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Background.  Multiresistant organisms (MROs) pose a critical threat to public health. Population-based programs for con-
trol of MROs such as carbapenemase-producing Enterobacterales (CPE) have emerged and evaluation is needed. We assessed the 
feasibility and impact of a statewide CPE surveillance and response program deployed across Victoria, Australia (population 6.5 
million).

Methods.  A prospective multimodal intervention including active screening, carrier isolation, centralized case investigation, 
and comparative pathogen genomics was implemented. We analyzed trends in CPE incidence and clinical presentation, risk factors, 
and local transmission over the program’s first 3 years (2016–2018).

Results.  CPE case ascertainment increased over the study period to 1.42 cases/100 000 population, linked to increased screening 
without a concomitant rise in active clinical infections (0.45–0.60 infections/100 000 population, P = .640). KPC-2 infection de-
creased from 0.29 infections/100 000 population prior to intervention to 0.03 infections/100 000 population in 2018 (P = .003). 
Comprehensive case investigation identified instances of overseas community acquisition. Median time between isolate referral and 
genomic and epidemiological assessment for local transmission was 11 days (IQR, 9–14). Prospective surveillance identified nu-
merous small transmission networks (median, 2; range, 1–19 cases), predominantly IMP and KPC, with median pairwise distance of 
8 (IQR, 4–13) single nucleotide polymorphisms; low diversity between clusters of the same sequence type suggested genomic cluster 
definitions alone are insufficient for targeted response.

Conclusions.  We demonstrate the value of centralized CPE control programs to increase case ascertainment, resolve risk factors, 
and identify local transmission through prospective genomic and epidemiological surveillance; methodologies are transferable to 
low-prevalence settings and MROs globally.

Keywords.   antimicrobial resistance; public health surveillance; carbapenemase-producing Enterobacterales; infection control; 
genomics.

Antimicrobial resistance (AMR) is a major threat to public 
health and patient safety. Carbapenemase-producing 
Enterobacterales (CPE) are considered one of the most serious 
classes of multiresistant organisms (MROs), requiring imme-
diate and aggressive public health action [1]. The attributable 
mortality for invasive infections ranges from 29% to 75%, but 
improvement has not been observed despite development of 
novel therapies [2–6]. Most concerningly, CPE have consid-
erable epidemic potential, and have been responsible for nu-
merous large clonal hospital outbreaks [7, 8].

In Australia, CPE have rarely been identified and are usu-
ally associated with patients receiving overseas medical care 
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in endemic countries, except for imipenemase (IMP)-4, which 
has established low-level endemicity in some states [9, 10]. 
Limited outbreaks of CPE within healthcare facilities have also 
been described [10–13]. Between 2012 and 2014 an outbreak 
of Klebsiella pneumoniae carbapenemase (KPC)–producing 
Enterobacterales occurred in Victoria (population 6.5 million) 
affecting multiple healthcare settings and facilities [14]. A state-
wide outbreak investigation coordinated by the Victorian 
Government Department of Health and Human Services iden-
tified multiple transmission networks involving inter- and 
intrafacility spread and determined that centralized collation 
of genomic and epidemiological data was needed to identify 
areas of CPE transmission due to the long colonization periods, 
asymptomatic transmission, and complex patient movements 
often experienced by patients with CPE [14].

In December 2015, the Victorian Guideline on 
Carbapenemase Producing Enterobacteriaceae for Health 
Services (the guideline) was released, implementing a compre-
hensive prospective genomic and epidemiological surveillance 
and response program for the control of CPE [15]. Here we de-
scribe the epidemiology of CPE in Victoria and assess the feasi-
bility and effect of the first 3 years of the program.

METHODS

The Intervention

The guideline implemented a prospective, multimodal, 
population-based intervention for control of CPE 
(Supplementary Methods). Standardized active screening 
and carrier isolation were required in all Victorian 
health services accepting overnight patient admissions 
(Supplementary Box 1). All Victorian diagnostic labora-
tories servicing both inpatient and outpatient providers 
referred suspected CPE isolates to the state reference labo-
ratory for confirmatory testing, whole-genome sequencing, 
and investigation (Supplementary Methods, Supplementary 
Box 2, Supplementary Figure 1). Epidemiological data were 
collected for all persons from whom an isolate with a con-
firmed carbapenemase gene originated, regardless of pheno-
typic susceptibility or clinical presentation [16]. Combined 
phylogenomic and epidemiological outbreak investigations 
to identify putative local transmission were conducted pro-
spectively and iteratively where 2 or more patients with CPE 
isolates of the same species, multilocus sequence type (ST), 
and carbapenemase gene were identified, and at least 1 iso-
late was from a person not suspected to have acquired CPE 
overseas (Supplementary Methods, Supplementary Table 1). 
A  transmission risk area (TRA) was declared where local 
transmission was thought to represent a risk to other persons 
present in the location for a defined time frame, necessitating 
increased screening and other infection-control actions 
(Supplementary Table 2).

