemical characterization [29]. Soil pH was

measured by a digital pH meter (Systronics, Model 4381). Soil cation exchange capacity (CEC)

was estimated using 1.0 N ammonium acetate (NH4OAc) at pHw 7.0 [29], while soil

exchangeable Al was estimated by KCl extraction and titration [30]. Soil texture was deter-

mined using the international pipette method [31]. Total C of bulk soil was estimated using

Vario EL III elemental analyzer (Elementar, Germany). Inorganic C was measured via pressure

calcimeter [32] and the difference between was total C and inorganic C was considered as soil

organic C. Soil available N and available phosphorus (P) were estimated using Kjeldahl appara-

tus and spectrophotometer (Shimadzu UV-Vis 1800), respectively [33, 34].

Soil samples were physically fractionated into aggregates and as per their densities. For den-

sity fractionation, sodium polytungstate (SPT) was used as the heavy liquid [35]. After adjust-

ing the density to 1.6 g cm-3, the samples were shaken in repeated cycles and filtered by

Whatman glass filter paper (0.7 μm pore size) to separate light and heavy density fractions

[36]. The fractions were further analyzed in Vario EL III elemental analyzer (Elementar, Ger-

many) to measure C associated with heavy and light fractions. The soil subsamples of 2.0 to 5.0

mm diameter (separated during air-drying) were used for aggregate analysis by dry sieving

[37]. For each sample, 100 g soil was mounted on a nested set of sieves in a dry sieve shaker (of

2.0, 1.0, 0.5, 0.25, 0.1, 0.05 mm diameters). The sieves were mechanically shaken vertically for

2 mins with 10 mm amplitude. The weight of the soil samples, collected in each of the sieves,

were measured and then used to calculate aggregate stability indices like mean weight diameter

(MWD) and geometric mean diameter (GMD) as per the following equations [36, 38].

MWD ¼
Xn

i¼1

�XiWi ð1Þ

GMD ¼ exp
Xn

i¼1
log �Xi Wi=m

h i
ð2Þ

Where, �Xi and Wi represented the mean diameter (mm) of each size fraction and propor-

tion of the total sample weight to corresponding size fraction, respectively. The m and n repre-

sented mass of sample and number of size fractions, respectively. These samples, collected in

the sieves, were then oven dried at 65˚C and analyzed in Vario EL III elemental analyzer (Ele-

mentar, Germany) for aggregate associated C.

Soil microbial activity was measured by enzymatic activities, as represented by fluorescein

diacetate hydrolysis (FDA-HR) assay [39]. Air-dried soils were mixed with potassium phos-

phate buffer and FDA [40]. The mixture was incubated, filtered through a cellulose nitrate

membrane filter (0.45 μm pore size) and the extract was measured in 492 nm using a spectro-

photometer (Shimadzu UV-Vis 1800). The reading was converted to μg g-1 h-1. In contrast,

separate subsamples of all the soils were stored at 4˚C in the field-moist condition. These soils

were used to determine soil microbial biomass C following the chloroform fumigation-extrac-

tion method [41]. Soil microbial quotient was computed as the percentage of organic C present

as microbial biomass C [29].

2.4. Development of soil quality index

For the development of SQI, the numbers of soil indicators were reduced following their high

eigenvalues (�1) in principal component analysis (PCA). The variables with the highest eigen-

vectors and absolute factor loadings (corresponding to each of the principal components

(PC)) were only considered to develop a minimum data set (MDS) [21, 42]. The multivariate

correlation coefficient was then calculated to see which variables could be considered redun-

dant and could therefore be eliminated [42]. In case of variables with high correlation
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(Pearson’s correlation coefficient >0.6), only the variable with higher eigenvector loading was

retained for the MDS [42, 43]. Next, these selected variables were transformed to indicator

scores (within a range of 0–1) as per the following equation:

yi ¼
xi � min ðxÞ

max ðxÞ � min ðxÞ
ð3Þ

Where, xi is the original variable and yi is the transformed indicator score [7]. Next, they

were used to build an SQI through weighted additive function [7, 44]. Here, the weight of any

variable was calculated as the amount of variation (%) in the total data set explained by that

PC, divided by the cumulative variation % explained by all the PCs with eigenvalues�1. It

resulted in the generation of coefficients for that variable [42]. Following the addition of weight

to the soil quality indicators, SQI was built as follows:

SQI ¼
Pn

i¼1
Si�Wi ð4Þ

Where, Si and Wi are the selected soil quality indicators and their corresponding weight,

respectively and n is the number of indicators.

