Article # Improving Biometric-Based Authentication Schemes with Smart Card Revocation/Reissue for Wireless Sensor Networks Jongho Moon ¹, Donghoon Lee ¹, Youngsook Lee ² and Dongho Won ^{3,*} - Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea; jhmoon@security.re.kr (J.M.); dhlee@security.re.kr (D.L.) - Department of Cyber Security, Howon University, 64 Howondae 3-gil, Impi-myeon, Gunsan-si, Jeonrabuk-do 54058, Korea; ysooklee@howon.ac.kr - Department of Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea - * Correspondence: dhwon@security.re.kr; Tel.: +82-31-290-7107 Academic Editors: Subhas Chandra Mukhopadhyay, Hemant Ghayvat and Nagender Kumar Suryadevara Received: 8 March 2017; Accepted: 4 April 2017; Published: 25 April 2017 Abstract: User authentication in wireless sensor networks is more difficult than in traditional networks owing to sensor network characteristics such as unreliable communication, limited resources, and unattended operation. For these reasons, various authentication schemes have been proposed to provide secure and efficient communication. In 2016, Park et al. proposed a secure biometric-based authentication scheme with smart card revocation/reissue for wireless sensor networks. However, we found that their scheme was still insecure against impersonation attack, and had a problem in the smart card revocation/reissue phase. In this paper, we show how an adversary can impersonate a legitimate user or sensor node, illegal smart card revocation/reissue and prove that Park et al.'s scheme fails to provide revocation/reissue. In addition, we propose an enhanced scheme that provides efficiency, as well as anonymity and security. Finally, we provide security and performance analysis between previous schemes and the proposed scheme, and provide formal analysis based on the random oracle model. The results prove that the proposed scheme can solve the weaknesses of impersonation attack and other security flaws in the security analysis section. Furthermore, performance analysis shows that the computational cost is lower than the previous scheme. Keywords: wireless sensor networks; user authentication; biometric; smart card # 1. Introduction Wireless Sensor Networks (WSNs) generally consist of gateways, users, and a large number of sensor nodes. The sensor node is tiny and can be easily deployed in various kinds of severe environments. However, each sensor node has limited resources, is lacking in memory, has low computational capabilities and short radio transmission range [1]. Data collected from sensor nodes in WSNs sometimes include valuable and classified information such as the environmental surrounding the wartime, a patient's personal information, monitoring information of museums, and the power company's voltage variation monitoring data. To ensure the confidentiality and reliability of deployed WSNs, only registered and legitimate users should be able to access them. In addition, establishing secure protocol actively requires a mutual authentication between the user and the sensor node. For these reasons, secure user authentication is one of the major issues in WSNs. To support message confidentiality and secure authentication for sensor networks, various Sensors 2017, 17, 940 2 of 24 authentication schemes for WSNs have been proposed. However, a problem that occurs with respect to password-based authentication schemes is that a server must maintain a password table to legitimately verify a login user. Therefore, the server requires additional memory space to store the password table. For this reason, many researchers have proposed a new type of remote user authentication scheme whereby personal biological characteristics are used, such as a fingerprint or an iris. The main advantage biometrics is uniqueness. A smart card can be used as a tool to store biometric information. Since the smart card has its own calculation function, it can operate at more than one level. In 2004, Watro et al. [2] proposed a user authentication scheme using the RSA and DH algorithms for WSNs. After that, Wong et al. [3] proposed a hash-based dynamic user authentication scheme in 2006. However, Tseng et al. [4] found that Wong et al.'s authentication scheme was vulnerable to replay, stolen verifiers, and forgery attacks. In 2009, Das [5] proposed and claimed that his scheme can resist various real-time attacks. Unfortunately, He et al. [6] found that Das's scheme was vulnerable to insider and impersonation attacks, and proposed an improved two factor scheme to solve these security problems. In the same year, Khan and Alghathbar [7] demonstrated that Das's scheme did not provide mutual authentication, and was vulnerable to gateway bypassing and privileged insider attacks, and Chen et al. [8] also found that Das's scheme did not provide mutual authentication between the gateway and the sensor, proposed a robust mutual authentication scheme for WSNs, and claimed that their scheme provides greater security than Das's scheme. In 2010, Yuan et al. [9] proposed a biometric-based user authentication scheme. However, Yoon et al. demonstrated that Yuan et al.'s scheme was vulnerable to insiders, user impersonation, gateway node impersonation and sensor node impersonation attacks. To solve these problems, Yoon et al. [10] proposed an improved user authentication scheme. Unfortunately, He et al. [11] found that Yoon et al.'s scheme was still vulnerable to denial of service (DoS) and sensor impersonation attacks, and then proposed an improved scheme to overcome these security problems. In 2013, Yoon and Kim [12] pointed out that He et al.'s scheme had various security vulnerabilities such as poor repairability, and was vulnerable to user and sensor node impersonation attacks. They then proposed an advanced biometrics-based user authentication scheme for WSNs. They claimed that their scheme was more effective and had stronger security than other related schemes. However, Choi et al. [13] found that Yoon and Kim's scheme [12] had various security problems, including a biometric recognition error, a user verification problem, lack of anonymity, perfect forward secrecy, session key exposure by the gateway node, vulnerability to DoS attacks, and a revocation problem. To overcome these vulnerabilities, they proposed a biometric-based user authentication scheme using a fuzzy extractor, and claimed that their scheme is more secure than other authentication schemes. Unfortunately, Park et al. [14] demonstrated that Choi et al.'s scheme [13] was still insecure against user impersonation attacks, and had security weakness in the revocation/reissue phase. They then proposed an enhanced biometric-based authentication scheme for WSNs that has improved security functions. After careful analysis, however, we found that Park et al.'s scheme [14] was still insecure against impersonation attack, and also had a problem in the smart card revocation/reissue phase. In this paper, we show how an adversary can impersonate a legitimate user or a sensor node, and perform an illegal smart card revocation/reissue. After demonstrating these problems, we propose an improved biometric authentication scheme. Finally, we analyze our proposed scheme for security properties and computational cost. The proposed scheme is more secure and efficient than other related authentication schemes. The rest of this paper is organized as follows. In Section 2, we briefly introduce the elliptic curve cryptosystem, threat