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Abstract

The study of binding kinetics via the analysis of fluorescence time traces is often con-
founded by measurement noise and photophysics. Although photoblinking can be mitigated
by using labels less likely to photoswitch, photobleaching generally cannot be eliminated.
Current methods for measuring binding and unbinding rates are therefore limited by con-
current photobleaching events. Here, we propose a method to infer binding and unbinding
rates alongside photobleaching rates using fluorescence intensity traces. Our approach is a
two-stage process involving analyzing individual regions of interest (ROIs) with a Hidden
Markov Model to infer the fluorescence intensity levels of each trace. We then use the in-
ferred intensity level state trajectory from all ROIs to infer kinetic rates. Our method has
several advantages, including the ability to analyze noisy traces, account for the presence
of photobleaching events, and provide uncertainties associated with the inferred binding ki-
netics. We demonstrate the effectiveness and reliability of our method through simulations
and data from DNA origami binding experiments.
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1 Introduction

Figure 1: Illustration of a fluorescence intensity time trace. A hypothetical fluorescence intensity
trace from a fluorescent ligand binding experiment. Circles are drawn around the three key
regions indicating a binding event, an unbinding event, and a photobleaching event, respectively.
Of note is the inability to distinguish unbinding from bleaching by eye.

The study of binding kinetics is critical to understanding the behavior of biological systems
and chemical reactions at the molecular level. For instance, accurate determination of binding
kinetics can provide valuable insights into the mechanisms of protein self-assembly [1, 2, 3, 4],
enzymatic and protein-protein interactions [5, 6, 7, 8, 9, 10], DNA-protein interactions and gene
expression [11, 12, 13], nuclear breakdown during mitosis [14], nuclear pore complex (NPC) as-
sembly [15, 16, 17], and the signaling mechanism and cell response via receptor clustering and
protein recruitment [18, 19] among others. Likewise, binding rates are essential to understand
and control reactions in chemistry, including but not limited to nanocatalysis [20, 21], poly-
merization catalysis [22] and fundamental reaction mechanisms [23, 24, 25]. Currently, several
techniques exist for measuring binding kinetics, including surface plasmon resonance [26, 27],
and fluorescence correlation spectroscopy [28, 29, 30, 31], among others [32]. However, these
methods have limitations, such as the difficulty in analyzing data in the low signal-to-noise ratio
(SNR) regime or their inability to account for photophysical events including photobleaching, or
simply termed bleaching, which may be confounded with unbinding.

Quantifying the stoichiometric fluctuations of clusters [33, 34, 35, 36, 37, 38, 39] is another
important motivation for studying binding kinetics. Here, super-resolution methods such as
PALM, dSTORM, and qPAINT provide means to estimate the stoichiometry of proteins clus-
ters [40, 41, 42, 43] albeit mostly limited to static structures, e.g., fixed cells. Hidden Markov
models [44] can be used to infer transition probabilities, but in the presence of photophysics,
these do not directly translate to rates which becomes relevant when studying faster events.
Moreover, current methods for inferring binding kinetics are prone to deviations, such as over-
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estimating unbinding probabilities, in their estimates due to binding kinetics and photophysical
effects, such as photobleaching (figure 1).

Here, we propose a method to achieve accurate binding rates while considering photobleach-
ing. We focus on inferring rates instead of transition probabilities because rates allow us to
disentangle the kinetic contributions of binding from bleaching [45, 46]. Concretely, to model
the stoichiometry of assemblies, we assume two photophysical states (bright and photobleached)
and two binding states (bound and unbound) for each monomer. An illustration of our system
can be found in figure 1. Our method determines the stoichiometry of assemblies by inferring
binding rates alongside the photobleaching rates from intensity fluctuations over time. To achieve
this, our method analyzes the sum of intensities of pixels around individual regions of interest
(ROI) to infer state trajectory of the system, including both photobleaching and binding states
for each ROI alongside all the rates. Such intensity traces are often given as a convolution of noisy
measurement of photon counts over time due to photon shot noise and noises intrinsic to the
detector devices such as readout noise [47]. Moreover, the kinetics of binding and fluorophore
photobleaching are inherently random processes leading to additional layers of noise. We are
able to separate the unbinding rates from photobleaching rates by utilizing information about
the laser intensity of each trace. As such, we adopt a Bayesian framework to account for all the
sources of uncertainty inherent to the problem. In particular, we leverage the Hidden Markov
model (HMM) within a Bayesian framework to deal with the input noisy intensity traces [48, 49,
44, 50].

For the sake of computational efficiency, our framework consists of two parts or modules: in
the first part, we learn the state trajectories using the noisy input data; in the second part, we
use the inferred state trajectories to learn the rates. An important advantage of this two-step
framework is that it allows us to simultaneously analyze different ROIs with different intensity
statistics, drastically speeding up computation through parallelization. In this work, we illustrate
the two-stage mathematical framework of our method and construct the likelihood and posterior.
After which, we focus on the inverse model and benchmark our method using synthetic data,
and in vitro experimental data obtained from DNA origami experiments.

2 Methods

2.1 Computational Methods

Our computational method is divided into two modules: State Inference and Rate Inference. In
State Inference, for each individual ROI we determine how many fluorophores are present in the
bright state at each time point given the intensity trace of the ROI. We then consolidate and pass
these results to our Rate Inference step, where we use the state trajectories to infer the binding
rates and photobleaching rates for the system. While in principle we could combine these two
steps into a single analysis, inputting raw intensity traces to output rates, we break them up to
drastically speed up computation via parallelization. The loss in accuracy due to splitting the
analysis into two stages will be minimal, so long as data are in a regime where the brightness
steps are clear in the intensity traces. On the other hand, if the SNR in the data is too low, then
our analysis may fail, for example, if the standard deviation of the noise is much larger than the
size of a step.
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Figure 2: Graphical model of our analysis. Nodes (circles) represent random variables. Dark
nodes represent measurements. Arrows between nodes represent conditional dependence. Plates
(dashed rectangles) around nodes represent groupings of variables, which are repeated along the
index in the lower right corner. In the top of this figure we present our graphical model for State
Inference. In the bottom of this figure we present our graphical model for Rate Inference. All
variables are defined in the main body.

2.1.1 State Inference

In the State Inference step of our analysis, we take in an intensity trace and output the state
trajectory, which is the number of bright fluorophores at each time point. We define x1:N , the
“brightness trace”, to be the ROI’s intensity at each time level with xn the intensity at time
n. We also define b1:N , which we will refer to as the “state trace”, to represent the number of
bright fluorophores across the time points of the measurement where bn is the number of bright
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fluorophores in the ROI at time n. Our goal in the State inference step is to find the most
probable state trace, b1:N , given a brightness trace, x1:N .

