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Abstract

Protein thermostability engineering is a powerful tool to improve resistance of proteins

against high temperatures and thereafter broaden their applications. For efficient protein

thermostability engineering, different thermostability-classified data sources including

sequences and 3D structures are needed for different protein families. However, no data

source is available providing such data easily. It is the first release of ProtDataTherm data-

base for analysis and engineering of protein thermostability which contains more than 14

million protein sequences categorized based on their thermal stability and protein family.

This database contains data needed for better understanding protein thermostability and

stability engineering. Providing categorized protein sequences and structures as psychro-

philic, mesophilic and thermophilic makes this database useful for the development of new

tools in protein stability prediction. This database is available at http://profiles.bs.ipm.ir/

softwares/protdatatherm. As a proof of concept, the thermostability that improves mutations

were suggested for one sample protein belonging to one of protein families with more than

20 mesophilic and thermophilic sequences and with known experimentally measured ΔT of

mutations available within ProTherm database.

Introduction

Thermophilic and hyper thermophilic microorganisms have become attractive to scientists

specifically after reporting the microorganisms living at temperatures higher than 75˚C (1).

The extracted enzymes from such high temperature tolerating microorganisms have been

studied to understand modulating factors of their improved thermostability and then to use it

as a guidance for improving thermostability of proteins with lower thermal stability for bio-

technological applications [1]. The knowledge about the preferred living temperature of
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microorganisms can help to approximate thermostability criteria of their expressed proteins

and a direct relationship between the growth temperature of microorganisms and the melting

point of their corresponding proteins [2]. Currently available data on homologous proteins are

valuable for engineering of proteins to gain higher stability by for example introducing more

salt-bridges or strengthening the hydrophobic cores within protein structure [3]. Although

structure-based protein engineering, known as rational engineering or rational design, is the

most popular methodology for thermostability engineering of proteins, the limited number of

available protein structures is still a challenge to prevalent utilization of the methodology [4].

On the other hand, because of modern advances in DNA sequencing technologies, the number

of sequenced proteins belonging to different families is growing rapidly [3, 5]. Advances in

applications of protein sequences for protein engineering could assist the existing routine

structure-based rational methods. The consensus concept (CC) is the most popular sequence-

based protein engineering approach to extract thermo-stabilizing mutations out of homolo-

gous sequences [6–17]. In CC approach, a multiple sequence alignment (MSA) is first made

and then non-consensus residues are substituted by the most frequently occurring amino

acids [5]. However, there is no guarantee that all suggested mutations induced by CC approach

can increase thermostability [9, 14, 16, 18]. To detect thermo-stabilizing mutations with higher

probability, one can take the advantage of comparing the target sequence with homologues tol-

erant at higher temperatures [3]. To make it feasible for different families of proteins, one

needs to have access to other proteins from the same family with a higher thermal stability.

However, the main challenge using this method is the difficulty in finding homologues with a

label showing the thermostability category. To overcome this challenge, we developed a com-

prehensive database that contains protein sequences that belongs to different microorganisms

and clustered based on the Pfam ID. The user can find the Pfam ID of a protein of interest and

find its homologues, categorized as psychrophilic, mesophilic and thermophilic. In addition to

sequences, PDB IDs are also provided if a 3D structure is available for the Pfam ID of interest.

Materials and methods

First, a database was made for microorganisms such that each microorganism is categorized

based on its growth temperature (GT) using BacDive [19] and NCBI [20] databases. For every

microorganism, all available sequences with their corresponding sequence information,

including Pfam ID [21] and PDB ID [22], if available, were obtained from UniProt database

[23]. All the process was conducted using python programming language [24], incorporating

Biopython module [25] (Fig 1).

In our database, all protein sequences have two labels: Pfam IDs and thermostability cate-

gory. To facilitate the use of the database for thermostability analysis and engineering,

Fig 1. Flowchart of the database formation.

https://doi.org/10.1371/journal.pone.0191222.g001
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sequences are clustered based on their Pfam IDs. For each Pfam ID cluster, we can find pro-

teins from the same family labeled with their thermostability category. Therefore, for a target

protein sequence, the user can find the corresponding Pfam ID from the Pfam database [21]

and uses the Pfam ID as the primary input to search over the database. For each Pfam ID fam-

ily, we categorized sequences based on their Uniprot IDs as psychrophilics (GT< 20˚C), meso-

philics (20˚C < GT< 40˚C), and thermophilic (40˚C <GT). For each protein family, the

available PDB structures are shown and categorized like sequences. All sequence IDs, protein

family IDs, and PDB IDs, are UniProt, Pfam and RCSB IDs, respectively.