assumptions and fuzzy extractors that we adopt in our scheme. In Sections 3 and 4, we review and analyze, respectively, Park et al.'s scheme [14]. In Section 5, we propose an improved authentication scheme for WSNs. In Section 6, we present a security analysis of the proposed scheme. Section 7 shows performance analysis comparing our scheme with previous schemes. Our conclusions are presented in Section 8. Sensors 2017, 17, 940 3 of 24 #### 2. Preliminaries In this section, we briefly introduce the elliptic curve cryptosystem, threat assumptions, and fuzzy extractor. # 2.1. Elliptic Curve Cryptosystem The elliptic curve cryptosystem (ECC) was first proposed by Koblitz [15] and Miller [16] to design public key cryptosystems, and presently it is widely used in several cryptographic schemes to provide desired levels of security and performance. An elliptic curve E_K defined over a field K of the characteristic $\neq 2$ or 3 is the set of solutions $(x, y) \in K^2$ to the equation: $$y^2 = x^3 + ax + b$$, $a, b \in K, 4a^3 + 27b^2 \neq 0$. (1) Cryptosystems based on $GF(q)^*$ can be translated to systems using the group E, where E is an elliptic curve defined over a GF(q). The point multiplications kP = (P + P + ... + P, k times) that means k times addition of point P. Given an elliptic curve E defined over a GF(q) and two points P, $Q \in E$, it finds an integer E such that E0 are sistength. This problem proved to be more intractable than the typically discrete logarithm problem. The details of the ECC definitions can be found in [15]. There are several computational problems based on ECC which are presented below: **Definition 1.** The elliptic curve discrete logarithm problem (*ECDLP*) is defined as: given two elements Q, $R \in G_p$, find an integer $k \in [1, n-1]$ such that R = kQ. **Definition 2.** The computational Diffie–Hellman problem (*CDHP*) is defined as: given three elements (P, aP, bP) for any a, $b \in [1, n-1]$, computation of abP is very hard to the group G_p . **Definition 3.** The elliptic curve factorization problem (*EC FP*) is defined as: given two elements $P, Q \in G_p$, where Q = sP + tP and $(s, t) \in [1, n - 1]$, then computation of sP and tP is impossible. **Definition 4.** The decisional Diffie–Hellman problem ($DD\ HP$) is defined as: given four elements (P, aP, bP, cP)
for any (a, b, c) \in [1, n – 1], decide whether or not cP = abP i.e., c = $ab\ mod\ p$ or not. **Definition 5.** The weak Diffie–Hellman problem (*WDHP*) is defined as: for $Q \in G_p$ and some $k \in [1, n-1]$ from the given three elements (P, Q, kP), computation of kQ is very hard. # 2.2. Threat Assumptions We introduce the Dolev–Yao [17] and some threat model [18,19], and consider the risk of side channel attack [20] to construct the threat assumptions, which are described as follows: - 1. An adversary A can be either a user, gateway, or sensor node. Any registered user can act as an adversary. - 2. An adversary A can eavesdrop every communication in a public channel, thereby capturing any message exchanged between a user and gateway or sensor node. - 3. An adversary A has the ability to alter, delete or reroute the captured message. - 4. Information can be extracted from the smart card by examining the power consumption of the card. # 2.3. Fuzzy Extractor In this subsection, we describe the basis for a biometric-based fuzzy extractor, which converts biometric information data into a random value. Based on [21–23], the fuzzy extractor is given by two procedures (*Gen*, *Rep*). The mechanism of a fuzzy extractor consists of two procedures (*Gen*, *Rep*), which is demonstrated as: Sensors **2017**, *17*, 940 4 of 24 - $Gen(BIO) \rightarrow \langle R, P \rangle$, - $Rep(BIO^*, P) = R$ if BIO^* is reasonably close to BIO. The function Gen is a probabilistic generation procedure, which on biometric input BIO outputs an "extracted" string $R \in \{0,1\}^l$ and an auxiliary string $P \in \{0,1\}^*$. Rep is a deterministic reproduction procedure, which recovery of R from the corresponding auxiliary string P, and any vector BIO^* close to BIO. The detailed information about fuzzy extractors can be founded in the literature [24]. # 3. Review of Park et al.'s Authentication Scheme In this section, we review Park et al.'s authentication scheme [14]. The notations used in the paper are listed in Table 1. The GW generates two master keys, x and y, and provides a long-term secret key $h(SID_j||y)$ to the sensor S_j before the scheme is executed. Their scheme involves three parties, i.e., the user U_i , the gateway GW and the sensor S_j , to communicate with each other to perform the following three phases: registration, login/authentication, and revocation/reissue. | Term | Description | |----------------------------|---| | $\overline{U_i}$ | user i | | $\mathcal A$ | adversary | | B_i | biometric template of U_i | | $E_k(\cdot)/D_k(\cdot)$ | encryption or decryption with key k | | GW | gateway node | | \mathbb{G}_1 | cyclic groups of order q | | $h(\cdot)$ | hash function | | $h(SID_i y)$ | long-term secret of S_i generated by GW | | $ID_i^{'}$ | actual identity of U_i | | P | generator of \mathbb{G}_1 | | r_i, r_1, r_2 | random number generated by U_i | | $r_{\scriptscriptstyle S}$ | random number generated by S_j | | S_{j} | sensor node <i>j</i> | | SĆ _i | smart card of user U_i | | SID_{j} | identity of S_i | | T_i | time stamp | | up_i | <i>i</i> -th update phase | | x, y | two master keys of GW | | RM | Response to the query message | | | concatenation operation | | | bitwise XOR operation | Table 1. Notations used in this paper. # 3.1. Registration Phase In this phase, a user U_i chooses an identity ID_i , imprints biometric template B_i , and then performs the following steps: - 1. U_i computes $\langle R_i, P_i \rangle = Gen(B_i)$ and $A_i = h(R_i)$. U_i then sends $\langle ID_i, A_i \rangle$ to the gateway GW. - 2. Upon receiving $\langle ID_i, A_i \rangle$ from U_i , GW computes the authentication parameters as: $$V_i = h(ID_i||A_i)$$ $$M_i = h(x||y||A_i)$$ $$N_i = M_i \oplus A_i$$ $$C_i = E_x(A_i||up_i).$$ - 3. *GW* stores $h(\cdot)$ and the authentication parameters; $\langle V_i, N_i, C_i, h(\cdot) \rangle$ in the smart card SC_i . *GW* then issues SC_i to U_i through a secure channel. - 4. After receiving the smart card from GW, U_i stores P_i in the smart card. Sensors **2017**, *17*, 940 5 of 24 # 3.2. Login and Authentication Phase If a user U_i wants to log in to the GW and S_j , U_i performs the login phase, and then U_i , GW and S_j verify each other's authenticities. Finally, U_i and S_j generate a session key in this phase as follows: 1. U_i enters ID_i and imprints biometric template B_i^* . SC_i then computes R_i^* , A_i^* and V_i^* using fuzzy extraction, and compares V_i^* with V_i as: $$\begin{split} R_i^* &= Rep(B_i^*, P_i) \\ A_i^* &= h(R_i^*) \\ V_i^* &= h(ID_i||A_i^*) \\ \textit{verifies} \quad V_i \overset{?}{=} V_i^*. \end{split}$$ 2. SC_i generates a random number r_i and computes X_i and M_i as: $$X_i = r_i \times P$$ $$M_i = N_i \oplus A_i.$$ 3. U_i picks up T_i and computes AID_i and W_i as: $$AID_i = ID_i \oplus h(M_i||T_i)$$ $$W_i = h(M_i||ID_i||X_i||T_i).$$ U_i then sends the login request message $M_1 = \langle AID_i, X_i, C_i, T_i, W_i \rangle$ to GW. 4. After receiving M_1 , GW retrieves T' and verifies $T' - T_i \leq \triangle T$. If this holds, GW computes A_i^* , M_i^* , ID_i^* and W_i^* , and compares W_i^* with W_i as: $$A_{i}^{*}||up_{i} = D_{x}(C_{i})$$ $M_{i}^{*} = h(x||y||A_{i}^{*})$ $ID_{i}^{*} = AID_{i} \oplus h(M_{i}^{*}||T_{i})$ $W_{i}^{*} = h(M_{i}^{*}||ID_{i}^{*}||X_{i}^{*}||T_{i})$ verifies $W_{i} \stackrel{?