In order to find the most probable state trace, b1:N , given a brightness trace, x1:N , we use
Bayes’ theorem

P (b1:N ,Θ|x1:N ) ∝P (x1:N |b1:N ,Θ)P (b1:N |Θ)P (Θ) (1)

where Θ are model parameters and we split the posterior, P (b1:N ,Θ|x1:N ), into a likelihood,
P (x1:N |b1:N ,Θ), a prior over brightness trace, P (b1:N |Θ), and a prior over model parameters
defined shortly, P (Θ). For the likelihood, we assume each measurement independent and nor-
mally distributed around a mean given by the background plus the number of bright fluorophores,

P (x1:N |b1:N ,Θ) =P
(
x1:N |b1:N , µf , µb, σ

2
)

(2)

=
N∏

n=1

P
(
xn|bn, µf , µb, σ

2
)

(3)

=
N∏

n=1

Normal
(
xn;µb + µfbn, σ

2
)

(4)

where we have introduced three variables: the fluorophore brightness, µf , the background bright-
ness, µb, and the noise σ2. We will model the prior over fluorescence intensity trace as a Hidden
Markov Model in which each state is categorically distributed according to the state at the
previous time level [44],

P (b1:N |Θ) =P (b1:N |π,π0) (5)

=P (b1|π0)
N∏

n=2

P (bn|bn−1,π) (6)

=Categorical (b1;π0)
N∏

n=2

Categorical
(
bn;πbn−1

)
(7)

where we have introduced two variables: the state transition matrix, π, and an array of starting
probabilities π0. The quantity πbn−1

is interpreted as the “row of π corresponding to the state
at time level n−1”. Each element, πij , of π represents the probability that a time step will have
j fluorophores given that the previous time step had i fluorophores. While in principle, there
could be an unlimited number of fluorophores in the ROI at a given time step, in practice we
will cap the possible number of fluorophores to M , meaning that π is a M +1 by M +1 matrix
(since we include 0 fluorophores as a possibility). The full set of parameters can now be defined
to include Θ = {µf , µb, σ

2,π0,π}.
Working in the Bayesian paradigm, we must assign priors over the variables: µf , µb, σ

2,
π0, and π. We choose a Gaussian over µf and µb, an inverse gamma for σ2, and Dirichlet
distributions for π0 and each row of π, since they are the suitable conjugate priors of their
respective likelihood distributions [44],

P (Θ) =P
(
µf , µb, σ

2,π0,π
)

=P (µf )P (µb)P
(
σ2
)
P (π0)P (π) (8)
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where the individual priors are given by

P (µf ) =Normal
(
µf ;αµf

, βµf

)
(9)

P (µb) =Normal (µb;αµb
, βµb

) (10)

P
(
σ2
)
=InvGamma

(
σ2;ασ2 , βσ2

)
(11)

P (π0) =Dirichlet (π0;α0) (12)

P (πi) =Dirichlet (πi;αi) for m in 1, 2, ...,M (13)

and where the α’s and β’s are hyperparameters. Altogether, the posterior over b1:N and Θ now
reads

P (b1:N ,Θ|x1:N ) ∝P
(
x1:N |b1:N , µf , µb, σ

2
)
P (b1:N |π,π0)P

(
µf , µb, σ

2,π0,π
)

(14)

=Normal
(
x1;µb + µfb1, σ

2
)
Categorical (b1;π0)

×

(
N∏

n=2

Categorical
(
bn;πbn−1

)
Normal

(
xn;µb + µfbn, σ

2
))

×Normal
(
µf ;αµf

, βµf

)
Normal (µb;αµb

, βµb
)

× InvGamma
(
σ2;ασ2 , βσ2

)
×

(
M∏

m=0

Dirichlet (πi;αi)

)
. (15)

In the top of figure 2, we present our posterior as a graphical model [44]. In the graphical model,
nodes (circles) represent random variables, and arrows represent conditional dependence.

We wish to find the value of b1:N that maximize equation (15), which we will refer to as the
maximum a posteriori (MAP) sample. We will do so using Gibbs sampling [44], where we start
with an initial guess then iteratively propose new values for variables, accepting and rejecting
according to a ratio of the probabilities. We use Gibbs sampling, as opposed to optimization, to
avoid local minima in our posterior. The algorithm is as follows:

• Start with initial set of variables, Θ(0) = {b(0)1:N , µ
(0)
f , µ

(0)
b , σ2(0),π

(0)
0 ,π(0)}.

• Set the MAP sample to this value, ΘMAP = Θ(0).

• For many iterations i:

– Propose a new set of parameters Θ′ based on a proposal distribution q(Θ′|Θ(i−1)).

– Calculate the acceptance ratio a, defined as:

a = min

(
1,

P (Θ′)q(Θ(i−1)|Θ′)

P (Θ(i−1))q(Θ′|Θ(i−1))

)
(16)

where P (Θ) represents the posterior probability of the parameters and q(Θa|Θb) rep-
resents the proposal distribution.

– Accept or reject the new parameter set Θ′ with probability a.

– Compare Θ(i) to ΘMAP . If P (Θ(i)) > P (ΘMAP ), update ΘMAP = Θ(i).

• The final ΘMAP is the estimate for the maximum a posteriori value.

The final bMAP
1:N is the state trace. All the state traces are then fed into the next step, Rate

Inference.
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2.1.2 Rate Inference

Once we have state traces for each ROI, we are ready to estimate the binding and photobleaching
rates governing transitions. Here we assume there are R ROIs, with state traces b1:R1:N where br1:N
is the state trace of ROI r and brn is the number of fluorophores in ROI r at time level n. We wish
to infer the binding rate, kbind, the unbinding rate, kun, and the photobleaching rate, kbleach given
the state traces, b1:R1:N , as well as the laser intensity of each trace, λ1:R, and the concentration of
binding agent at each trace, c1:R.

We again invoke Bayes’ theorem to decompose the probability of our target rates, kbind, kun,
and kbleach, given the state traces, b1:R1:N into a likelihood and prior

P
(
k|b1:R1:N ,λ1:R, c1:R

)
∝P

(
b1:R1:N |k|λ1:R, c1:R

)
P (k) (17)

=P (k)
R∏

r=1

P
(
br1:N |k,λ1:R, c1:R

)
(18)

where k is the grouping of all rates (kbind, kun, and kbleach) and we have assumed that the
likelihoods governing different ROIs are independent.

We now determine the likelihood of an ROI’s state trace br1:N . The state at each time point, brn,
represents the number of fluorophores that are bright at the time level n. However, there are many
different configurations of fluorophore binding and photophysics that can give rise to a single brn.
For example, even if we see only one bright fluorophore there could be other fluorophores bound
in a photobleached state. We call brn a “macrostate” and denote all fluorophore configurations,
srn, a “microstate”, where a fluorophore configuration is the number of bright and photobleached
fluorophores bound at the time level. We let Bright(srn) and Bleached(srn) be two functions
selecting the number of bright and photobleached fluorophores in the microstate. We can then
enumerate the possible microstates as follows

Σ1 ={0 Bright, 0 Photobleached}
Σ2 ={1 Bright, 0 Photobleached}
Σ3 ={0 Bright, 1 Photobleached}
Σ4 ={2 Bright, 0 Photobleached}
Σ5 ={1 Bright, 1 Photobleached}

...
...

where Σi is the ith macrostate, and we enumerate up until we exhaust all M available fluo-
rophores. The likelihood of a state trace, br1:N is the probability of a microstate trace that gives
rise to the observed macrostate trace, marginalized over all possible microstate traces. Assuming
that microstates follow a Hidden Markov Model this becomes,

P (br1:N |k) =
∑
sr
1:N

P (br1:N |s1:Nr ,k,λr, cr) (19)

=
∑
sr
1:N

P (br1|sr1)P (sr1|k,λr, cr)
N∏

n=2

P (brn|srn)P
(
srn|srn−1,k,λ

r, cr
)