2.5. Mapping of soil quality index

The spatial variability of the SQI was estimated through geostatistical techniques in ArcGIS

10.8.1 software (ESRI Inc., USA). In semi-variogram (γ(h)), the average dissimilarity between

the data separated by a vector (h) was estimated using following equation [45]:

g hð Þ ¼
1

2NðhÞ
PNðhÞ

i¼1
½zðxiÞ � zðxi þ hÞ�2 ð5Þ

Where, z(xi) is the value of the variable z at location of xi, h is the lag distance or separation

distance and N(h) is the number of pairs of sample points separated by h.

Next, the semi-variogram were fitted in standard models using weighted least square tech-

nique and three spatial variations parameters were calculated viz. nugget (C0), sill (C+C0) and

range (a). Among the four standard semi-variogram models (Linear, Exponential, Spherical

and Gaussian), the Gaussian was found as best fit model as per minimum residual sum of

square (calculated in gstat auxiliary packages in R software) [45, 46]. Mathematical expressions

of the Gaussian semi-variogram models is given below:

Gaussian model:

g hð Þ ¼ Co þ C 1 � exp
� h2

a2

� �� �

for h � 0 ð6Þ

Next, the fitted semi-variogram parameters corresponding to best fit model were used to

create SQI map of the study area through ordinary kriging (Fig 2). Estimates of SQI values at

unsampled locations, z(u), were computed as following [45, 47]:

zðuÞ ¼
Xa¼1

nðuÞ

lazðuaÞ ð7Þ

where, z(u) is the kriging estimated values of SQI at any unsampled site, based on values of

known location z(ua) located in close neighborhood and λa is weight assigned to z(ua). To

understand the existence of outliers, Cook’s distance plot was calculated. Leave-out one cross-

validation was performed between observed and estimated values and correlation coefficient

(r), regression coefficient (R2) and root mean square error (RMSE) were calculated for that.
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The SQI spatial variability was compared with the satellite data derived land use map of the

area (Fig 2).

3. Results

Following the objective, this study adopted a stratified approach to understand the impact of

LULC on soil quality. First, different soil indicators were analyzed and a comprehensive SQI

was built to quantify the soil quality through a single value. Finally, the spatial distribution of

soil quality was observed.

3.1. Determination of soil indicators

All the soils were acidic in nature (forest �x: 5.29, converted lands �x: 5.38, croplands �x: 5.59)

(Table 1). The dominant number of soils were of sandy loam texture while the presence of

loam, silty loam, sandy clay loam and loamy sand were also observed. Soil CEC was found to

be low (forest �x: 4.14, converted lands �x: 4.05, croplands �x: 4.19 meq 100 g-1 soil) while pres-

ence of significant amounts of exchangeable Al was observed. Table 1 indicated no significant

impact of land use on soil texture, CEC and exchangeable Al. X-ray diffraction analysis of the

bulk soil samples indicated the dominance of muscovite, quartz, zeolite types of minerals in all

the soils [26].

Total C was found much higher in the forest soils (�x: 1.21%) than the converted lands (�x:

0.87%) and cropland soils (�x: 0.79%). On a similar note, soil organic C was highest in forests

(�x: 11.61 g Kg-1), followed by soils of converted lands (�x: 8.25 g Kg-1) and croplands (�x: 7.30 g

Fig 2. Flow-diagram explaining the process of mapping the soil quality index and land uses over the study area.

https://doi.org/10.1371/journal.pone.0275062.g002
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Kg-1). Cropland soils were high in available N and P (�x: 202.7 Kg N and 80.33 Kg P2O5 ha-1) in

comparison to soils of converted lands (�x: 188.4 Kg N and 77.9 Kg P2O5 ha-1) and forests (�x:

147.3 Kg N and 51.7 Kg P2O5 ha-1).

In density fractionation of soils, 96.9±1% soil mass was recovered. Nearly the entire amount

of the soils was found within the heavy density fractions while only small quantity of soils were

separated as light density fractions. A ratio of these two fractions ((light fraction/ heavy frac-

tion) × 100) indicated a comparatively higher presence of light fractions in forest soil, followed

by soils of converted lands and croplands (Table 1). A very high amount of C was found to be

associated with the light density fractions in all the soils while C associated with heavy density

fractions was much less. Soil aggregate stability was estimated using MWD and GMD under

all the three LULC classes. Both of these indices confirmed a higher presence of soil macroag-

gregate in forest soils (�x: MWD: 1.40, GMD: 1.01), followed by converted land soils (�x: MWD:

1.35, GMD: 0.97) and soils of croplands (�x: MWD: 1.31, GMD: 0.95). Among the different

LULC classes, forest soils were found to hold maximum C within aggregates (macro: �x 12.11 g

kg-1; micro: �x 12.21 g kg-1). Lowest aggregate occluded soil C was observed under croplands

(macro: �x 8.55 g kg-1; micro: �x 9.14 g kg-1) (Table 1).

Table 1. Soil properties under different land uses.

Parameters Forest Converted lands Croplands

Mean Range Mean Range Mean Range

pH 5.29 4.75–5.73 5.38 4.43–7.83 5.59 4.2–8.04

EC (dS m-1) 0.15 0.1–0.2 0.14 0.1–0.2 0.17 0.1–0.3

CEC (meq 100 g-1 soil) 4.14 1.54–6.94 4.05 1.56–6.89 4.19 4.09–7.21

Exchangeable Al (meq 100 g-1 soil) 0.22 0.11–0.28 0.15 0.10–0.21 0.18 0.11–0.29

Texture

Clay (%) 14.53 6.0–18 15.76 4.0–26 14.29 4.0–24

Silt (%) 22.05 2.0–42 21.04 2.0–48 22.91 2.0–64

Sand (%) 63.31 43–87 63.20 30–92 63.64 20–90

Soil total C (%) 1.21 0.52–2.87 0.87 0.60–1.37 0.79 0.19–1.05

Soil organic C (g Kg-1) 11.61 4.85–28.13 8.25 5.71–13.12 7.30 0.963–14.42

Available N (Kg ha-1) 147.3 85.3–198.2 188.4 50.2–323.6 202.7 109.1–281.0

Available P (P2O5 Kg ha-1) 51.7 13.7–260.8 77.9 23.5–182.6 80.3 12.7–559.9

Density fractionation of soil

Heavy fraction (g kg-1) 965.82 954.56–976.69 970.60 962.66–979.88 968.55 957.27–980.59

Light fraction (g kg-1) 2.43 0.31–5.35 1.94 0.12–3.34 1.20 0.41–2.73

(Light fraction/ Heavy fraction) × 100 0.25 0.03–0.54 0.20 0.01–0.34 0.12 0.04–0.27

C associated within density fraction

Heavy fraction (g kg-1) 11.4 6.32–13.59 8.41 6.23–11.78 7.88 6.72–11.14

Light fraction (g kg-1) 259.53 212.5–767.51 188.33 80.36–388.14 188.03 29.11–319.28

(C in Heavy fraction/Light fraction) × 100 4.15 3.69–4.31 5.78 2.58–17.15 5.37 2.73–28.31

Soil aggregation

Mean Weight Diameter (mm) 1.40 0.62–1.8 1.35 0.96–1.72 1.31 0.35–1.81

Geometric Mean Diameter (mm) 1.01 0.58–1.23 0.97 0.73–1.19 0.95 0.48–1.23

Macroaggregate associated C (g kg-1) 12.11 7.83–16.04 11.05 7.16–17.61 8.55 3.93–15.10

Microaggregate associated C (g kg-1) 12.21 4.11–16.62 11.33 6.82–20.81 9.14 3.32–16.05

Microbial biomass C (μg g-1) 73.35 4.36–261.08 36.45 5.47–346.97 25.94 1.86–77.99

Microbial quotient 0.72 4.99–2.73 0.44 0.64–3.73 0.45 0.01–4.36

Fluorescein Di-Acetate (μg g-1 h-1) 710.66 166.02–2207.15 464.71 235.44–898.62 454.47 17.87–1062.70

https://doi.org/10.1371/journal.pone.0275062.t001
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Forest soils also represented a much higher microbial biomass C (�x 73.35 μg g-1) and micro-

bial quotient (�x 0.72) in comparison to the soils of converted lands (microbial biomass C: �x
36.45 μg g-1, microbial quotient: �x 0.44) and croplands (microbial biomass C: �x 25.94 μg g-1,

microbial quotient: �x 0.45) (Table 1). Soil enzymatic activities (as represented by FDA-HR)

were also found low in the soils of croplands (�x 454.47 μg g h-1) and converted lands (�x
464.71) in comparison to forests (�x 710.66).