}{=} W_{i}^{*}$. If this holds, GW verifies the legitimacy of U_i . 5. *GW* picks up T_g and computes k_g , C_g and W_g , $$\begin{split} k_g &= h(h(SID_j||y)||T_g) \\ C_g &= E_{k_g}(AID_i||X_i) \\ W_g &= h(h(SID_j||y)||AID_i||C_g||T_g). \end{split}$$ *GW* then sends the authentication message $M_2 = \langle AID_i, C_g, T_g, W_g \rangle$ to S_j . 6. When receiving M_2 from GW, S_j retrieves T'', and verifies $T'' - T_g \le \triangle T$. If this holds, S_j verifies the validity of W_g by comparing it with $h(h(SID_j||y)||AID_i||C_g||T_g)$ to check the legitimacy of GW. After that, S_j computes k_g^* , and decrypts C_g using k_g^* . S_j then checks the validity of the received AID_i by comparing AID_i^* as: $$k_g^* = h(h(SID_j||y)||T_g)$$ $D_{k_g^*} = AID_i^*||X_i^*$ $verifies \quad AID_i \stackrel{?}{=} AID_i^*.$ Sensors 2017, 17, 940 6 of 24 7. S_j generates a random number r_s and computes K_{SU} , Y_i and a session key sk. S_j then picks up T_s and computes RM, V_s as: $$K_{SU} = r_x \times X_i^*$$ $Y_i = r_s \times P$ $sk = h(AID_i||K_{SU}||T_s)$ $RM = \text{Response to the query of } U_i$ $V_s = h(AID_i||X_i||Y_i||RM||T_s).$ S_i hence sends $M_3 = \langle RM, Y_i, V_s, T_s \rangle$ to U_i . 8. Úpon receiving M_3 , U_i retrieves T_s , and checks the sameness of V_s . U_i then computes K_{US} and sk as: $$V_s^* = h(AID_i||X_i||Y_i||RM||T_s)$$ verifies $V_s^* \stackrel{?}{=} V_s$ $K_{US} = r_i \times Y_i$ $sk = h(AID_i||K_{US}||T_s).$ Only the legitimate U_i can compute K_{US} and sk. U_i then accepts RM. Finally, U_i and S_j can communicate securely using the common sk. 3.3. Revocation or Reissue Phase To make up for smart card loss or long term key disclosure, the smart card should be revoked and reissued in cycles. - 1. U_i who wants to revoke and reissue a smart card inputs the previous identity ID_i and the new identity ID_i^* to prevent adversaries from registering with the same identity ID_i . Then, U_i imprints biometric template B_i and computes $R_i = Rep(B_i, P_i)$, $A_i = h(R_i)$ and $M_i = N_i \oplus A_i$. - 2. U_i computes $Z_i = ID_i \oplus M_i$ and sends the revocation/reissue request message $\langle ID_i, ID_i^*, A_i, Z_i \rangle$ to GW. - 3. *GW* computes M_i^* , Z_i^* and checks the legitimacy of the user as: $$M_i^* = h(x||y||A_i)$$ $Z_i^* = ID_i \oplus M_i^*$ $verifies \quad Z_i^* \stackrel{?}{=} Z_i.$ 4. If this holds, GW revokes ID_i and records it on the revocation look-up table. Then, GW computes new authentication parameters V_i , N_i and C_i as: $$V_i = h(ID_i^*||A_i)$$ $$N_i = M_i^* \oplus A_i$$ $$C_i = E_x(A_i||up_i^*).$$ - 5. *GW* stores $h(\cdot)$ and the new authentication parameters; $\langle V_i, N_i, C_i, h(\cdot) \rangle$ in the smart card SC_i . *GW* then reissues SC_i to U_i through a secure channel. - 6. U_i stores P_i in the smart card. # 4. Cryptanalysis of Park et al.'s Authentication Scheme In this section, we analyze the security problems of Park et al.'s scheme [14]. Park et al. cryptanalyzed a scheme of Choi et al. [13] and improved it to support better security functionality. However, we found that Park et al.'s scheme [14] was still insecure against impersonation attack and Sensors 2017, 17, 940 7 of 24 had a problem with smart card revocation/reissue. The following attacks are based on the threat assumptions that a malicious adversary A was completely monitored through the communication channel connecting U_i , GW and S_i in the login and authentication phases, and that the A obtained the information saved in their own smart card [20]. A therefore can eavesdrop, modify, insert, or delete any message transmitted over a public channel. We now reveal the details of these problems. # 4.1. User Impersonation Attack - Let A be an active adversary who is he/she legal user and owns a smart card to extract information $\langle V_a, N_a, C_a, h(\cdot), P_a \rangle$. - 2. \mathcal{A} then imprints one's biometric template B_a^* and computes $R_a^* = Rep(B_a^*, P_a)$ and $A_a^* = h(R_a^*)$. - A generates a random number r_A , and selects any identity ID_i . A then computes login request message M_1 as: $$X_a = r_a \times P$$ $$M_a = N_a \oplus A_a^*$$ $$AID_i = ID_i \oplus h(M_a||T_a)$$ $$W_a = h(M_a||ID_i||X_a||T_a).$$ A then sends the login request message $M_1 = \langle AID_i, X_a, C_a, T_a, W_a \rangle$
to GW. When receiving M_1 , GW retrieves T' and verifies $T' - T_a \leq \triangle T$. If this holds, GW computes A_a^* , M_a^* , ID_i^* , W_a^* and compares W_a^* with W_a as: $$A_a^*||up_a = D_x(C_a)$$ $M_a^* = h(x||y||A_a^*)$ $ID_i^* = AID_i \oplus h(M_a^*||T_a)$ $W_a^* = h(M_a^*||ID_i^*||X_a^*||T_a)$ verifies $W_a \stackrel{?}{=} W_a^*$. If this holds and IDi does exist in the database, the gateway GW continues to proceed the scheme without detected. Otherwise, A selects another identity nominee and performs the same processes until he/she locates the valid identity. 5. GW picks up T_g and computes k_g , C_g and W_g : $$\begin{split} k_g &= h(h(SID_j||y)||T_g) \\ C_g &= E_{k_g}(AID_i||X_a) \\ W_g &= h(h(SID_j||y)||AID_i||C_g||T_g). \end{split}$$ *GW* then sends the authentication message $M_2 = \langle AID_i, C_g, T_g, W_g \rangle$ to S_j . Upon receiving M_2 from *GW*, S_j retrieves T'' and verifies $T'' - T_g \leq \triangle T$. If this holds, S_j verifies the validity of W_g by comparing it with $h(h(SID_j||y)||AID_i||C_g||T_g)$ to check the legitimacy of GW. After that, S_i computes k_g^* and decrypts C_g using k_g^* . S_i then checks the validity of the received AID_i by comparing AID_i^* as $$k_g^* = h(h(SID_j||y)||T_g)$$ $D_{k_g^*} = AID_i^*||X_a^*$ $verifies \quad AID_i \stackrel{?}{=} AID_i^*.$ S_i generates a random number r_s and computes K_{SU} , Y_i and a session key sk. S_i then computes RM, V_s as: Sensors 2017, 17, 940 8 of 24 $$K_{SU} = r_x \times X_a^*$$ $Y_i = r_s \times P$ $sk = h(AID_i||K_{SU}||T_s)$ $RM = \text{Response to the query of } U_i$ $V_s = h(AID_i||X_a||Y_i||RM||T_s)$, where T_s is current timestamp. S_i then sends $M_3 = \langle RM, Y_i, V_s, T_s \rangle$ to A. 8. After receiving M_3 , A retrieves T_s , and checks the sameness of V_s . Then, A computes K_{US} and sk as: $$V_s^* = h(AID_i||X_a||Y_i||RM||T_s)$$ verifies $V_s^* \stackrel{?}{=} V_s$ $K_{US} = r_a \times Y_i$ $sk = h(AID_i||K_{US}||T_s).$ Lastly, A and S_j "successfully" agree on a session key sk. Unfortunately, the sensor S_j mistakenly believes that he/she is communicating with the legitimate user U_i . # 4.2. Sensor Node Impersonation Attack Park et al. [14] claimed that if \mathcal{A} wants to masquerade as the sensor node S_j , \mathcal{A} is required to compute $h(SID_j||y)$. This is because the symmetric key $k_g = h(h(SID_j||y)||T_g)$. However, if \mathcal{A} obtains the login request message $M_1 = \langle AID_i, X_i, C_i, T_i, W_i \rangle$ of the legitimate user U_i , \mathcal{A} then can easily impersonate the sensor node S_j . 1. After receiving M_2 from GW, A generates a random number r_a and computes K_{AU} , Y_a , RM, V_a and a session key sk as: $$K_{AU} = r_a \times X_i$$ $Y_a = r_a \times P$ $sk = h(AID_i||K_{AU}||T_a)$ $RM = \text{Any response to the query of } U_i$ $V_a = h(AID_i||X_i||Y_a||RM||T_a),$ where T_a is current timestamp. A then sends $M_3 = \langle RM, Y_a, V_a, T_a \rangle$ to U_i . 