(20)

where sr1:N represents the full microstate trace. In the bottom of figure 2, we present our posterior
as a graphical model [44]. In the graphical model, nodes (circles) represent random variables, ar-
rows represent conditional dependence, and the plate (rectangle) represents groupings of random
variables repeated over an index.
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Equation (20) requires a form for the probability of microstate given a macrostate. The
probability of the microstate given a macrostate is simply an indicator function, or delta function,
equal to 1 when the number of bright fluorophores in the microstate is equal to the macrostate
and 0 otherwise

P (bn|srn) =δbrn,Bright(srn)
(21)

where δij is the Kronecker delta. The microstate transition probability is calculated using the
transition rates, kbind, kun, kbleach. Assuming one event per time level per ROI there are only
four possible events: no transition, bright fluorophore binding, bright fluorophore unbinding, and
photobleached fluorophore unbinding. We exclude the possibility of photobleached fluorophores
binding, which is assumed to be rare. Letting Bright(srn) and Bleached(srn) be functions which
count the number of bright and photobleached fluorophores in state srn respectively, we can
calculate the probability of each event as follows

ktot(s
r
n, λ

r, cr) =(Bright(srn) + Bleached(srn))kun

+ crkbind + λrBright(srn)kbleach (22)

P (No Event|srn,k) =1−
∫ ∆t

0

dTktot(s
r
n, λ

r, cr)e−ktot(s
r
n,λ

r,cr)T (23)

=ktot(s
r
n, λ

r, cr)∆tektot(s
r
n,λ

r,cr)∆t (24)

=P0(s
r
n) (25)

P (Bright binding|srn,k, λr, cr) =(1− P0(s
r
n))

kbind
ktot(srn, λ

r, cr)
(26)

P (Bright unbinding|srn,k, λr, cr) =(1− P0(s
r
n))

Bright(srn)kun
ktot(srn, λ

r, cr)
(27)

P (Bleached unbinding|srn,k, λr, cr) =(1− P0(s
r
n))

Bleached(srn)kun
ktot(srn, λ

r, cr)
(28)

P (Photobleaching|srn,k, λr, cr) =(1− P0(s
r
n))

Bright(srn)kbleach
ktot(srn, λ

r, cr)
(29)

where ktot(s
r
n, λ

r, cr) is the total rate, P0(s
r
n) is the probability of a self transition (calculated

as 1 minus the probability of an exponentially distributed event), and the remaining events are
calculated according to their relative rates [51]. We note that the total binding rate is assumed
to scale linearly with the concentration and the total photobleaching rate is assumed to scale
linearly with laser intensity. These rates can be used to construct a master transition probability
matrix, Π(kbind, kun, kbleach), where each element can be calculated by looking at changes in
state populations between the initial state and final state for the 5 possible transitions: 1) No
transition, 2) Binding, 3) Bright Unbinding, 4) Bleached unbinding, and 5) Photobleaching

Π(k)ij =



P0(Σi) if ∆Bright(Σj ,Σi) = 0 and ∆Bleached(Σj ,Σi) = 0

(1− P0(Σi))
kbind

ktot(Σi)
if ∆Bright(Σj ,Σi) = 1 and ∆Bleached(Σj ,Σi) = 0

(1− P0(Σi))
Bright(Σi)kun

ktot(Σi)
if ∆Bright(Σj ,Σi) = −1 and ∆Bleached(Σj ,Σi) = 0

(1− P0(Σi))
Bleached(Σi)kun

ktot(Σi)
if ∆Bright(Σj ,Σi) = 0 and ∆Bleached(Σj ,Σi) = −1

(1− P0(Σi))
Bright(Σi)kbleach

ktot(Σi)
if ∆Bright(Σj ,Σi) = −1 and ∆Bleached(Σj ,Σi) = 1

(30)
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where

∆Bright(Σi,Σj) =Bright(Σj)− Bright(Σi) (31)

∆Bleached(Σi,Σj) =Bleached(Σj)− Bleached(Σi) (32)

calculate the change in bright and bleached populations. We use the matrix presented in equa-
tion (30) to marginalize over the trajectories in equation (20) using the Forward-Backward algo-
rithm [52], thus our likelihood, P (br1:N |k), can be calculated exactly [52].

In order to find the set of rates, k, that maximizes the posterior, equation (18), we again use
a Gibbs sampling scheme, similar to that laid out in the previous section, but this time saving
all samples, not just the MAP. The algorithm is as follows,

• Start with initial set of variables, k(0) = {k(0)bind, k
(0)
un , k

(0)
bleach}.

• For many iterations i:

– Propose a new set of parameters k′ based on a proposal distribution q(k′|k(i−1)).

– Calculate the acceptance ratio a, defined as:

a = min

(
1,

P (k′)q(k(i−1)|k′)

P (k(i−1))q(k′|k(i−1))

)
(33)

where P (k) represents the posterior probability of the parameters and q(Θa|Θb) rep-
resents the proposal distribution.

– Accept or reject the new parameter set k′ with probability a.

– Save the sample, k(i).

After drawing many samples, we may histogram the results to visualize the mean and variance
of the distribution.
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2.2 Experimental Methods

2.2.1 DNA Origami

Figure 3: Illustration of the new rectangular DNA origami (NRO) structure and its binding
site arrangement. Each row provides information about DNA origami with a set number of S1
docking sites- (a) one binding site, (b) two binding sites, (c) five binding sites. The left column
shows cartoon of the DNA origami with the imager strands (red) binding to the S1 docking
sites and a stable reference label on three S2 docking sites (green). The middle column shows a
diagram of the layout of binding sites and reference labels on the DNA origami. The right column
shows atomic force microscopy images of the DNA origami immobilised on a mica surface.

In order to test our method of inferring binding rates for different numbers of docking sites within
a ROI, we designed a DNA Origami with varying numbers of external docking sites featuring the
S1 sequence (see figure 3 and table SI1). The docking sites were added to the 3´-ends of selected
staple strands positioned at 10 nm distances. For colocalization, the new rectangular origami
(NRO) was equipped with three S2 docking sites (21 nt) for permanent external labeling of the
structure with a Atto542-labeled complementary S2 strand (see table SI2). For immobilization
of the DNA origami to a glass surface functionalized with Biotin-Streptavidin, six staple strands
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of the NRO were labeled with biotin on their 3´-end. Exact strand sequence can be found in the
SI in table SI1, table SI2, and table SI3.

The DNA origami was folded using 20 nM of the scaffold p7249, 200 nM of each unmodified
staple strand and 600 nM of each modified staple strand (biotinylated and external S1 labeling
strands) in buffer containing 10 mM Tris, 1 mM EDTA at pH 8 and 12.5 mM MgCl2. The
mixture was heated to 70 °C and then cooled down to 25 °C with a linear thermal annealing
ramp of 1°C/min [53].

Sample purification was performed by filtration using Amicon Ultra filters (100 kDa molecular
weight cut-off, Merck, Germany). The filter was first centrifuged with folding buffer for 7 min at
6000 g. The sample solution was then loaded into the filter and centrifuged for 15 min at 6000
g. Then 300 µL of folding buffer was loaded into the filter and centrifuged for 15 min at 6000 g,
which was repeated once. After the three washing steps, the filter was inverted and placed into
a new collection tube. The purified sample could then be collected by centrifugation for 2 min
at 1000 g. The successful folding of structures was confirmed by AFM analysis. DNA origami
solutions were stored at -20 °C until used.