3.2. Soil indexing and mapping

To create soil quality index, the principle of MDS was followed in this study. A total of 19 indi-

cators (Table 2) were considered for SQI formation. It was further reduced to 8 indicators fol-

lowing high eigenvalues (� 1) obtained in PCA. Selection of soil indicators for MDS under

these 8 PCs was made using eigenvectors (Table 2) and the sorted soil indicators were (i) den-

sity fractionation of soil, (ii) FDA, (iii) microbial biomass C, (iv) available P, (v) C associated

within density fraction, (vi) available N, (vii) ratio of macroaggregated and microaggregated C

and (viii) total C. Among these, available N (eigenvector 0.843) and available P (eigenvector

0.778) were showed high correlation (Pearson’s correlation coefficient >0.6) (Fig 3) and only

available N was kept in MDS following its higher eigenvector loading (Table 2) [42, 43].

Table 3 showed the relative proportion of these indicators for the calculation of a weighted

additive index. The SQI score-sheet indicated that forest soils (�x 0.532) were best in quality,

followed by soils of converted lands (�x 0.432) and croplands (�x 0.301) (Fig 4). However, soils

of converted lands exhibited a more stretched range of SQI (0.124 to 0.687) in comparison to

forest soils (0.257 to 0.678) and soils of croplands (0.147 to 0.563).

Table 2. Selection of parameters (indicators) for soil quality index using eigenvectors obtained through principal component analysis.

Parameters PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

pH -0.001 0.012 -0.001 0.032 0.049 0.054 -0.123 0.166

EC 0.023 -0.055 -0.145 0.008 0.003 0.005 0.000 0.004

CEC 0.011 -0.016 0.484 0.005 0.002 -0.001 -0.001 0.001

Exchangeable Al 0.015 -0.001 0.041 0.002 0.007 0.000 0.002 0.008

Clay 0.001 0.000 0.007 -0.500 0.071 -0.212 0.003 0.063

Silt -0.001 0.001 -0.010 -0.319 0.067 -0.200 0.008 0.060

Sand 0.000 0.001 0.000 0.003 0.005 0.005 -0.010 0.016

Soil total C 0.000 0.000 -0.001 -0.013 0.011 -0.017 -0.603 0.762
Soil organic C 0.000 0.000 0.000 -0.001 0.002 0.002 0.000 0.003

Available N 0.000 0.000 0.002 0.201 -0.022 0.843 -0.028 0.046

Available P 0.001 -0.001 0.000 0.778 0.098 -0.437 0.009 0.059

Density fractionation of soil

((Weight of Light fraction/ Heavy fraction) × 100)

1.000 0.008 0.008 -0.001 0.001 0.000 0.000 0.000

C associated within density fraction

((C in Heavy fraction/Light fraction) × 100)

-0.001 -0.002 -0.007 -0.017 0.988 0.088 0.026 -0.017

Soil aggregate—Mean Weight Diameter 0.000 0.000 0.000 0.000 -0.018 -0.019 -0.031 0.028

Soil aggregate—Geometric Mean Diameter 0.000 0.000 0.000 0.000 -0.011 -0.011 -0.016 0.015

Macroaggregated C/ Microaggregated C 0.000 0.000 0.000 -0.001 -0.020 0.030 0.786 0.613

Microbial biomass C -0.012 0.023 0.863 -0.002 0.008 0.000 0.000 0.001

Microbial quotient 0.000 0.000 0.009 -0.005 -0.024 -0.016 0.008 0.010

Fluorescein di-acetate -0.007 0.998 -0.020 0.001 0.001 0.000 0.001 -0.002

PC: Principal component

(Bold texted cells indicated selected parameters in PCA and their corresponding eigenvectors)

https://doi.org/10.1371/journal.pone.0275062.t002
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Ordinary kriging interpolation method was used in this research for spatial mapping i.e. to

calculate the values of SQI in unsampled locations [45, 48]. The resultant map indicated a

diverse distribution of the soil quality. For easy understanding, the range of SQI has been

divided into four classes viz. very high (score >5), high (4–5), medium (3–4) and low (<3).

The Fig 5A showed that soils collected from forests and converted lands fit into very high or

high SQI while medium to low SQI scores were observed under the croplands.