Assessment of Program Impact

All confirmed CPE cases (a distinct carbapenemase gene, spe-
cies, and/or ST combination in a given person) identified be-
tween January 2016 and December 2018 were included in 
analyses, performed using Stata/SE 13.1 (StataCorp, College 
Station, TX) or R version 3.5.1 [17]. To assess the effects of the 
program, rates of CPE identification and active clinical infec-
tion were calculated using population estimates for the respec-
tive time period and trends assessed using negative binomial or 
Poisson regression [18]. Associations between carbapenemase 
genes, risk factors, and clinical data were measured using a 
comparison of proportions (χ 2 and Fisher’s exact tests). P < .05 
was considered statistically significant.

RESULTS

The occurrence of CPE remained low over the study period, 
with 402 cases identified in 362 people. Carbapenemase-
producing Enterobacterales was considered a colonizing 
organism in 60% (n = 242/402) of cases (Supplementary 
Materials, Supplementary Table 3). Identified carbapenemase 
genes were diverse and varied by species (Supplementary 
Materials, Supplementary Table 4, Supplementary Figure 2).

Risk Factors for Carbapenemase-producing Enterobacterales Acquisition

Risk Factors Differ by Carbapenemase Gene
Overall, 95% (n = 379/399) of cases reported hospital admis-
sion in the previous 12  months, and 63% (n = 231/369) re-
ported overseas travel in the past 4  years. Of these, 188 were 
suspected to have acquired their CPE overseas, representing 
47% (n = 188/402) of all cases.

Risk factors differed significantly between gene groups 
(Figure 1), with overseas acquisition suspected in a higher propor-
tion of New Delhi metallo-beta-lactamase (NDM) (n = 111/114, 
93%), both NDM and oxacillinase (OXA)-48-like (n = 6/7, 86%), 
OXA-48–like (n = 60/75, 80%), and KPC (n = 11/46, 24%), when 
compared with IMP cases (n = 0/142, 0%; P < .001, Fisher’s exact). 
Region of travel differed by carbapenemase gene group (Figure 1).

KPC (n = 32/46, 70%), IMP (n = 84/142, 59%), and OXA-
48–like (n = 4/75, 5%) cases were identified as part of defined 
local transmission networks based on genomic and epidemio-
logical data (Figure 1). A  source of acquisition was unable to 
be identified in 22% (n = 89/402) of cases, indicating potential 
unrecognized risk factors, colonized persons, and/or horizontal 
transfer of carbapenemase genes; however, this ranged from 
only 3% (n = 3/114) of NDM to 41% (n = 58/142) of IMP cases.

Non–Healthcare-related Acquisition of NDM-Producing Escherichia 
coli in Travelers Returning From South and South-East Asia
Overseas hospitalization is a known risk factor for CPE ac-
quisition and a criterion for screening upon admission to a 
Victorian hospital. Of the 188 cases with suspected overseas 
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acquisition 132 (72%, 5 unknown) reported hospital admission 
while overseas, and an additional 28 had attended an emer-
gency department, medical, or dental clinic. The remaining 23 
cases represent suspected overseas acquisition in the absence 
of healthcare contact. The majority (18/23 cases, 78%) involved 
NDM-producing Escherichia coli, commonly NDM-5 (n = 14); 
22 of the 23 cases travelled to South-East or South and Central 
Asia, most commonly India (n = 14) (Supplementary Table 5).

Cases with suspected non–healthcare-related acquisition 
overseas were significantly less likely to have been identified 
through screening (35%, n = 8/23) than other CPE cases (57%, 
n = 217/379) (P = .035), and most notably those with overseas 
hospitalization (73%, n = 117/160; P < .001).