To determine correct folding, AFM scans in aqueous solution (AFM buffer = 40 mM Tris,
2 mM EDTA, 12.5 mM Mg(OAc)2·4 H2O) were performed on a NanoWizard® 3 ultra AFM
(JPK Instruments AG) (see figure 3). For sample immobilization, a freshly cleaved mica surface
(Quality V1, Plano GmbH) was incubated with 10 mM solution of NiCl2 for 3 min. The mica
was washed three times with ultra-pure water to remove unbound Ni2+ ions and air-dried. The
dried mica surface was incubated with 1 nM sample solution for 3 min and washed with AFM
buffer three times. Measurements were performed in AC mode on a scan area of 3 x 3 µm with
a BioLeverMini cantilever (νres = 110 kHz air / 25 kHz fluid, kspring = 0.1 N/m, Bruker AFM
Probes).

2.2.2 Sample preparation for fluorescence microscopy

Samples were prepared in chambered coverslips (LabTek) which were cleaned twice with 0.1 M
HF with two water rinses after each cleaning step. The chambers were then incubated for 5
min in magnesium-free phosphate buffered saline (PBS). The coverslips were then coated with
1 mg/ml biotin-BSA overnight before being washed three times in PBS. Next, the coverslips
were incubated for 30 min with 0.2 mg/ml streptavidin before they were washed three times
with Red Base composed of 2x PBS with additional 0.5 M NaCl and 0.05% Tween20. 10 fmol of
rectangular DNA origami was then incubated for 30 min on the surface of the coverslip, before
removing the solution and washing three times with Red Base. Each DNA origami construct
was pre-labeled with Atto542 as a reference marker and had a defined number of S1 docking
sites (see Supplement). The samples were inspected for sufficient DNA origami density and in
cases of low coverage additional DNA origami was added to achieve sufficient coverage. Each
chamber of the coverslips was then filled with imaging buffer and encapsulated with self-sealing
Parafilm(M). The imaging buffer contained 2.1 mM ascorbic acid (AA), 1 mM methyl viologen
(MV), 2.5 mM protocatechuic acid (PCA) and 50 nM protocatechuate-3,4-dioxygenase (PCD)
in Red Base. Different concentrations of Cy5-conjugated oligonucleotides were used in each
experiment (1 nM, 2 nM, 5 nM, 10 nM). The imager strand concentration was adjusted by
substituting Red Base with 1-10 µl of 1 µM imager strand diluted in Red Base.

2.2.3 Data Acquisition

The samples were imaged on a custom microscope setup using an inverted microscope (Nikon
Eclipse Ti, Nikon, Japan) and a fibre-coupled multilaser engine (MLE-LFA, TOPTICA Photon-
ics, Germany). The excitation was coupled to the Nikon manual TIRF unit and then directed
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to 100×, 1.49 NA oil immersion objective (Apo TIRF, Nikon, Japan) via a four-band dichroic
mirror (405, 488, 532, 640 nm). Emission was then filtered by 525/50 nm, 605/70 nm, and 690/70
nm bandpass filters (all AHF Analysetechnik, Germany) mounted on a motorized filter wheel
(FW212C, Thorlabs, Germany) and collected by an EMCCD (Electron Multiplying Charge-
Coupled Device) camera (iXon Ultra 897, Andor, UK) with a 105.6 nm pixel size. Initially, the
fields of view were imaged for five frames in the 561 nm channel to attain reference data for
localisations of the origami. Afterwards, the same positions are imaged at 640 nm under TIRF
illumination with 21.7 mW and 43.8 mW measured before the objective with a power meter kit
(PM120D, Thorlabs, Germany) . These correspond to 98 W/cm2 and 198 W/cm2 at the focal
plane, respectively. To gather kinetic data 8000 frames were recorded at 100 ms exposure (124.6
ms frame time) over a total duration of 16.5 min and saved as an image stack.

2.2.4 Post Acquisition Data Processing

For each image stack, a custom Fiji script [54] determines the brightest values of each pixel,
creating a maximum intensity projection, after which ThunderSTORM [55] is used to localise
the coordinates for each region of interest (ROI), i.e. the location of DNA origami, in both
channels. Then a Python script, which utilizes the trace extraction function of the quickPBSA
library [37], is used to determine the intensity trace inside each ROI and subtract the background
around that ROI. Then the maximum intensity projections of the two channels were registered
using the MultiStackReg plugin [56] in Fiji giving a correction matrix used to transform the
coordinates in the reference channel via a custom Fiji script. Finally, the ROIs further than
200 nm of the reference channel are considered unspecific binding and filtered out.

3 Results

The main goal of our algorithm is to learn the binding (kbind), unbinding (kun), photobleaching
(kbleach) rates and the state trajectories given a set of noisy intensity traces sr1:N for every given
ROI r. To do so, our algorithm takes a chain of numerical samples from the posterior using Monte
Carlo methods as detailed in section 2. As such, our results are in the form of histograms of
the numerical samples taken from the posterior for every individual unknown parameter, where
the uncertainty of rate inference given a microstate trace over each parameter is reflected in the
width of the corresponding histograms.

3.1 Simulated data

We first benchmarked our method using data simulated under different regimes data using the
forward model described in the Methods (section 2). Starting with a base set of parameters
chosen to mimic the experimental data, we ran inference while varying one parameter at a time
to probe the robustness of our method with respect to different data paradigms. The base set
of parameters chosen to qualitatively match the data is as follows: kbind = 1 mHz/nM, kun = 25
mHz, kbleach = .01 mHz, µf = 400 ADU, µB = 0 ADU, σ = 2500 ADU, dt = 124 ms, and 2000
ROIs with traces simulated with either λ = 50 or λ = 100 in even proportion and c = 1 nM,
c = 2 nM, or c = 5 nM in even proportion. We simulated data varying kbind, kun, kbleach, and
the number of ROIs summarized in table SI4.
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Figure 4: Simulated data with different kbind binding rates. The top two rows of the left column
show example traces from data simulated with kbind = 1 mHz/nM, the middle two rows of the
left column show example traces from data simulated with kbind = 2 mHz/nM, and the bottom
two rows of the left column show traces from data simulated with kbind = 5 mHz/nM. The
middle column shows inferred posteriors over binding rates, with blue indicating the probability
distribution and a red line indicating the ground truth used for simulation. The right column
shows inferred posteriors over unbinding rates, with blue indicating the probability distribution
and red lines indicating ground truth values used for simulation. Dataset included 200 traces
per condition. The parameters used in simulation are specified in main text and table SI4.

Initially, we probed the model’s robustness with respect to binding rate, kbind, by comparing
analysis of data simulated with kbind = 1 mHz/nM, kbind = 2 mHz/nM, and kbind = 5 mHz/nM.
Figure 4 shows results from the data simulated with these different kbind rates. Figure 4 is broken
into three columns where the left column shows representative data traces, the middle column
shows the inferred kbind binding rate, and the right column shows the inferred kun unbinding
rate. For the plots showing data traces, we show two representative traces taken from the
dataset, stacked on top of each other. For the plots showing inferred rates, the blue indicates
the probability distribution (histogram of samples from the MCMC), and the red line indicates
the ground truth value used in the simulation. As seen in the middle column of figure 4, our
method accurately (within 10%) infers the correct kbind rate with the analysis returning 1.031
± 0.012, 1.971 ± 0.018 and 4.588 ± 0.030 mHz/nM for the kbind value. kun results remain also
constant only slightly lower than the set 25 mHz.
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Figure 5: Simulated data with different kun unbinding rates. The top two rows of the left column
show example traces from data simulated with kun = 10 mHz, the middle two rows of the left
column show example traces from data simulated with kun = 20 mHz, and the bottom two rows
of the left column show traces from data simulated with kun = 50 mHz. The middle column
shows inferred posteriors over binding rates, with blue indicating the probability distribution
and a red line indicating the ground truth used for simulation. The right column shows inferred
posteriors over unbinding rates, with blue indicating the probability distribution and red lines
indicating ground truth values used for simulation. Dataset included 200 traces per condition.
The parameters used in simulation are specified in main text.