For the case study, first, Pfams containing more than 20 mesophilic and thermophilic

sequences were found. Then, for pattern analysis, the AXB patterns were considered in each

sequence where A and B can be any of 20 standard amino acids and X is a separation number

between 0 and 10. Therefore, A0B means all double amino acid compositions that are subse-

quent like VE, and A1B patterns are all double amino acid compositions that there is one

amino acid between them. For example, all patterns with Ala as the first amino acid, Val as the

second, and with only one amino acid spacing between Ala and Val from the 20 standard

amino acids are considered as A1V. The condition 0 =<X =<10 was used for the spacing val-

ues. Furthermore, for any of sequences in mesophilic and thermophilic sequences, the number

of occurring AXB patterns were counted and saved for each sequence. Finally, we have a

group of data for both mesophilic and thermophilic sequences with the corresponding pat-

terns. Therefore, for a given AXB (e.g. V4H pattern), there is one group of numbers for meso-

philic and thermophilic categories with their corresponding average number. The Rank Sum

test with critical p-value of 0.05 was used to detect AXB patters and distinguish mesophilic

sequences from thermophilic sequences.

Results and discussion

A PHP webpage is designed as the user interface to access the database. The user can find the

Pfam ID for a protein of interest (e.g. using Pfam database) and search it in the first page of the

website (Fig 2, panel A). The results are then presented in the next page including all available

sequences and structures within the database for the submitted Pfam ID (Fig 2, panel B). The

database contains more than 14 million protein sequences and PDB structures for 9962 pro-

tein family, categorized based on their thermal stability as psychrophilic, mesophilic and ther-

mophilic (Table 1). Totally, there are 14155392 protein sequences and 30950 PDB structures

available in the database. For 957 members of protein families there is at least one PDB struc-

ture available for a thermophilic protein that can be used for structural comparison between

mesophilic and thermophilic proteins (Table 1). In addition, for 3355 protein families there

are at least 20 sequences belonging to thermophilic proteins as well as 3046 protein families

with at least 20 sequences belonging to psychrophilic proteins. For such protein families, we

can use amino acid content comparison between psychrophilic/mesophilic and mesophilic/

thermophilic proteins to gain protein family-based specific knowledge of thermostability mod-

ulating factors.

Other databases

Two databases, namely PGTdb [26] and Protherm [27], are presently available to provide data

concerning protein thermostability. To the knowledge of authors, the PGTdb database is not

presently available while it was the only resource that could provide experimental information

about thermostability classification of protein sequences based on GT of their corresponding

organisms (psychrophilic, mesophilic and thermophilic). On the other hand, ProTherm data-

base provides thermodynamics data for mutagenesis but only for a limited number of proteins.

Database for thermostability engineering
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Our database contains much higher number of microorganisms, protein sequences and PDB

structures. This database categorizes all the sequences for different Pfam families according to

their thermostability criteria and provides easier access to the needed data for analysis and

engineering of protein families.

Case study: Pattern recognition for protein engineering

One important goal of all thermostability analysis is to understand how one can take advantage

of the knowledge from analysis of the differences between two categories, engineer mesophilics

by minimum number of mutations, and enhance protein thermostability towards thermo-

philic sequences. Here, as a case study, we selected a protein belonging to one of those protein

families with more than 20 mesophilic and thermophilic sequences where its ΔT of mutations

is experimentally available within ProTherm database. In the ProTherm database, ribonuclease

Fig 2. The view of the webpage. A) Users can enter the Pfam ID as input at the first page. B), All available sequences and structures are presented for different classes at

the result page.

https://doi.org/10.1371/journal.pone.0191222.g002

Table 1. The distribution of protein sequences and structures over the three classes of thermostability.