2. Upon receiving M_3 from A, U_i retrieves T_a and checks the sameness of V_a . Then, U_i computes K_{UA} and sk as: $$V_a^* = h(AID_i||X_i||Y_a||RM||T_a)$$ verifies $V_a^* \stackrel{?}{=} V_a$ $K_{UA} = r_i \times Y_a$ $sk = h(AID_i||K_{UA}||T_a)$. Lastly, U_i and A "successfully" agree on a session key sk. Unfortunately, the user U_i mistakenly believes that he/she is communicating with the legitimate sensor S_j . ## 4.3. Illegal Smart Card Revocation/Reissue Attack Park et al. [14] claimed that, although A could get the identity ID_i in some way, GW checks the legitimacy of the user on the requested identity, and A cannot compute M_i and the revocation/reissue request message Z_i without the biometric information of U_i . However, A can modify the Sensors 2017, 17, 940 9 of 24 revocation/reissue request message. This is because GW cannot distinguish whether or not the user who wishes to revoke ID_i is the real user U_i . - 1. Suppose A owns a smart card to extract information $\langle V_a, N_a, C_a, h(\cdot), P_a \rangle$ and obtains the identity ID_i of the legitimate user U_i by using a user impersonation attack. - 2. Next, A imprints the personal biometric information B_a at the sensor. The sensor hence sketches B_a and extracts $\langle R_a, P_a \rangle$ from $Gen(B_a) \to \langle R_a, P_a \rangle$. - 3. \mathcal{A} computes $A_a^* = h(R_a)$ and $Z_i' = ID_i \oplus N_a \oplus A_a^*$ and sends the revocation/reissue request message $\langle ID_i, ID_i^*, A_a^*, Z_i' \rangle$ to GW. - 4. *GW* computes M_i^* , Z_i^* , and checks the legitimacy of the user as: $$M_a^* = h(x||y||A_a^*)$$ $Z_i^* = ID_i \oplus M_a^*$ verifies $Z_i' \stackrel{?}{=} Z_i^*$. 5. If this holds, GW revokes ID_i and records it on the revocation look-up table. Then, GW computes new authentication parameters V_i , N_i and C_i as: $$V_i = h(ID_i^*||A_a^*)$$ $$N_i = M_a^* \oplus A_a^*$$ $$C_i = E_x(A_a^*||up_i^*).$$ - 6. *GW* stores the new authentication parameters $\langle V_i, N_i, C_i, h(\cdot) \rangle$ in the smart card SC_i . *GW* then reissues SC_i to A through a secure channel. - 7. A stores P_a in the smart card. Adversary A can revoke the smart card of an authenticated user who does not wish the said smart card to be revoked without permission because GW has no proper process for checking the legitimacy of the user on the previous identity ID_i . # 5. The Proposed Scheme In this section, we will propose a new biometric-based password authentication scheme using a smart card. In our scheme, there are also three participants, the user U_i , the gateway GW and the sensor S_j . The GW generates two master keys x and y, and sends a long-term secret key $h(SID_j||y)$ to the sensor S_j before the scheme is executed. After that, GW computes $x \times P$ where xP is the public key of the gateway. The proposed scheme consists of three phases: registration, login and authentication, and revocation/reissue. ## 5.1. Registration Phase In this phase, a user U_i chooses an identity ID_i , imprints biometric template B_i at the sensor, and then performs the following steps: - 1. The sensor sketches B_i , extracts $\langle R_i, P_i \rangle$ from $Gen(B_i) \to \langle R_i, P_i \rangle$, and stores P_i in the memory. U_i then sends $\langle ID_i, A_i = h(R_i) \rangle$ to GW over a secure channel. - 2. When receiving the registration request message $\langle ID_i, A_i \rangle$ from U_i , the gateway GW computes the authentication parameters as: $$C_i = h(ID_i||x||y)$$ $$M_i = h(C_i) \oplus A_i$$ $$N_i = x \oplus C_i \oplus y$$ $$V_i = h(ID_i||A_i).$$ Sensors 2017, 17, 940 10 of 24 3. *GW* stores the authentication parameters $\langle M_i, N_i, V_i, h(\cdot) \rangle$ in the smart card SC_i . *GW* hence issues SC_i to U_i via a secure channel. 4. Lastly, U_i stores P_i in the smart card. Figure 1 illustrates the registration phase of the proposed scheme. Figure 1. Registration phase of the proposed scheme. # 5.2. Login and Authentication Phase In this phase, U_i performs the login phase, and hence U_i , GW and S_j verify each other's authenticity. Finally, U_i and S_j generates a common session key in this phase as follows: - 1. U_i inserts his/her smart card SC_i into the card reader, inputs the identity ID_i , and imprints the personal biometrics B_i^* at the sensor. - 2. The sensor then sketches B_i^* and extracts R_i from $Rep(B_i^*, P_i) \to \langle R_i \rangle$. Then, SC_i computes A_i^* and V_i^* using fuzzy extraction and compares V_i^* with V_i as: $$R_{i}^{*} = Rep(B_{i}^{*}, P_{i})$$ $A_{i}^{*} = h(R_{i}^{*})$ $V_{i}^{*} = h(ID_{i}||A_{i}^{*})$ $verifies V_{i} \stackrel{?}{=} V_{i}^{*}.$ 3. SC_i generates random numbers r_1 and r_2 and hence computes $$X_i = r_1 \times P$$ $h(C_i) = M_i \oplus A_i^*$ $AID_i = ID_i \oplus h(r_2)$ $M_1 = r_2 \oplus h(C_i)$ $M_2 = h(AID_i||h(C_i)||X_i||r_2||T_i)$ $M_3 = N_i \oplus (r_1 \times xP)$, where T_i is current timestamp. Then, U_i sends the login request message $\langle AID_i, X_i, M_1, M_2, M_3, T_i \rangle$ to GW. Sensors 2017, 17, 940 11 of 24 4. Upon receiving a login request message from U_i , GW retrieves T' and verifies $T' - T_i \leq \triangle T$. If this is true, GW computes C_i^* , r_2^* , ID_i^* and M_2^* and compares C_i^* with $h(ID_i^*||x||y)$ and M_2^* with M_2 as: $$C_{i}^{*} = M_{3} \oplus (x \times X_{i}) \oplus x \oplus y$$ $$r_{2}^{*} = M_{1} \oplus h(C_{i}^{*})$$ $$ID_{i}^{*} = AID_{i} \oplus h(r_{2}^{*})$$ $$verifies \quad C_{i}^{*} = h(ID_{i}^{*}||x||y)$$ $$M_{2}^{*} = h(AID_{i}||h(C_{i}^{*})||X_{i}||r_{2}^{*}||T_{i})$$ $$verifies \quad M_{2} \stackrel{?}{=} M_{2}^{*}.$$ If this holds, GW verifies the legitimacy of U_i . 5. *GW* computes k_g , C_g and W_g , $$\begin{split} k_g &= h(h(SID_j||y)||T_g) \\ C_g &= E_{k_g}(AID_i||r_2||X_i) \\ W_g &= h(h(SID_j||y)||AID_i||C_g||T_g), \end{split}$$ where T_g is current timestamp. GW then sends the authentication message $\langle AID_i, C_g, T_g, W_g \rangle$ to S_i . 6. When receiving the authentication message from GW, S_j retrieves T'' and verifies $T'' - T_g \le \triangle T$. If this is true, S_j verifies the validity of W_g by comparing it with $h(h(SID_j||y)||AID_i||C_g||T_g)$ to check the legitimacy of GW. After that, S_j computes k_g^* , and decrypts C_g using k_g^* . Then, S_j checks the validity of the received AID_i by comparing the computed AID_i^* as $$\begin{aligned} k_g^* &= h(h(SID_j||y)||T_g) \\ D_{k_g^*} &= AID_i^*||r_2^*||X_i^* \\ verifies &\quad AID_i \stackrel{?}{=} AID_i^*. \end{aligned}$$ 7. S_i generates a random number r_s and computes K_{SU} , Y_i , RM, V_s and a session key sk as: $$K_{SU} = r_s \times X_i^*$$ $Y_i = r_s \times P$ $sk = h(AID_i||K_{SU}||T_s)$ $RM = \text{Response to the query of }