We next probed the model’s robustness with respect to unbinding rate, kun, by comparing
analysis of data simulated with kun = 10 mHz, kun = 20 mHz, and kun = 50 mHz. Figure 5
shows the results on data simulated with these different kun rates. As seen in the far right column
of figure 5, our model accurately infers the correctly the change of kun rate with 9.623 ± 0.612
mHz, 23.950 ± 1.086 mHz, 45.650 ± 1.586 mHz for the 10 mHz, 20 mHz and 50 mHz, respectively.
In line with the input, the kbind results remained around within 0.1 of the 1 mHz/nM input for
all simulations.
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Figure 6: Simulated data with different kbleach photobleaching rates. The top two rows of the
left column show example traces from data simulated with kbleach = .01 mHz, the middle two
rows of the left column show example traces from data simulated with kbleach = .02 mHz, and the
bottom two rows of the left column show traces from data simulated with kbleach = .05 mHz. The
middle column shows inferred posteriors over binding rates, with blue indicating the probability
distribution and a red line indicating the ground truth used for simulation. The right column
shows inferred posteriors over unbinding rates, with blue indicating the probability distribution
and red lines indicating ground truth values used for simulation. Dataset included 200 traces
per condition. The parameters used in simulation are specified in main text and table SI4.

After that, we probed the model’s robustness with respect to photobleaching rate, kbleach, by
comparing analysis of data simulated with kbleach = 0.01 mHz, kbleach = 0.02 mHz, and kbleach =
0.05 mHz. Figure 6 shows the results on data simulated with these different kbleach rates. As
seen in figure 6, we are still able to infer accurate kbind and kun rates for all values of kbleach.
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Figure 7: Simulated data with different number of ROIs. The top two rows of the left column
show example traces from data simulated with 2000 ROIs, the middle two rows of the left column
show example traces from data with 1000 ROIs, and the bottom two rows of the left column
show traces from data with 400 ROIs. The middle column shows inferred posteriors over binding
rates, with blue indicating the probability distribution and a red line indicating the ground
truth used for simulation. The right column shows inferred posteriors over unbinding rates, with
blue indicating the probability distribution and red lines indicating ground truth values used for
simulation. The parameters used in simulation are specified in main text and table SI4.

Finally, we probed the model’s robustness with respect to number of ROIs, by comparing data
simulated with 2000 ROIs, 1000 ROIs, and 400 ROIs. Figure 7 shows the results on the datasets
simulated with these different numbers of ROIs. Despite the small increase in uncertainty, marked
by the spread in probability, our method was able to accurately learn kbind and kun from even a
small amount of data.
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3.2 Experimental data
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Figure 8: Data from DNA origami binding experiments. The left column shows example traces
from our experiments. The top two rows of the left column show example traces from data with
one binding site, the middle two rows of the left column show example traces from data with
two binding sites, and the bottom two rows of the left column show traces from data with five
binding sties. The middle column shows inferred posteriors over binding rates. The right column
shows inferred posteriors over unbinding rates. Data from 126, 393 and 353 traces were analyzed
for the one, two and five binding site samples, respectively.

We applied our method to data taken from highly controlled DNA origami experiments in which
fluorescently labeled particles were allowed to bind and unbind to origami with 1, 2, and 5
binding sites. Results for inference on experimental data are shown in figure 8. Each row of
figure 8 represents an experiment with a different number of binding sites with the inferred rates
of binding and unbinding shown as a histogram.

We cannot compare our inferred rates directly to a ground truth, as the ground truth is
unknown. However, we can evaluate the accuracy of our model by checking to see if the output
behavior matches expectations. For example, the binding rate should scale with the number of
available binding sites, but the unbinding rate should be unaffected by the number of binding
sites. As seen in figure 8, inferred rates qualitatively increase with binding sites. Our inferred
binding rates are the 2.77±0.07 mHz/nM (mean±SD) for 1 binding site, 3.52±0.04 mHz/nM for
2 binding sites, and 8.1±0.07 mHz for 5 binding sites, which increases with concentration. These
values also match the values seen in literature when it comes to a 10 nucleotide imager strands
[57]. Meanwhile, the unbinding rates are 17.2 ± 0.5 mHz, 14.4 ± 0.2 mHz, and 17.0 ± 0.2 mHz,
effectively remaining constant. The experimental data is intrinsically noisy, containing many
artifacts, such as spikes (see figure 8), which complicate analysis. These can be attributed to
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unbound strands moving over the ROI or the molecule escaping a prolonged dark state. The
bleaching rates show a small values not correlated to the binding site number (see table SI5).

4 Discussion

Quantifying binding kinetics while overcoming noise and photobleaching artifacts is important
as it provides a deeper and more accurate understanding of molecular interactions and behaviors
in chemical and biological systems. This enhanced understanding is crucial in dissecting the
intricacies of protein self-assembly [1, 2, 3], enzymatic and protein-protein interactions [5, 6,
7, 8, 9], DNA-protein interactions [11, 12, 13], and broader cellular processes, such as nuclear
dynamics during mitosis and [15, 16, 17].

Here, we presented a Bayesian inference scheme for inferring binding rates separately from
photobleaching rates, by directly monitoring fluorescence intensity over time. We prioritized
inferring rates over transition probabilities, as it enables us to disentangle the contributions of
binding and photobleaching. Our method is broken into two modules: a State Inference algorithm
that infers the number of fluorophores at each time level directly from the data, and secondly
a Rate Inference step which infers the binding rates from the output fluorescence trace. We
benchmarked our method on simulated data, inferring reliable results. We showed that when
run on experimental data we inferred expected behavior of increasing binding rates with constant
unbinding rates for increasing concentrations.

A significant way to enhance this work would be by incorporating spatial information. Cur-
rently, the method works by analyzing intensity traces from isolated ROIs. By incorporating
spatial information we would be able to take into account other potential noise generating arti-
facts such as uneven illumination of ROIs [58].

Another way to improve this work would be to incorporate additional photophysical states.
For example, in the case of photo-blinking the number of brightness steps is not equal to the
number of fluorophores, making analysis with traditional HMMs impossible [39]. Our method,
on the other hand, is generalizable to an arbitrary number of dark and bright states. However,
while a state inference analysis can be effective when state traces are constrained, as in the
case of counting by photobleaching where the fluorophores are assumed to start bound and
end bleached with no unbinding [39], without such a constraint the number of possible state
trajectories becomes combinatorically larger. As a result it may be difficult, for fundamental
reasons, to perform scalable analysis with a higher number of photophysical states.
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[48] Ioannis Sgouralis and Steve Pressé. “An introduction to infinite HMMs for single-molecule
data analysis”. In: Biophysical journal 112.10 (2017), pp. 2021–2029.