Mesophilic sequences 13111756

Thermophilic sequences 661072

Psychrophilic sequences 382564

Mesophilic structures 23069

Thermophilic structures 7741

Psychrophilic structures 140

Pfams with at least one Mesophilic structure 2306

Pfams with at least one Thermophilic structure 957

Pfams with at least one Psychrophilic structure 82

Pfams with at least 20 Thermophilic sequence 3355

Pfams with at least 20 Psychrophilic sequence 3046

https://doi.org/10.1371/journal.pone.0191222.t001
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H from Escherichia Coli (strain K12) (with PDB_ID of 2RN2, solved using X-ray diffraction,

resolution 1.48Å) was selected. Ribonuclease belongs to Pfam ID of PF00075, with the reported

ΔT upon mutation using thermal experiments and is amongst the proteins with the highest

number of reported thermodynamic measurements for the effect of mutations on its stability.

An algorithm (Algorithm 1) is designed to suggest thermostability improving mutations:

for all AXB patterns with meaningful population difference between mesophilic and thermo-

philic sequences in the family (Pfam ID of PF00075) (see methods for definition of meaningful

population difference), we chose those AXB patterns that have a higher average number of

repeats than mesophilic within thermophilic category. We then found AXY patterns in the tar-

get sequence (ribonuclease H from Escherichia Coli) that the Y is not equal to B in the pattern.

For these selected patterns, we suggest Y!B mutation. The same approach was used for ZXB

to suggest Z!A mutations. If the mutation was available in the ProTherm database, the ΔT

value was checked. If ΔT> 0, the suggested mutation was considered as a successful thermo-

stability improving suggestion and if ΔT< 0, it was defined as a failed suggestion. The results

are shown in Table 2 where 72% of the suggested mutations can improve thermostability. This

result confirms that the proposed method can be considered as a sequence-based thermostabil-

ity engineering method only if we have categorized sequences as thermophilic and mesophilic

for protein family of the target proteins. The accuracy of the suggested mutations for thermo-

stability engineering is expected to be improved over such a database by recruiting more com-

plicated methods like machine learning techniques. However, further studies with

incorporation of more proteins from diverse range of protein families should be conducted to

better evaluate the accuracy of this method.
Algorithm 1. Thermostability improving mutation suggestion algorithm.
Input. Protein sequence, P-fam ID, and thermophilic and mesophilic
distinguishing AXB patterns for the P-fam ID
Output. Mutation list
for all AXB patterns for the P-fam ID do:

if AXBthermophilic
average > AXBmesophilic

average then:
find AXY or ZXB patterns in the target sequence where Y is
not B or Z is not A
add Y ! B or Z ! A to mutation list

end
end
return mutation list

Applications

The database developed in this work can be used for building protein thermostability mutation

libraries using different approaches like CC and also comparison of the target sequence with

its homologues with higher thermostability [17, 28, 29]. In addition, it can be used for systemic

analysis of modulating factors of thermostability [30–32] for different families, while thermo-

stability modulating factors can vary from family to family [3]. Furthermore, it is noteworthy

that while the thermophilic sequence belongs to microorganisms that are tolerant to harsh

conditions in general and not only to temperature, these data can be used for optimization of a

target sequence for new applications under other harsh conditions than temperature, like

intense pH and high concentration of salts. Altogether, this database provides the most impor-

tant needed data for sequence-based protein engineering and analysis for researchers to

develop new analysis and engineering tools in the field of thermal stability. This database is

not only useful for general industrial and research purposes but also applicable for drug design

[17, 33, 34]
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Table 2. Ave_The: Average of the number of patterns for thermophilic sequences, Ave_Mes: Average of the number of patterns for mesophilic sequences.