Fig 3. Heatmap of variables showing Pearson’s correlation coefficient.

https://doi.org/10.1371/journal.pone.0275062.g003

Table 3. Proportion and eigenvalues of the selected indicators for calculation of weighted additive soil quality index.

Indicator parameter PC� Variance Proportion Cumulative proportion

Density fractionation 1 12844.83 0.572 0.572

Fluorescein di-acetate 2 3660.33 0.163 0.735

Microbial biomass C 3 2604.90 0.116 0.851

Available P † 4 1055.43 0.047 0.974

C associated within density fraction 5 943.15 0.042 0.893

Available N 6 763.50 0.034 0.927

Macroaggregated C/Microaggregated C 7 538.94 0.024 0.998

Total C 8 44.91 0.002 1

� Principal component (This proportion of selected parameters were used to calculate weighted additive index); † Available P was not considered in final dataset due to

high correlation (Pearson’s correlation coefficient >0.6) with available N but low eigenvector loading than available N

https://doi.org/10.1371/journal.pone.0275062.t003
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4. Discussion

Soils of this area are mainly sandy as all the rivers leave their upper reach here and thus deposit

coarse particles. Presence of such soil and very high rainfall (> 3000 mm per year, as per FAO

ClimWat database) resulted in leaching of basic cations and acidic soils here. The low pH also

possibly consequence noteworthy presence of exchangeable Al [49, 50].

4.1. Soil indicators under different LULC

The higher C status in forest soils in comparison to converted and cropland soils was expected

as tillage operations cause fast depletion of soil C through mineralization [51–53]. Continuous

C deposition in forest soils through leaf and litter fall was another reason for high soil C status.

Converted lands, which were mainly distributed along forest fringes, showed lesser amount of

C than forest soils but higher C than cropland soils (Table 1). Relatively recent human inter-

vention and less intense cropping practices in converted lands were the possible reasons for

this. The higher presence of available N and P in cropland soils can be attributed to the regular

application of nitrogenous and phosphatic fertilizers there, as indicated by the field survey.

Physical fractionation of soils was done to comprehend soil structure and C distribution

within aggregates and in attachment with mineral matrix [35, 36, 38, 54]. In density fraction-

ation, heavy density fraction represented humified/ amorphous organic matter attached to soil

mineral matrix [55] whereas light density fraction represented loose and undecomposed

plant/ organic residues [55, 56]. Continuous fresh organic matter addition in forest soils by

Fig 4. Soil quality index scores under different land use classes.

https://doi.org/10.1371/journal.pone.0275062.g004
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leaf-litter fall possibly caused the comparative higher light density fractions there. Due to pres-

ence of high C in this fresh organic matter, the light fraction carries high amounts of C [57].

The heavy fraction contains a lot less C as only a very small portion ultimately gets humified

and sequestrated in soils [58].

There is an accepted scientific perception that forest soils have good aggregation due to its

undisturbed ecology [13, 59]. The presence of high organic C in these soils also favors the pro-

cess since C (or organic matter) is the key to bind soil particles into aggregates [60]. While

humic substances and soil particles combine to form microaggregates, microbial polysaccha-

rides, organic mucilages bind the microaggregates into larger macroaggregates [61]. Con-

versely, tillage operations break-down the macroaggregates in croplands, exposing physically

protected C to soil microorganisms and causing C loss from soils [36, 62]. In this study, highest

and lowest soil macroagegate formation was observed in forest and cropland soils. As evident

from Table 1, clay content did not vary enough to influence this difference in soil aggregation.

The change in LULC also affected soil macro and microaggregate occluded C. Highest

aggregate occluded C was found in forest soils followed by soils of converted and croplands. In

Fig 5. Comparative maps of soil quality index and land uses of the study area.

https://doi.org/10.1371/journal.pone.0275062.g005
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soils, aggregates protect the encrusted C from microbial decomposition [36, 63]. Therefore,

higher soil aggregation leads to a longer turnover time of C or pathway of its sequestration

[61]. This study, therefore, inferred a possible C accrual process in the forest soils.

In this research, microbial activities were represented by FDA-HR as different microbial

enzymes (like lipase, esterases, protease etc.), responsible for soil organic matter decomposi-

tion, get involved in it FDA-HR [40, 64]. The high microbial biomass C and microbial activity

in forest soils can be explained by easy availability of soil organic C, the food and energy source

of soil microbes [29]. In addition, healthy ecology, permanent soil cover and no anthropologi-

cal perturbation in forest soils might also have favored better microbial proliferation [65].