[49] Ayush Saurabh et al. “Single-photon smFRET. I: Theory and conceptual basis”. In: Bio-
physical Reports 3.1 (2023).
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S2 Docking site staple strands 5’-end 3’-end
GCAAGGCCTCACCAGTAGCACCATGGGCTTGATAACATTCCTAACTTCTCATA 5[160] 6[144]
TTGACAGGCCACCACCAGAGCCGCGATTTGTATAACATTCCTAACTTCTCATA 3[160] 4[144]
GATGGTTTGAACGAGTAGTAAATTTACCATTATAACATTCCTAACTTCTCATA 6[143] 5[159]

Table SI2: Modified staple strands of the NRO DNA Origami. Sequences are denoted from 5’- to
3’-end. The three S2 docking site staple strands exhibit an over 20nt long docking site, marked
in green for colocalization, on the 3’-end. For immobilization, the biotinylated staple strands are
modified with biotin on the 3’-end. The numbers for the 5’- end 3’-end of the staples represent
the helix number in the corresponding caDNAno file. Number in brackets represent the starting
and ending position of the staple in the corresponding helix.
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Table SI3: Unmodified staple strands of NRO DNA origami. Se-
quences are denoted from 5’- to 3’-end. The numbers for the 5’-
end 3’-end of the staples represent the helix number in the corre-
sponding caDNAno file. Number in brackets represent the starting
and ending position of the staple in the corresponding helix.