Pattern Positions on Sequence Mutation ΔT P_value Ave_The Ave_Mes

ER 61 E, H 62 H 62 R 1.3 0.0032 1.782 1.474

LR 74 V, R 75 V 74 L 3.7 0.0106 1.773 1.492

LE 134 D, E 135 D 134 L 5.5 0.0007 1.918 1.437

NK 95 K, K 96 K 95 N 3.2 0.00841 1.951 1.43

SI 52 A, I 53 A 52 S -5.8 0.04146 1.579 1.21

SG 10 D, G 11 D 10 S 9.2 0.0083 1.836 1.63

KI 52 A, I 53 A 52 K 19.5 0.0398 2.385 1.69

EG 10 D, G 11 D 10 E 3.8 0.012 1.74 1.376

F1E 8 F, D 10 D 10 E 3.8 0.0199 1.463 1.242

F1S 8 F, D 10 D 10 S 9.2 0.0186 1.767 1.284

C2N 41 R, N 44 R 41 C 1.6 0.0002 1.282 1.052

A2Y 70 D, Y 73 D 70 A 3.8 0.004 1.647 1.304

E2Y 70 D, Y 73 D 70 E 1.8 0.0331 1.583 1.12

E2C 10 D, C 13 D 10 E 3.8 0.008 1.409 1

L2N 49 L, A 52 A 52 N -5.9 0.0323 1.617 1.301

L2N 67 L, D 70 D 70 N 5.5 0.0323 1.617 1.301

V2K 119 E, K 122 E 119 V 2.7 0.0379 1.635 1.264

N3I 130 N, D 134 D 134 I 4.6 0.0281 1.667 1.246

N3N 130 N, D 134 D 134 N 6.4 0.0004 1.658 1.265

N3E 130 N, D 134 D 134 E 3.1 0.0353 1.757 1.557

N3V 130 N, D 134 D 134 V 4.1 0.0031 1.541 1.299

N3V 70 D, V 74 D 70 N 5.5 0.0031 1.541 1.299

R3V 91 K, K 95 K 91 R 0.5 0.0005 1.554 1.26

V3Y 24 A, Y 28 A 24 V 3.2 0.0419 1.638 1.136

E3V 48 E, A 52 A 52 V 7.8 0.0133 2.023 1.852

E3V 64 E, S 68 S 68 V 1.9 0.0133 2.023 1.852

E3V 70 D, V 74 D 70 E 1.8 0.0133 2.023 1.852

E3V 94 D, V 98 D 94 E -1.2 0.0133 2.023 1.852

Y3L 52 A, L 56 A 52 Y -7.6 0.0146 1.636 1.082

C4E 52 A, E 57 A 52 C 2.5 0.0175 1.4 1

V4Y 68 S, Y 73 S 68 V 1.9 0.0162 1.528 1.079

N4R 70 D, R 75 D 70 N 5.5 7.34E-09 1.587 1.155

N4K 130 N, E 135 E 135 K -0.8 6.92E-05 2.329 1.678

N4E 52 A, E 57 A 52 N -5.9 0.0127 1.664 1.317

Q5N 4 Q, D 10 D 10 N 6.8 0.0361 1.696 1.16

E5N 64 E, D 70 D 70 N 5.5 0.00257 1.615 1.36

E5V 10 D, N 16 D 10 E 3.8 0.0025 1.615 1.3

E5N 94 D, N 100 D 94 E -1.2 0.0025 1.615 1.36

R5P 46 R, A 52 A 52 P -5.4 0.0499 1.37 1.217

R5P 91 K, P 97 K 91 R 0.5 0.0499 1.37 1.217

R5I 46 R, A 52 A 52 I 6.2 0.0299 1.429 1.206

R5Y 46 R, A 52 A 52 Y -7.6 0.0176 1.483 1.116

L5P 56 L, H 62 H 62 P 4.1 0.0009 1.59 1.316

L5P 107 L, Q 113 Q 113 P -0.6 0.0009 1.59 1.316

L5L 80 Q, K 86 Q 80 L 1 0.0001 2.102 1.618

K6E 3 K, D 10 D 10 E 3.8 0.027 2.111 1.712

K6E 87 K, D 94 D 94 E -1.2 0.027 2.111 1.712

(Continued)
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Conclusions

Here we present the first release of ProtDataTherm database that contains more than 14 mil-

lion protein sequences and structures belonging to microorganisms with different preferred

living temperatures. All sequences and structures are labeled as psychrophilic, mesophilic and

thermophilic. For ease of use, the sequences are classified based on their Pfam IDs. Users can

find homologous sequences for their protein of interest by knowing its Pfam ID. This database

can be applied not only for probing stability modulating factors within protein families but

also for knowledge-based protein stability engineering.

Availability

This database is available at http://profiles.bs.ipm.ir/softwares/protdatatherm. The database

can be accessible free of charge for academic users on demand.
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