U_i$ $V_s = h(AID_i||r_2^*||Y_i||sk||RM||T_s),$ where T_s is current timestamp. S_i then sends $\langle RM, Y_i, V_s, T_s \rangle$ to U_i . 8. After receiving response message $\langle RM, Y_i, V_s, T_s \rangle$ from S_j , U_i computes sk and checks whether V_s^* is equal to V_s : $$K_{US} = r_1 \times Y_i$$ $sk = h(AID_i||K_{US}||T_s)$ $V_s^* = h(AID_i||r_2||Y_i||sk||RM||T_s)$ $verifies \quad V_s^* \stackrel{?}{=} V_s.$ The legitimate user U_i can only compute K_{US} and sk. U_i and S_j can communicate securely using the common session key sk. Figure 2 illustrates the login and authentication phase of the proposed scheme. Sensors **2017**, *17*, 940 ``` User U_i GW node Sensor node S_i \langle ID_i, \text{ smart card} \rangle \langle h(SID_j||y)\rangle \langle x,\ y,\ xP\rangle Inserts smart card Inputs ID_i and biometric B_i^* R_i^* = Rep(B_i^*, P_i), \ A_i^* = h(R_i^*) V_i^* = h(ID_i || A_i^*) Verifies V_i \stackrel{?}{=} V_i^* Generates random number r_1, r_2 X_i = r_1 \times P, \ h(C_i) = M_i \oplus A_i^* Picks up timestamp \mathcal{T}_i AID_i = ID_i \oplus h(r_2), \ M_1 = r_2 \oplus h(C_i), M_2 = h(AID_i||h(C_i)||X_i||r_2||T_i), M_3 = N_i \oplus (r_1 \times xP) \langle AID_i,~X_i,~M_1,~M_2,~M_3,~T_i\rangle Verifies (T' - T_i) \leq \Delta T C_i^* = M_3 \oplus (x \times X_i) \oplus x \oplus y r_2^* = M_1 \oplus h(C_i^*) ID_i^* = AID_i \oplus h(r_2^*) Verifies C_i^* \stackrel{?}{=} h(ID_i^*||x||y) M_2^* = h(AID_i||h(C_i^*)||X_i||r_2^*||T_i) Verifies M_2 \stackrel{?}{=} M_2^* Picks up timestamp T_g k_g = h(h(SID_j||y)||T_g) C_g = E_{k_g}(AID_i||r_2^*||X_i) W_g = h(h(SID_j||y)||AID_i||C_g||T_g) \langle AID_i,\ C_g,\ T_g,\ W_g\rangle Verifies (T'' - T_g) \le \Delta T Verifies W_g \stackrel{?}{=} h(h(SID_j||y)||AID_i||C_g||T_g) k_q^* = h(h(SID_j||y)||T_g) AID_i^* ||r_2^*|| X_i^* = D_{k_g^*}(C_g) Verifies AID_i \stackrel{?}{=} AID_i^* Generates random number r_s K_{SU} = r_s \times X_i^*, \ Y_i = r_s \times P Computes sk = h(AID_i || K_{SU} || T_s) Picks up timestamp T_s RM = Respond to the query of U_i V_s = h(AID_i || X_i^* || Y_i || RM || T_s) \langle RM, Y_i, V_s, T_s \rangle Verifies (T''' - T_s) \le \Delta T Verifies V_s \stackrel{?}{=} h(AID_i || X_i || Y_i || RM || T_s) K_{US} = r_1 \times Y_i Computes sk = h(AID_i || K_{US} || T_s) Accepts RM Shared sk = h(AID_i||r_1 \times r_s \times P||T_s) ``` Figure 2. Login and authentication phase of the proposed scheme. # 5.3. Revocation or Reissue Phase To make up for smart card loss or long term key disclosure, the smart card should be revoked and reissued in cycles. 1. If U_i wants to revoke and reissue a smart card, he/she inserts his/her smart card SC_i into the card reader, inputs the previous identity ID_i and the new identity ID_i^* to prevent adversaries from registering with the same identity ID_i , and then imprints the personal biometrics B_i^* at the sensor. Sensors 2017, 17, 940 13 of 24 2. The sensor then sketches B_i^* and extracts R_i from $Rep(B_i^*, P_i) \to \langle R_i \rangle$. Then, SC_i computes A_i^* and V_i^* using fuzzy extraction, $$R_i = Rep(B_i^*, P_i)$$ $A_i = h(R_i).$ - 3. U_i computes $Z_i = ID_i \oplus M_i$ and sends the revocation/reissue request message $\langle ID_i, ID_i^*, A_i, Z_i \rangle$ to GW over a secure channel. - 4. *GW* first checks whether ID_i is the same as ID_i^* or not. If they are different, *GW* computes M_i^* , Z_i^* and checks the legitimacy of the user as: $$C_i^* = h(ID_i||x||y)$$ $Z_i^* = ID_i \oplus h(C_i^*) \oplus A_i$ verifies $Z_i^* \stackrel{?}{=} Z_i$. 5. If this is true, GW revokes ID_i and records it on the revocation look-up table. Then, GW computes new authentication parameters V_i , N_i and C_i as: $$C_i = h(ID_i^*||x||y)$$ $$M_i = h(C_i) \oplus A_i$$ $$N_i = x \oplus C_i \oplus y$$ $$V_i = h(ID_i^*||A_i).$$ - 6. *GW* stores $h(\cdot)$ and the new authentication parameters $\langle M_i, N_i, V_i, h(\cdot) \rangle$ in the smart card SC_i . *GW* then reissues SC_i to U_i through a secure channel. - 7. U_i stores P_i in the smart card. Figure 3 illustrates the revocation/reissue phase of the proposed scheme. **Figure 3.** Revocation/reissue phase of proposed scheme. Sensors 2017, 17, 940 14 of 24 # 6. Security Analysis In this section, we demonstrate that the proposed scheme, which retains the merits of Park et al.'s scheme [14], can withstand several types of possible attacks; and we also show that the scheme supports several security properties. The security analysis of the proposed scheme was conducted with the threat assumptions made in the Preliminaries. # 6.1. Formal Security Analysis In this subsection, we have demonstrated that the proposed scheme is secure through a formal proof using the random oracle model [18,25]. At first, we specify a collision-free one-way hash function as follows. **Definition 6.** The collision-resistance one-way hash function $f : \{0, 1\}^* \to \{0, 1\}^n$ pick up an input as a binary string $x \in \{0, 1\}^*$ that has a random length, produces a binary string $h(x) \in \{0, 1\}^n$, and gratifies the following requirements: - Given the $y \in Y$, it is not possible to find out computationally about $x \in X$ such that y = h(x). - Given the $x \in X$, it is not possible to find out computationally about another $x' \neq x \in X$, such that h(x') = h(x). - It is not possible to find out computationally about a pair $(x', x) \in X' \times X$, with $x' \neq x$, such that h(x') = h(x). **Theorem 1.** According to the assumption that if the collision-free one-way hash function $h(\cdot)$ closely acts like an oracle, the proposed scheme is then distinctly secure against an adversary A for the protection of the sensitive information including the identity ID_i , nearly random binary string r_2 and master secret key x, y of the gateway node GW. **Proof.** This random oracle can extract the input value x from the given hash result y = h(x) without fail. \mathcal{A} now executes the experimental algorithm as shown in Algorithm 1, $EXP_{HASH,A}^{JHKAS}$, for the proposed scheme as JHKAS, for example. Let us define the probability of success for $EXP_{HASH,A}^{JHKAS}$ as $Success_{HASH,A}^{JHKAS} = |Pr[EXP_{HASH,A}^{JHKAS}] = 1] - 1|$, where $Pr(\cdot)$ means the probability of $EXP_{HASH,A}^{JHKAS}$. The advantage function for this algorithm then becomes $Adv_{HASH,A}^{JHKAS}$ (t, q_R) = $max_{Success}$, where the t is the execution time and q_R is the number of queries. Discuss the algorithm as shown in Algorithm 1 for the A. If A has the capability to solve the hash function problem given in Definition 6, then he/she can immediately retrieve the identity ID_i , nearly random binary string r_2 and master secret key x, y of the gateway node GW. In that case, the A will detect the complete connections between the U_i and the GW; however, the inversion of the input from a given hash value is not possible computationally, i.e., $Adv_{HASH,A}^{JHKAS}$ (t) $\leq \epsilon$, for all $\epsilon > 0$. Thus, $Adv_{HASH,A}^{JHKAS}$ (t, q_R) $\leq \epsilon$, since $Adv_{HASH,A}^{JHKAS}$ (t, t). In conclusion, there is no way for A to detect the complete connections between the U_i and the GW, and the proposed scheme is distinctly secure to an adversary A for retrieving ID_i , Sensors **2017**, *17*, 940 # Algorithm 1 EXP_{HASH, A} ``` 1. Eavesdrop login request message \langle AID_i, X_i, M_1, M_2, M_3, T_i \rangle during the login phase. 2. Call the Reveal oracle. Let (AID'_i, h(C_i)', X'_i, r'_2, T'_i) \leftarrow \text{Reveal}(M_2) 3. if (AID'_i == AID_i) then Accept h(C_i)', X'_i, r'_2, T'_i as the correct of user U_i Call the Reveal oracle. Let (C'_i) \leftarrow \text{Reveal}(h(C_i)') Call the Reveal oracle. Let (C''_i) \leftarrow \text{Reveal}(M_1 \oplus r_2) 5. 6. 7. if (C'_i == C''_i) then 8. Accept the C_i as the correct of user U_i 9. Call the Reveal oracle. Let (ID'_i, x', y') \leftarrow \text{Reveal}(C_i) 10. Compute ID_i'' = AID_i \oplus h(r_2) if (I\hat{D}_i == I\hat{D}_i'') then 11. 