Unmodified staple strands 5’-end 3’-end
CATAAATCTTTGAATACCAAGTGTTAGAAC 17[224] 19[223]
AAGCCTGGTACGAGCCGGAAGCATAGATGATG 20[143] 19[159]
TCATTCAGATGCGATTTTAAGAACAGGCATAG 5[96] 7[95]
GCCATCAAGCTCATTTTTTAACCACAAATCCA 16[143] 15[159]
TATAACTAACAAAGAACGCGAGAACGCCAA 16[175] 14[176]
TTGCTCCTTTCAAATATCGCGTTTGAGGGGGT 10[111] 8[112]
GTATAGCAAACAGTTAATGCCCAATCCTCA 1[224] 3[223]
AAAGTCACAAAATAAACAGCCAGCGTTTTA 9[224] 11[223]
GGCCTTGAAGAGCCACCACCCTCAGAAACCAT 3[192] 5[191]
TTAACGTCTAACATAAAAACAGGTAACGGA 10[175] 8[176]
AGTATAAAGTTCAGCTAATGCAGATGTCTTTC 14[239] 12[240]
GATGTGCTTCAGGAAGATCGCACAATGTGA 18[79] 16[80]
TCAAATATAACCTCCGGCTTAGGTAACAATTT 15[192] 17[191]
TTTCGGAAGTGCCGTCGAGAGGGTGAGTTTCG 2[207] 0[208]
GAGGGTAGGATTCAAAAGGGTGAGACATCCAA 14[111] 12[112]
TATTAAGAAGCGGGGTTTTGCTCGTAGCAT 2[175] 0[176]
GCCCTTCAGAGTCCACTATTAAAGGGTGCCGT 21[64] 23[63]
ATGCAGATACATAACGGGAATCGTCATAAATAAAGCAAAG 7[56] 9[63]
AGCCAGCAATTGAGGAAGGTTATCATCATTTT 22[207] 20[208]
TAAATGAATTTTCTGTATGGGATTAATTTCTT 0[111] 1[95]
AAACAGCTTTTTGCGGGATCGTCAACACTAAA 1[96] 3[95]
CGGATTCTGACGACAGTATCGGCCGCAAGGCGATTAAGTT 16[63] 18[56]
GCAATTCACATATTCCTGATTATCAAAGTGTA 19[160] 20[144]
GCGCAGACAAGAGGCAAAAGAATCCCTCAG 4[79] 2[80]
AGAGAGAAAAAAATGAAAATAGCAAGCAAACT 9[160] 10[144]
GACAAAAGGTAAAGTAATCGCCATATTTAACAAAACTTTT 13[184] 15[191]
ACACTCATCCATGTTACTTAGCCGAAAGCTGC 3[96] 5[95]
CTACCATAGTTTGAGTAACATTTAAAATAT 19[224] 21[223]
TATATTTTGTCATTGCCTGAGAGTGGAAGATTGTATAAGC 13[64] 15[71]
CGGATTGCAGAGCTTAATTGCTGAAACGAGTA 9[64] 11[63]
TAAATCATATAACCTGTTTAGCTAACCTTTAA 12[111] 10[112]
GTACCGCAATTCTAAGAACGCGAGTATTATTT 12[207] 10[208]
TCTTCGCTGCACCGCTTCTGGTGCGGCCTTCC 18[111] 16[112]
GATTTAGTCAATAAAGCCTCAGAGAACCCTCA 11[64] 13[63]
GCAAGGCCTCACCAGTAGCACCATGGGCTTGA 5[160] 6[144]
ATTACCTTTGAATAAGGCTTGCCCAAATCCGC 6[111] 4[112]
CTTATCATTCCCGACTTGCGGGAGCCTAATTT 12[239] 10[240]
TTATACCACCAAATCAACGTAACGAACGAG 6[79] 4[80]
GTAATAAGTTAGGCAGAGGCATTTATGATATT 13[160] 14[144]
CAACCGTTTCAAATCACCATCAATTCGAGCCA 14[143] 13[159]
GATGGTTTGAACGAGTAGTAAATTTACCATTA 6[143] 5[159]
GCACAGACAATATTTTTGAATGGGGTCAGTA 23[224] 22[240]
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AGCAAGCGTAGGGTTGAGTGTTGTAGGGAGCC 21[96] 23[95]
TCCACAGACAGCCCTCATAGTTAGCGTAACGA 0[175] 0[144]
TCACCAGTACAAACTACAACGCCTAGTACCAG 0[207] 1[191]
ATTATACTAAGAAACCACCAGAAGTCAACAGT 19[192] 21[191]
TAAGAGCAAATGTTTAGACTGGATAGGAAGCC 7[96] 9[95]
ATACATACCGAGGAAACGCAATAAGAAGCGCATTAGACGG 7[192] 9[199]
CAACTGTTGCGCCATTCGCCATTCAAACATCA 18[143] 17[159]
GATGGCTTATCAAAAAGATTAAGAGCGTCC 10[79] 8[80]
TAGGTAAACTATTTTTGAGAGATCAAACGTTA 13[96] 15[95]
AGGCAAAGGGAAGGGCGATCGGCAATTCCA 17[128] 19[127]
ATTATCATTCAATATAATCCTGACAATTAC 20[175] 18[176]
GAAATTATTGCCTTTAGCGTCAGACCGGAACC 6[239] 4[240]
AATGGTCAACAGGCAAGGCAAAGAGTAATGTG 11[96] 13[95]
CCAATAGCTCATCGTAGGAATCATGGCATCAA 11[160] 12[144]
ATACCCAACAGTATGTTAGCAAATTAGAGC 8[175] 6[176]
ATAAGGGAACCGGATATTCATTACGTCAGGACGTTGGGAA 4[63] 6[56]
CACCAGAAAGGTTGAGGCAGGTCATGAAAG 4[175] 2[176]
ATCCCAATGAGAATTAACTGAACAGTTACCAG 10[207] 8[208]
CATGTAATAGAATATAAAGTACCAAGCCGT 14[175] 12[176]
CCAACAGGAGCGAACCAGACCGGAGCCTTTAC 10[143] 9[159]
GCTATCAGAAATGCAATGCCTGAATTAGCA 14[79] 12[80]
GACCTGCTCTTTGACCCCCAGCGAGGGAGTTA 4[111] 2[112]
AGGAACCCATGTACCGTAACACTTGATATAA 0[239] 1[223]
CAGCGAAACTTGCTTTCGAGGTGTTGCTAA 2[79] 0[80]
GCTTTCCGATTACGCCAGCTGGCGGCTGTTTC 17[96] 19[95]
ACAACTTTCAACAGTTTCAGCGGATGTATCGG 0[79] 1[63]
CAGCAAAAGGAAACGTCACCAATGAGCCGC 6[175] 4[176]
ACCTTTTTATTTTAGTTAATTTCATAGGGCTT 16[207] 14[208]
CGATAGCATTGAGCCATTTGGGAACGTAGAAA 5[192] 7[191]
GCCCGAGAGTCCACGCTGGTTTGCAGCTAACT 22[111] 20[112]
ATTTTAAAATCAAAATTATTTGCACGGATTCG 20[239] 18[240]
ACCTTGCTTGGTCAGTTGGCAAAGAGCGGA 22[175] 20[176]
CTGAGCAAAAATTAATTACATTTTGGGTTA 18[175] 16[176]
CCTGATTGCAATATATGTGAGTGATCAATAGT 18[239] 16[240]
TCAATATCGAACCTCAAATATCAATTCCGAAA 21[160] 22[144]
AAAGGCCGGAGACAGCTAGCTGATAAATTAATTTTTGT 13[120] 15[127]
CTTTAGGGCCTGCAACAGTGCCAATACGTG 21[224] 23[223]
AATAGTAAACACTATCATAACCCTCATTGTGA 8[111] 6[112]
TCACCGACGCACCGTAATCAGTAGCAGAACCG 6[207] 4[208]
GCCCGTATCCGGAATAGGTGTATCAGCCCAAT 2[239] 0[240]
TGTAGCCATTAAAATTCGCATTAAATGCCGGA 16[111] 14[112]
TCGGCAAATCCTGTTTGATGGTGGACCCTCAA 22[143] 21[159]
TGACAACTCGCTGAGGCTTGCATTATACCA 1[128] 3[127]
CCACCCTCTATTCACAAACAAATACCTGCCTA 4[207] 2[208]
CCCGATTTAGAGCTTGACGGGGAAAAAGAATA 23[96] 22[112]
AAGTAAGCAGACACCACGGAATAATATTGACG 8[239] 6[240]
AAATTAAGTTGACCATTAGATACTTTTGCG 12[79] 10[80]
CACATTAAAATTGTTATCCGCTCATGCGGGCC 20[111] 18[112]
TTAAAGCCAGAGCCGCCACCCTCGACAGAA 3[224] 5[223]
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ATATTCGGAACCATCGCCCACGCAGAGAAGGA 2[143] 1[159]
TTCTACTACGCGAGCTGAAAAGGTTACCGCGC 12[143] 11[159]
AACGTGGCGAGAAAGGAAGGGAAACCAGTAA 23[128] 23[159]
GAATTTATTTAATGGTTTGAAATATTCTTACC 16[239] 14[240]
AGCGCGATGATAAATTGTGTCGTGACGAGA 3[128] 5[127]
AACGCAAAGATAGCCGAACAAACCCTGAAC 7[224] 9[223]
AGAAAACAAAGAAGATGATGAAACAGGCTGCG 17[160] 18[144]
CGCGCAGATTACCTTTTTTAATGGGAGAGACT 18[207] 16[208]
CACAACAGGTGCCTAATGAGTGCCCAGCAG 19[128] 21[127]
GCGGAACATCTGAATAATGGAAGGTACAAAAT 20[207] 18[208]
TAAAAGGGACATTCTGGCCAACAAAGCATC 23[160] 22[176]
AATTGAGAATTCTGTCCAGACGACTAAACCAA 14[207] 12[208]
GCGAAAAATCCCTTATAAATCAAGCCGGCG 21[128] 23[127]
AACACCAAATTTCAACTTTAATCGTTTACC 5[128] 7[127]
TAAATCAAAATAATTCGCGTCTCGGAAACC 15[128] 17[127]
GAAACGATAGAAGGCTTATCCGGTCTCATCGAGAACAAGC 10[191] 12[184]
GCCTCCCTCAGAATGGAAAGCGCAGTAACAGT 4[239] 2[240]
GCGAACCTCCAAGAACGGGTATGACAATAA 11[224] 13[223]
TTAGGATTGGCTGAGACTCCTCAATAACCGAT 1[160] 2[144]
ATCGCAAGTATGTAAATGCTGATGATAGGAAC 15[160] 16[144]
GCGGATAACCTATTATTCTGAAACAGACGATT 1[192] 3[191]
AAGGAAACATAAAGGTGGCAACATTATCACCG 8[207] 6[208]
ACCCTTCTGACCTGAAAGCGTAAGACGCTGAG 23[192] 22[208]
ATATTTTGGCTTTCATCAACATTATCCAGCCA 15[96] 17[95]
TCAAGTTTCATTAAAGGTGAATATAAAAGA 5[224] 7[223]
TCTAAAGTTTTGTCGTCTTTCCAGCCGACAA 0[143] 1[127]
TTCCAGTCGTAATCATGGTCATAAAAGGGG 20[79] 18[80]
AAAGCACTAAATCGGAACCCTAATCCAGTT 23[64] 22[80]
AATACTGCCCAAAAGGAATTACGTGGCTCA 8[79] 6[80]
TTTATCAGGACAGCATCGGAACGACACCAACCTAAAACGA 1[64] 3[71]
TTGACAGGCCACCACCAGAGCCGCGATTTGTA 3[160] 4[144]
CTGTGTGATTGCGTTGCGCTCACTAGAGTTGC 19[96] 21[95]
GCGAGTAAAAATATTTAAATTGTTACAAAG 16[79] 14[80]
TAGAGAGTTATTTTCATTTGGGGATAGTAGTAGCATTA 10[127] 12[120]
CGAAAGACTTTGATAAGAGGTCATATTTCGCA 9[96] 11[95]
TCATCGCCAACAAAGTACAACGGACGCCAGCA 4[143] 3[159]
TTAACACCAGCACTAACAACTAATCGTTATTA 22[239] 20[240]
TTATTACGAAGAACTGGCATGATTGCGAGAGG 7[160] 8[144]
GCCAGTTAGAGGGTAATTGAGCGCTTTAAGAA 10[239] 8[240]
ACAACATGCCAACGCTCAACAGTCTTCTGA 13[224] 15[223]
CATTTGAAGGCGAATTATTCATTTTTGTTTGG 17[192] 19[191]
TGAAAGGAGCAAATGAAAAATCTAGAGATAGA 21[192] 23[191]
TGGAACAACCGCCTGGCCCTGAGGCCCGCT 22[79] 20[80]
TACCGAGCTCGAATTCGGGAAACCTGTCGTGCAGCTGATT 19[56] 21[63]
GTTTATTTTGTCACAATCTTACCGAAGCCCTTTAATATCA 7[248] 9[255]
ACAAACGGAAAAGCCCCAAAAACACTGGAGCA 16[47] 14[48]
GTTTATCAATATGCGTTATACAAACCGACCGTGTGATAAA 13[256] 15[263]
ACGGCTACAAAAGGAGCCTTTAATGTGAGAAT 2[47] 0[48]
GACCAACTAATGCCACTACGAAGGGGGTAGCA 4[47] 2[48]