Other studies also found low microbial biomass C in agricultural soils or in soils of converted

lands (from native forests to croplands or tea plantations) due to disturbances and degradation

of overall soil health [66–68].

4.2. Evaluation of soil quality through indexing

Evaluation of overall soil quality is important for identifying soil’s potential to perform under

different land uses [7]. Estimation of soil quality under different co-existing LULC is also

important as uncontrolled land use change and farming results in degradation of soil quality

[22, 69, 70]. In this study, MDS was used to synthesize SQI, which can lead to a single unique

quantitative value as a decision tool for soil quality [45]. Only 7 indicators were selected

through PCA technique after correlation test, as detailed earlier. The finally prepared additive

index has the potential to avoid the complexity of expressing different indicators in separate

numerical scales through data normalization [7, 42].

The lowest SQI score of cropland soils (Fig 4) was possible due to faulty management prac-

tices (like high cropping intensity, excessive tillage, absence of legumes in crop rotations, culti-

vation of heavy feeder crops etc.) [24, 26]. The comparatively better soil quality of the

converted lands (than croplands) at forest fringe was possibly due to less intensive cropping

practices (in lands converted from forest to croplands) or sustainable, less exhaustive soil use

(in lands converted from forest to new tea plantations) and enduring inherited forest soil

health [71]. The diverse duration and type of the conversion process possibly caused a wide

range of soil quality in converted lands. Following the objective, this study confirmed the best

soil quality under forest cover and a process of soil degradation under continuous cultivation

practices. The constant and sharp decline of SQI in converted lands and croplands indicated

that sustainable management practices were not followed. This might restrict the soils to per-

form their maximum and diverse ecosystem services in the future [7, 72].

4.3. Spatial distribution of soil quality

Understanding the spatial distribution of soil quality is important as heterogeneity of LULC

and diversity of management practices can influence soil properties a lot [4, 10, 19]. The SQI

map, prepared by ordinary kriging interpolation, indicated a better soil quality in forests fol-

lowed by soils of converted and croplands (Fig 5A). As results indicated a clear connection of

soil quality with LULC of the area, a comparison was drawn between the two (Fig 5A and 5B).

The land use was found to be distributed into six distinct classes viz. forest area, plantation

(mainly tea gardens), croplands, fallow/ cities/ rural sprawls, rivers and riverbeds (Fig 5B).

Among these, croplands and agricultural fallows swap their roles seasonally while rivers and

riverbeds do not contain soils. This comparison confirmed that soils of croplands, fallows,

urban and rural areas had medium to low SQI while areas entirely under forest showed high to

very high SQI scores. Soils of tea gardens and croplands near the forest fringe (i.e. converted

lands) showed medium to high SQI in most places. This study portrayed the spatial
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distribution of soil quality in association with the LULC of the area. A clear declining trend of

soil quality was observed as forest> converted lands> croplands.

This study represents a typical example of soil quality degradation due to land use change

and faulty management practices. An increase in population pressure, need for more agricul-

tural lands for food security, un-planned new tea plantations have wiped out a large portion of

the natural forests of this area since the last century [23, 24, 73]. Although governmental and

non-governmental protection measures have cut down the deforestation rate manifold, the

practice is still going on [23]. These changes of LULC have affected the soil quality of this

region, as indicated in this study. Besides, the cultivation of heavy feeder crops (like maize),

application of straight fertilizers, high cropping intensity, heavy tillage etc. have caused an

unstable soil quality in the croplands [74, 75].

5. Conclusions

The scenario presented in this paper is not an exclusive event. While anthropogenic pressure is

changing land uses and soil quality everywhere in India, faulty management practices degrade

croplands’ soil quality. This is a matter of great concern as Indian soils are inherently poor in

health and hold very low soil C due to tropical sub-tropical climate and huge soil erosion. Proper

soil management and preservation of soil quality is a serious issue here to ascertain future food

security. Indian national parks and sanctuaries are already protected by the laws. However, to pro-

tect open forests and trees outside forestry and to restrict further soil degradation through land

use change, holistic initiatives from governmental, international, quasi-governmental, private-

public sectors are required. Community management (involving local indigenous people) can

also be an approach for land use and soil quality conservation in forest fringes. Sustainable man-

agement practices in croplands like more organic manure dependency, minimum tillage also

should be assured along with regular monitoring to uplift the cropland soil quality.
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