12. Accept x', y' as the correct secret key x, y of gateway node GW 13. return 1(Success) 14. else 15. return 0 16. else 17. return 0 18. end if 19. else 20. return 0 21. end if ``` # 6.2. Simulation for Formal Security Verification Using the AVISPA Tool In this subsection, we simulate the proposed scheme using the widely accepted AVISPA for the formal security verification. The main purpose of the simulation is to verify whether the proposed scheme is secure to replay and man-in-the middle attacks. The AVISPA tool consists of four back-ends: (i) On-the-fly Model-Checker (OFMC); (ii) Constraint-Logic-based Attack Searcher; (iii) SAT-based Model Checker; and (iv) Tree Automata based on Automatic Approximations for the Analysis of Security Protocols. In the AVISPA, the protocol is implemented in HLPSL [26], which is based on: the basic roles for representing each participant role and composition roles for representing the scenarios of the basic roles. The basic types available in the HLPSL are [27]: - agent: The agent denotes a principal name. The intruder always has the special identifier i. - symmetric_key: The symmetric_key is the key for a symmetric-key cryptosystem. - text: The text values are often used as nonces. They can also be applied for messages. - nat: The nat is used for denoting the natural numbers in non-message contexts. - const: This type represents constants. - hash_func: The base type hash_func represents cryptographic one-way hash functions. The role of the initiator, the user U_i , is provided in Algorithm 2. The U_i first receives the start signal and updates its state value from 0 to 1. The state value is maintained by the variable State. In a similar way, the roles of the gateway GW and sensor node S_j of the proposed scheme are implemented and shown in Algorithm 3 and 4, respectively. The specifications in HLPSL language for the role of session, goal,
and environment are specified in Algorithm 5. The simulation result for the formal security verification of the proposed scheme using CL-AtSe is shown in Algorithm 6. It is clear that the proposed scheme is secure to passive and active attacks including the replay and man-in-the middle attacks. Sensors 2017, 17, 940 # **Algorithm 2** Role specification for user U_i role user (Ui, GW, Si: agent, SKug, SKus: symmetric_key, H, F: function, SND, RCV: channel (dy)) played_by Ui def= local State: nat, IDi, Ri, P, Ai, Mi, Ni, Vi: text, AIDi, R1, R2, Xi, Ci, Di, M1, M2, M3, Ti, Rs: text, RM, Yi, Vs, Ts, Gx, Gy, Kus: text init State := 0transition 0. State = $0 \land RCV(start) = | >$ State':= $5 \wedge Ai' := H(Ri)$ ∧ secret(Ri, scrt0, Ui) ∧ secret(IDi, scrt1, {Ui, GW}) \land SND({IDi.Ai'}_SKug) 5. State = $2 \land RCV(\{Mi'.Ni'.Vi'\}_SKug.P') = |>$ State':= $8 \wedge R1'$:=new() \wedge R2':=new() \wedge Ti':=new() $\wedge Xi' := F(R1'.P')$ \wedge Di':=xor(Mi', Ai') \wedge AIDi':=xor(IDi, H(R2')) \wedge M1':=xor(R2', Di') \wedge M2':=H(AIDi'.Di'.Xi'.R2'.Ti') \wedge M3':=xor(Ni', F(R1'.F(Gx'.P))) \land secret({Gx', Gy'}, scrt2, GW) ∧ SND(AIDi', Xi', M1', M2', M3', Ti') \land witness(Ui, Sj, ui_sj_r1, R1') 8. State = $8 \land RCV(\{RM'.Yi'.Vs'.Ts'\}_SKug.P') = |>$ State':= $9 \land Vs'$:=H(AIDi'.Xi'.Yi'.RM'.Ts') ∧ Kus':= F(R1'.F(Rs'.P)) ∧ SKus':=H(AIDi'.Kus'.Ts') ∧ witness(Ui, GW, ui_gw_r2, R2') ∧ request(Sj, Ui, sj_ui_rs, Rs') end role Sensors 2017, 17, 940 17 of 24 # **Algorithm 3** Role specification for gateway GW role gateway (Ui, GW, Sj: agent, SKug, SKgs, Kg: symmetric_key, H, F: function, SND, RCV: channel (dy)) played_by GW def= local State: nat, IDi, R1, R2, Ri, P, Ai, Mi, Ni, Vi, Rs: text, AIDi, SIDj, Ks, Xi, Ci, Di, M1, M2, M3, Ti: text, Cg, Tg, Wg, Gx, Gy: text init State := 1 transition 1. State = $1 \land RCV(\{IDi.Ai'\}_SKug) = |>$ State':= $6 \wedge Ci'$:= H(IDi.Gx'.Gy') \wedge P':=new() \wedge Di':=H(Ci') \land Mi':=xor(Di', H(Ri)) \wedge Ni':=xor(Gx', Ci', Gy') \wedge Vi':=H(IDi.H(Ri)) \land secret({Gx', Gy'}, scrt2, GW) \land SND({Mi'.Ni'.Vi'}_SKug.P') 3. State = $3 \land RCV(\{SIDj\}_SKgs) = 1 >$ State':= $6 \land Ks'$:=H(SIDj.Gy') \land SND({Ks'}_SKgs.P') 6. State = 6 ∧ RCV(AIDi'.Xi'.M1'.M2'.M3'.Ti') = | > State':= $9 \wedge Tg' = new()$ \wedge Di':=H(xor(M3', F(R1'.F(Gx'.P)), Gx', Gy')) \land R2':=xor(M1', Di') \wedge IDi':=xor(AIDi', H(R2')) \land Kg':=H(H(SIDj'.Gy').Tg') $\land Cg' := \{AIDi'.R2'.Xi'\}_Kg'$ \land Wg':=H(H(SIDj'.Gy').AIDi'.Cg'.Tg') \land secret({Gx', Gy'}, scrt2, GW) \land secret(H(SIDj'.Gy'), scrt4, {GW, Sj}) \land SND(AIDi'.Cg'.Tg'.Wg') \land request(Ui, Sj, ui_sj_r1, R1') end role Sensors 2017, 17, 940 18 of 24 # **Algorithm 4** Role specification for sensor S_i role sensor (Ui, GW, Sj: agent, SKgs, Kg, SKus: symmetric_key, H, F: function, SND, RCV: channel (dy)) played_by Sj def= local State: nat, IDi, Ri, P, Ai, Mi, Ni, Vi, R1, R2: text, AIDi, SIDj, Ks, Xi, Ci, M1, M2, M3, Ti: text, Cg, Tg, Wg: text, RM, Yi, Vs, Ts, Gx, Gy, Rs, Kus:text init State := 2 # transition 2. State = $2 \land RCV(start) = | > State' := 4 \land SND(\{SIDj\}_SKgs.P')$ 4. State = $4 \land RCV(\{H(SIDj.Gy')\}_SKgs.P') = | > State' := 7 \land secret(\{Gx', Gy'\}, scrt2, GW)$ 7. State = $7 \land RCV(AIDi'.Xi'.M1'.M2'.M3'.Ti') = | > State' := 10 \land Kg' := H(H(SIDj'.Gy').Tg')$ \land Kus':=F(R1'.F(Rs'.P)) \wedge Yi':=F(Rs'.P) $\land Ts':=new()$ ∧ SKus':=H(AIDi'.Kus'.Ts') \wedge RM':=new() $\land Vs':=H(AIDi'.Xi'.Yi'.RM'.Ts')$ $\land \, SND(RM', Yi', Vs', Ts')$ ∧ secret(H(SIDj.Gy'), scrt4, {GW, Sj}) ∧ witness(Sj, Ui, sj_ui_rs, Rs') ∧ request(Ui, Sj, ui_sj_r1, R1') # end role Sensors 2017, 17, 940 ``` Algorithm 5 Role specification for session, goal and environment role session(Ui, GW, Sj: agent, SKug, SKus, SKgs, Kg: symmetric_key, H, F: function) def= local Z1, Z2, Z3, S1, S2, S3: channel (dy) composition user(Ui, GW, Sj, SKug, SKus, H, F, Z1, S1) ∧ gateway(Ui, GW, Sj, SKug, SKgs, Kg, H, F, Z2, S2) ∧ sensor(Ui, GW, Sj, SKgs, Kg, SKus, H, F, Z3, S3) end role role environment() def= const ui, gw, sj: agent, skug, skgs, skus, kg: symmetric_key, h, f: function, aidi, sidj, p, xi: text, xi, m1, m2, m3, ti: text, cg, tg, wg: text, rm, yi, vs, ts: text, ui_sj_r1, ui_gw_r2, sj_ui_rs: protocol_id, scrt0, scrt1, scrt2, scrt3, scrt4 : protocol_id intruder_knowledge = {ui, gw, sj, h, f, p, aidi, sidj, xi, m1, m2, m3, ti, cg, tg, wg, rm, yi, vs, ts} composition session(ui, gw, sj, skug, skgs, kg, skus, h, f) end role goal secrecy_of scrt0 secrecy_of scrt1 secrecy_of scrt2 secrecy_of scrt3 secrecy_of scrt4 authentication_on ui_sj_r1 authentication_on ui_gw_r2 authentication_on sj_ui_rs end goal ``` Sensors 2017, 17, 940 20 of 24 # Algorithm 6 Role specification for session, goal and environment **SUMMARY** **SAFE** **DETAILS** BOUNDED_NUMBER_OF_SESSIONS **PROTOCOL** /home/span/span/testsuite/results/testrv.if **GOAL** As Specified **BACKEND** CL-AtSe STATISTICS Analysed: 1 states Reachable: 0 states Translations: 0.03 s Computation: 0.00 s # 6.3. Informal Security Analysis Table 2 compares the security features provided by the proposed scheme with other related schemes. **Table 2.