27

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 3, 2025. ; https://doi.org/10.1101/2025.02.03.636267doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.03.636267
http://creativecommons.org/licenses/by-nc-nd/4.0/


AAGGCCGCTGATACCGATAGTTGCGACGTTAG 2[111] 0[112]
CTCCAACGCAGTGAGACGGGCAACCAGCTGCA 22[47] 20[48]
ACCGATTGTCGGCATTTTCGGTCATAATCA 6[271] 4[272]
CAGAAGATTAGATAATACATTTGTCGACAA 22[271] 20[272]
TGCATCTTTCCCAGTCACGACGGCCTGCAG 17[32] 19[31]
TTAGTATCACAATAGATAAGTCCACGAGCA 14[271] 12[272]
GTTTTAACTTAGTACCGCCACCCAGAGCCA 2[271] 0[272]
TTAATGAACTAGAGGATCCCCGGGGGGTAACG 20[47] 18[48]
CTTTTACAAAATCGTCGCTATTAGCGATAG 18[271] 16[272]
ATCCCCCTATACCACATTCAACTAGAAAAATC 8[47] 6[48]
AGAAAGGAACAACTAAAGGAATTCAAAAAAA 0[47] 1[31]
TTTTATTTAAGCAAATCAGATATTTTTTGT 12[175] 10[176]
AGCCACCACTGTAGCGCGTTTTCAAGGGAGGGAAGGTAAA 4[255] 6[248]
AACAAGAGGGATAAAAATTTTTAGCATAAAGC 14[47] 12[48]
GCCGTCAAAAAACAGAGGTGAGGCCTATTAGT 21[256] 23[255]
TGTAGAAATCAAGATTAGTTGCTCTTACCA 12[271] 10[272]
GAGAGATAGAGCGTCTTTCCAGAGGTTTTGAA 9[256] 11[255]
CCACCCTCATTTTCAGGGATAGCAACCGTACT 0[271] 1[255]
CTTTAATGCGCGAACTGATAGCCCCACCAG 23[256] 22[272]
CCAGGGTTGCCAGTTTGAGGGGACCCGTGGGA 18[47] 16[48]
CAAATCAAGTTTTTTGGGGTCGAAACGTGGA 23[32] 22[48]
ACGCTAACACCCACAAGAATTGAAAATAGC 10[271] 8[272]
CTTTTGCAGATAAAAACCAAAATAAAGACTCC 8[143] 7[159]
TACGTTAAAGTAATCTTGACAAGAACCGAACT 6[47] 4[48]
TAATCAGCGGATTGACCGTAATCGTAACCG 15[32] 17[31]
TTTTCACTCAAAGGGCGAAAAACCATCACC 21[32] 23[31]
GCCTTAAACCAATCAATAATCGGCACGCGCCT 11[256] 13[255]
AATAGCTATCAATAGAAAATTCAACATTCA 8[271] 6[272]
CATCAAGTAAAACGAACTAACGAGTTGAGA 5[32] 7[31]
CAGGAGGTGGGGTCAGTGCCTTGAGTCTCTGAATTTACCG 1[256] 3[263]
AAATCACCTTCCAGTAAGCGTCAGTAATAA 4[271] 2[272]
CTCGTATTAGAAATTGCGTAGATACAGTAC 20[271] 18[272]
TTTACCCCAACATGTTTTAAATTTCCATAT 9[32] 11[31]
CCTAAATCAAAATCATAGGTCTAAACAGTA 15[224] 17[223]
GTCGACTTCGGCCAACGCGCGGGGTTTTTC 19[32] 21[31]
CGTAAAACAGAAATAAAAATCCTTTGCCCGAAAGATTAGA 19[248] 21[255]
AGGCTCCAGAGGCTTTGAGGACACGGGTAA 1[32] 3[31]
GAGAAGAGATAACCTTGCTTCTGTTCGGGAGAAACAATAA 16[255] 18[248]
TTTAGGACAAATGCTTTAAACAATCAGGTC 7[32] 9[31]
AATACGTTTGAAAGAGGACAGACTGACCTT 3[32] 5[31]
CTTAGATTTAAGGCGTTAAATAAAGCCTGT 16[271] 14[272]
TAAATCGGGATTCCCAATTCTGCGATATAATG 12[47] 10[48]
AACAGTTTTGTACCAAAAACATTTTATTTC 11[32] 13[31]
CTGTAGCTTGACTATTATAGTCAGTTCATTGA 10[47] 8[48]
AGACGACAAAGAAGTTTTGCCATAATTCGAGCTTCAA 7[128] 9[135]
AACGCAAAATCGATGAACGGTACCGGTTGA 13[32] 15[31]
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Figure kbind(s
−nM−) kun(s

−) kbleach(s
−) Number of states

4 1× 10−3 20× 10−3 10× 10−5 2
4 2× 10−3 20× 10−3 10× 10−5 2
4 5× 10−3 20× 10−3 10× 10−5 2
5 1× 10−3 10× 10−3 10× 10−5 2
5 1× 10−3 20× 10−3 10× 10−5 2
5 1× 10−3 50× 10−3 10× 10−5 2
6 1× 10−3 20× 10−3 10× 10−5 2
6 1× 10−3 20× 10−3 20× 10−5 2
6 1× 10−3 20× 10−3 50× 10−5 2
7 1× 10−3 20× 10−3 10× 10−5 2

Table SI4: Parameters used to create the simulated data. The three values were used in the
forward model described in section 2. All data for figure 7 shares the same parameters with
variation only in the number of data points.

Figure kbind(10
−3 s−nM−) kun(10

−3 s−) kbleach(10
−5 s−)

4 1.031 ± 0.012 23.950 ± 1.086 8.800 ± 1.418
4 1.971 ± 0.018 23.500 ± 0.680 10.260 ± 0.913
4 4.588 ± 0.030 24.620 ± 0.504 8.446 ± 0.674
5 1.048 ± 0.014 9.623 ± 0.612 9.661 ± 0.848
5 1.031 ± 0.012 23.950 ± 1.086 8.800 ± 1.418
5 1.046 ± 0.012 45.650 ± 1.586 10.650 ± 1.890
6 1.031 ± 0.012 23.950 ± 1.086 8.800 ± 1.418
6 1.038 ± 0.011 22.470 ± 1.455 20.780 ± 1.974
6 1.014 ± 0.012 25.980 ± 1.984 43.150 ± 2.852
7 1.031 ± 0.012 23.950 ± 1.086 8.800 ± 1.418
7 1.008 ± 0.021 21.720 ± 1.400 11.940 ± 1.937
7 1.050 ± 0.033 23.480 ± 2.720 8.741 ± 3.470
8 2.774 ± 0.077 17.200 ± 0.538 0.725 ± 0.355
8 3.515 ± 0.044 14.460 ± 0.234 0.201 ± 0.161
8 8.110 ± 0.067 17.030 ± 0.220 0.419 ± 0.207

Table SI5: Results from the Bayesian inference scheme. Summary of the results shown in all
figures. The values are shown as mean± SD.
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