** Comparison of security features. | Features | Yoon and Kim [12] | Choi et al. [13] | Park et al. [14] | The Proposed | |--|-------------------|------------------|------------------|--------------| | Provides user anonymity | N/A | × | 0 | \circ | | Provides mutual authentication | \bigcirc | \bigcirc | \bigcirc | \bigcirc | | Provides message confidentiality | \bigcirc | \bigcirc | \bigcirc | \bigcirc | | Provides perfect forward secrecy | N/A | \bigcirc | \bigcirc | \bigcirc | | Resists insider attack | \bigcirc | × | \bigcirc | \bigcirc | | Resists impersonation attack | \bigcirc | × | × | \bigcirc | | Resists illegal smart card revocation/reissue attack | × | × | × | \bigcirc | | Resists biometric recognition error | × | \bigcirc | \bigcirc | \circ | | Resists session key exposure by gateway | × | \bigcirc | \bigcirc | \bigcirc | | Resists denial of service attack | × | \bigcirc | \bigcirc | \bigcirc | | Resists user verification problem | × | \bigcirc | \bigcirc | \bigcirc | | Resists stolen verifier attack | \bigcirc | \bigcirc | \bigcirc | \bigcirc | | Resists replay attack | \circ | \bigcirc | \bigcirc | \bigcirc | | Security factor | Two-factor | Two-factor | Two-factor | Two-factor | $[\]bigcirc$: scheme provides the property; \times : scheme does not provide the property; N/A: scheme does not consider the property. # 6.3.1. User Anonymity Suppose an adversary A intercepts the login request message $\langle AID_i, X_i, M_1, M_2, M_3, T_i \rangle$ of a legitimate user U_i . However, ID_i cannot be derived from AID_i without the knowledge of a random number r_2 ; furthermore, the r_2 cannot be derived from M_1 without a hash value Sensors 2017, 17, 940 21 of 24 $h(C_i) = h(h(ID_i||x||y))$. The U_i and GW can only compute $h(C_i)$. The proposed scheme therefore provides user anonymity. # 6.3.2. Mutual Authentication The proposed scheme not only guarantees secrecy as the other authentication scheme, but also U_i , S_j and GW authenticate each other. GW authenticates U_i by checking whether M_2 is valid or not because only a legitimate user can compute a valid $h(C_i)$ using a biometric template. Then, S_j authenticates GW by checking W_g , which only GW can compute using the shared long-term key $h(SID_j||y)$ and the time stamp T_g . Finally, the U_i authenticates S_j by checking the validity of V_s because only U_i and S_j can compute the session key sk. # 6.3.3. Message Confidentiality Message confidentiality is an important security aspect that provides secrecy by limiting the adversary's access to the message. Communication messages in the public channel do not affect the disclosure of secret values, such as ID_i , r_1 , r_2 , r_s and sk. A cannot compute important information from AID_i , X_i , M_1 , M_2 , M_3 , C_g , W_g , Y_i and V_s . Furthermore, T_i , T_g , T_s and RM are basically public information, so they do not need to be protected. # 6.3.4. Perfect Forward Secrecy The perfect forward secrecy means that if one long-term key is compromised, a session key that is derived from these long-term keys will not be compromised in the future [28]. In our scheme, a session key sk between user U_i and sensor S_i is calculated as follows: $$X_i = r_1 \times P$$ $Y_i = r_s \times P$ $K_{US} = K_{SU} = r_s \times X_i = r_1 \times Y_i$ $sk = h(AID_i||K_{US}||T_s).$ Even if the gateway GW's long-term key (x, y) is compromised, adversary \mathcal{A} cannot retrieve r_1 and r_s to generate the session keys between U_i and S_j . The session key of our proposed scheme is based on a elliptic curve discrete logarithm problem (ECDLP). An adversary \mathcal{A} cannot obtain $r_1 \times r_s \times P$ from $r_1 \times P$ and $r_s \times P$. Our scheme therefore provides the perfect forward secrecy. # 6.3.5. User Impersonation Attack Suppose \mathcal{A} owns a smart card to extract information $\langle V_a, N_a, C_a, h(\cdot), P_a \rangle$ and intercepts the login request message $\langle AID_i, X_i, M_1, M_2, M_3, T_i \rangle$ of legitimate user U_i . \mathcal{A} can then try modifying a login request message. Even if \mathcal{A} guesses or obtains U_i 's identity ID_i , GW verifies whether C_i^* is equal to $h(ID_i^*||x||y)$. The \mathcal{A} cannot compute C_i and $h(C_i)$, and then fails to impersonate a legitimate user U_i . The proposed scheme therefore can resist user impersonation attack. # 6.3.6. Gateway or Sensor Node Impersonation Attack If \mathcal{A} wants to masquerade as the gateway node GW or a sensor node S_j , the hash
value $h(SID_j||y)$ is needed. However, it is computationally difficult to guess $h(SID_j||y)$ or k_g correctly. Furthermore, even if \mathcal{A} obtains the login request message $\langle AID_i, X_i, M_1, M_2, M_3, T_i \rangle$, \mathcal{A} does not know r_2 . Thus, $V_s = h(AID_i||r_2||Y_i||sk||RM||T_s)$ cannot be computed. The proposed scheme therefore can resist gateway or sensor node impersonation attack. Sensors 2017, 17, 940 22 of 24 # 6.3.7. Illegal Smart Card Revocation/Reissue Attack Even if \mathcal{A} obtains the identity ID_i of a legitimate user U_i , \mathcal{A} cannot compute $h(C_i)$ without the value $A_i = h(R_i)$. Furthermore, GW checks the legitimacy of the user on the request identity by computing $C_i^* = h(ID_i||x||y)$ and $Z_i^* = ID_i \oplus h(C_i^*) \oplus A_i$. Therefore, even if \mathcal{A} sends the revocation/reissue request message $\langle ID_i, ID_i^*, A_a = h(R_a), Z_a = ID_i \oplus h(C_a) \oplus A_a \rangle$ to GW, \mathcal{A} fails to revoke ID_i and reissue the smart card with ID_i . The proposed scheme therefore can resist an illegal smart card revocation/reissue attack. # 6.3.8. Session Key Exposure by GW The gateway GW can intercept communication messages and obtain both $X_i = r_1 \times P$ and $Y_i = r_s \times P$. However, GW cannot derive r_1 and r_s and therefore cannot compute the common session key sk. This is because our proposed scheme based on the elliptic curve discrete logarithm problem (ECDLP). # 6.3.9. Denial of Service Attack In the proposed scheme, U_i , S_j and GW basically check for freshness of timestamp in each authentication step. Each message for verification such as M_2 , W_g and V_s includes the current timestamp T. Furthermore, each entity checks whether the calculated value is equal to the received value. The proposed scheme can resist denial of service attack. # 6.3.10. User Verification Problem GW checks for the sameness in the identity ID_i to verify the status a legitimate user U_i by computing $C_i^* = h(ID_i^*||x||y)$. Furthermore, U_i can compute constant values including $A_i = h(R_i)$ as a result of the fuzzy extractor. GW can authenticate a legal user even if the user inputs slightly different biometric information B_i^* . Our proposed scheme therefore can prevent user verification problems. # 6.3.11. Stolen Verifier Attack In the proposed scheme, GW and S_j do not store any identification, password table or user biometrics. GW stores only the master secret key (x, y), and S_j stores only $h(SID_j||y)$. The proposed scheme therefore can resist stolen verifier attacks. # 6.3.12. Replay Attack Even if the adversary A obtains the communication message, and sends them again with the current timestamps T_i , T_g , and T_s , A cannot compute M_2 , W_g , V_s using the current timestamps. The proposed scheme therefore can resist replay attacks. # 7. Performance Analysis In this section, we compare the computational costs of the proposed scheme with the other related schemes [13,14,29,30]. Table 3 shows a comparison of the computational costs of the proposed scheme with the other related schemes. In the comparisons, XOR operations are not considered because these also can be ignored. Compared to Park et al.'s scheme [14], the proposed scheme performs three further hash operations and two elliptic curve computations. However, we reduce three encryption/decryption operations. Additionally, the proposed scheme provides the revocation and reissue phase, and can resist well-known attacks. Sensors 2017, 17, 940 23 of 24 | Phases | | Choi et al. [13] | Park et al. [14] | Nam et al. [29] | Park et al. [30] | The Proposed | |--------------------------------|-------------------|--------------------------------------|------------------------------|---|-----------------------|--| | Registration | U_i GWN S_j | $T_H + T_F$ $3T_H$ | $T_H + T_F$ $2T_H + T_E$ | T_H $T_H + T_E + T_e$ - | $T_H + T_F$ $5T_H$ | $T_H + T_F$ $T_e + 3T_H$ | | Login
and
authentication | U_i GWN S_j | | $7T_H+2T_E$ | $3T_H + 3T_e + T_E + T_M$
$T_H + 2T_E + T_e + 3T_M$
$T_H + 2T_e + 2T_M$ | $11T_H$ | $6T_H + T_F + 3T_e$ $6T_H + T_e + T_E$ $4T_H + T_E + 2T_e$ | | Revocation
and
reissue | U_i GWN S_j | $T_H + T_F$ $3T_H$ | $T_H + T_F$ $2T_H + T_E$ | -
-
- | -
-
- | $T_H + T_F$ $5T_H$ | | Total cos | t | $34T_{H} + 3T_{F} + 4T_{E} + 4T_{e}$ | $23T_H + 3T_F + 5T_E + 4T_e$ | $7T_H + 4T_E + 7T_e + 6T_M$ | $31T_H + 2T_F + 4T_e$ | $26T_{H} + 3T_{F} + 2T_{E} + 6T_{e}$ | **Table 3.** Comparison of computational costs. T_e : computational time for elliptic curve computation; T_E : computational time for encryption/decryption; T_F : computational time for fuzzy extraction; T_H : computational time for hash function; T_M : computational time for massage authentication code. #### 8. Conclusions The various authentication schemes for WSNs have been proposed. Recently, Park et al. demonstrated the security vulnerabilities of Choi et al.'s scheme and proposed an enhanced authentication scheme. However, in this paper, we have identified vulnerabilities in Park et al.'s scheme in terms of impersonation and revocation/reissue. To overcome these vulnerabilities, we proposed a new biometric-based authentication scheme with improved security. Security and performance analysis shows that our proposed scheme is more secure and efficient than other related schemes. Acknowledgments: This work was supported by the Institute for Information & Communications Technology Promotion(IITP) grant funded by the Korea government (Ministry of Science, ICT and Future Planning) (No. R0126-15-1111, the Development of Risk-Based Authentication Access Control Platform and Compliance Technique for Cloud Security). **Author Contributions:** J.M., D.L. and Y.L. conceived and designed the experiments; J.M. performed the experiments; J.M. and D.L. analyzed the data; and J.M. and D.W. wrote the paper. Conflicts of Interest: The authors declare no conflict of interest. # References - 1. Yick, J.; Mukherjee, B.; Ghosal, D. Wireless sensor network survey. Comput. Netw. 2008, 52, 2292–2330. - 2. Watro, R.; Kong, D.; Cuti, S.; Gardiner, C.; Lynn, C.; Kruus, P. TinyPK: Securing sensor networks with public key technology. In Proceedings of the 2nd ACM Workshop on Security of Ad Hoc and Sensor Networks, Washington, DC, USA, 25 October 2004; pp. 59–64. - 3. Wong, K.; Zheng, Y.; Cao, J.; Wang, S. A dynamic user authentication scheme for wireless sensor networks. In Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, Taichung, Taiwan, 5–7 June 2006; Volume 1, pp. 1–8. - Tseng, H.; Jan, R.; Yang, W. An improved dynamic user authentication scheme for wireless sensor networks. In Proceedings of the Global Telecommunications Conference, Washington, DC, USA, 26–30 November 2007; pp. 986–990. - 5. Das, M. Two-factor user authentication in wireless sensor networks. *IEEE Trans. Wirel. Commun.* **2009**, *8*, 1086–1090. - 6. He, D.; Gao, Y.; Chan, S.; Chen, C.; Bu, J. An enhanced two-factor user authentication scheme in wireless sensor networks. *Ad Hoc Sens. Wirel. Netw.* **2010**, *10*, 361–371. - 7. Khan, H.; Alghathbar, K. Cryptanalysis and security improvements of 'two-factor user authentication in wireless sensor networks'. *Sensors* **2010**, *10*, 2450–2459. Sensors **2017**, *17*, 940 24 of 24 8. Chen, T.; Shih, W. A robust mutual authentication protocol for wireless sensor networks. *ETRI J.* **2010**, 32, 704–712. - 9. Yuan, J.; Jiang, C.; Jiang, Z. A biometric-based user authentication for wireless sensor networks. *Wuhan Univ. J. Nat. Sci.* **2010**, *15*, 272–276. - 10. Yoon, E.; Yoo, K. A new biometric-based user authentication scheme without using password for wireless sensor networks. In Proceedings of the 20th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative, Paris, France, 27–29 June 2011; pp. 279–284. - 11. He, D.; Zhang, Y.; Chen, J. Robust biometric-based user authentication scheme for wireless sensor networks. *IACR Cryptol. ePrint Arch.* **2012**, 2012, 203–217. - 12. Yoon, E.; Kim, C. Advanced biometric-based user authentication scheme for wireless sensor networks. *Sens. Lett.* **2013**, *11*, 1836–1843. - 13. Choi, Y.; Lee, Y.; Won, D. Security improvement on biometric based authentication scheme for wireless sensor networks using fuzzy extraction. *Int. J. Distrib. Sens. Netw.* **2016**, 2016, 1–16. - 14. Park, Y., Lee, S.; Kim, C.; Park, Y. Secure biometric-based authentication scheme with smart card revocation/reissue for wireless sensor networks. *Int. J. Distrib. Sens. Netw.* **2016**, *12*, 1–11. - 15. Koblitz, N. Elliptic curve cryptosystems. Math. Comput. 1987, 48, 203-209. - 16. Miller, V. Use of elliptic curves in cryptography. Adv. Cryptol. 1985, 218, 417–426. - 17. Dolev, D.; Yao, A. On the security of public key protocols. IEEE Trans. Inf. Theory 1983, 29, 198-208. - 18. Moon, J.; Choi, Y.; Jung, J.; Won, D. An improvement of robust biometrics-based authentication and key agreement scheme for multi-server environments using smart cards. *PLoS ONE* **2015**, *10*, 1–15. - 19. Choi, Y.; Lee, D.; Kim, J.; Jung, J.; Nam, J.; Won, D. Security enhanced user authentication protocol for wireless sensor networks using elliptic curves cryptography. *Sensors* **2014**, *14*, 10081–10106. - 20. Kocher, P.; Jaffe, J.; Jun, B.; Rohatgi, P. Introduction to differential power analysis. *J. Cryptogr. Eng.* **2011**, *1*, 1–23. - 21. Das, A. A secure and effective biometric-based user authentication scheme for wireless sensor networks using smart card and fuzzy extractor. *Int. J. Commun. Syst.* **2015**, 2015, 1–25. - 22. Wang, C.; Zhang, X.; Zheng, Z. Cryptanalysis and
improvement of a biometric-based multi-server authentication and key agreement scheme. *PLoS ONE* **2016**, *11*, 1–25. - 23. Dodis, Y.; Kanukurthi, B.; Katz, J.; Smith, A. Robust fuzzy extractors and authenticated key agreement from close secrets. *IEEE Trans. Inf. Theory* **2013**, *58*, 6207–6222. - 24. Dodis, Y.; Reyzin, L.; Smith, A. Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. In Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, 2–6 May 2004; pp. 523–540. - 25. Das, A. A secure and effective user authentication and privacy preserving protocol with smart cards for wireless communication. *Netw. Sci.* **2013**, *2*, 12–27. - 26. von Oheimb, D. The high-level protocol specification language hlpsl developed in the eu project avispa. In Proceedings of the Applied Semantics 2005 Workshop, Frauenchiemsee, Germany, 12–15 September 2005; pp. 1–17. - 27. Avispa Tool Documentation. Automated Validation of Internet Security Protocols and Applications. Available online: http://www.avispa-project.org/ (accessed on 28 March 2016). - 28. Zhu, H.; Hao, X. A provable authenticated key agreement protocol with privacy protection using smart card based on chaotic maps. *Nonlinear Dyn.* **2015**, *81*, 311–321. - 29. Nam, J.; Kim, M.; Park, J.; Lee, Y.; Won, D. A provably-secure ECC-based authentication scheme for wireless sensor networks *Sensors* **2014**, *14*, 21023–21044. - 30. Park, Y.; Park, Y. Three-factor user authentication and key agreement using elliptic curve cryptosystem in wireless sensor networks. *Sensors* **2016**, *16*, 2123. © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).