Local Acquisition of Carbapenemase-producing Enterobacterales in 
Victoria
Centralized Combined Genomic and Epidemiological Surveillance 
Allows Identification of Small Transmission Networks Involving 
Cases Temporally and Geographically Dispersed at CPE 
Identification
A major aim of the program is early identification of putative 
local transmission. To enable timely action, time between iso-
late referral and initial assessment for local transmission was 
monitored, with a median delay of 11 days (interquartile range 
[IQR], 9–14 days) during the study period. Following process 
improvements, the median delay decreased from 15 days (IQR, 
9–34 days) in 2016 to 10 days (IQR, 9–13 days) in 2018.

Among the 53% (n = 214/402) of cases where overseas ac-
quisition was not suspected, routine prospective surveillance 
uncovered 28 clusters of genomic and epidemiologically linked 

cases, most commonly involving IMP-4–positive organisms 
(Figure 2). Identified transmission networks involved a median 
of 2 cases (range, 1–19) during the study period.

Previous studies have indicated that local transmission is sus-
pected where isolates from 2 patients are within approximately 
23 single nucleotide polymorphisms (SNPs) of each other [7, 
19]. In our data, 97% (2296/2366) of intercluster pairwise iso-
late comparisons were below this threshold when a cluster was 
defined using both genomic and epidemiological data (median, 
8; IQR, 4–13 SNPs) (Figure 2). However, where multiple clus-
ters have been identified within a single species and ST, con-
siderable overlap was observed between intra- and intercluster 
pairwise SNP comparisons (Figure 3), suggesting the use of a 
genomic cluster definition alone may merge epidemiologically 
dispersed cases, reducing power to identify risk factors and ge-
ographical or temporal focus of transmission.

Twenty-eight location- and time-specific TRAs were identi-
fied across 18 of the 28 clusters, allowing targeted intervention 
and screening. One TRA was in a residential aged-care facility, 
with the remaining in single hospital wards. Organisms involved 
in TRAs varied by health service, with 13 of 18 (72%) IMP-4 
TRAs, 6 of 8 (75%) KPC-2 TRAs, and 2 of 2 (100%) OXA-232 
TRAs each occurring within different single health services. 
Interfacility collation and the combined use of genomic and 
epidemiological data were crucial in identifying transmission 
where patients were temporally and geographically dispersed 
on identification, including 6 TRAs involving patients identi-
fied with CPE postdischarge, in different health services or the 
community. Similarly, in 14 TRAs, more than 30 days elapsed 
between identification of CPE in the first and last cases involved 
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in the transmission. The case study below further highlights the 
value of centralized intrafacility surveillance methods.

Case Study: Outbreak Investigation Leading to the Declaration of 
Transmission Risk Areas in 2 Hospitals
In July 2018, a patient with OXA-232–positive Klebsiella 
pneumoniae ST 2096 was identified without a history of hospi-
talization in a high-burden country (patient 3). Two cases of this 
gene, species, and ST combination had been seen previously, 
from patients 1 and 2, both reporting prior hospitalization in 
India (Supplementary Table 6). An outbreak investigation was 
undertaken and updated on identification of patients 4 and 5, 
including a phylogenetic analysis of isolates from all patients 
(Figure 4A). Bed-movement data were obtained from any hos-
pital where multiple cases had attended and plotted against the 
phylogenetic tree (Figure 4B).

Analyzed together, centralized genomic and epidemiological 
surveillance enabled the following:

(1)	 identification of an outbreak of phylogenetically related 
CPE obtained from patients 2–5 over a 6-month period;

(2)	 inclusion of patient 5 in the outbreak, despite admission to 
a different health service at the time of CPE identification;

(3)	 exclusion of patient 1 from the outbreak;
(4)	 identification of patient 2 as the likely index case  

for this outbreak despite no known contact with other patients, 
suggestive of unrecognized intermediary transmission; and

(5)	 identification of putative transmissions in 2 different hos-
pitals, despite identification of CPE in patient 5 at 6 months 
after likely transmission, resulting in the declaration of 
TRAs in 2 healthcare facilities.

Multiple Local Transmission Patterns Observed, Including Sustained 
Propagated Outbreaks and Suspected Environmental Acquisition
Among identified local outbreaks, multiple apparent pat-
terns of local transmission were observed. Most notably, 

transmission of KPC-producing K.  pneumoniae ST 258 per-
sisted across all 3  years, causing small periodic outbreaks 
in facility B (Figure  2). All clusters of KPC-2–producing 
K. pneumoniae ST 258 observed were derived from outbreak 
clones first observed in 2012, with current clusters thought 
to represent epidemiological and genomic diversification over 
time and not separate importations [14]. A similar pattern has 
been observed within IMP-4–producing Enterobacter cloacae 
ST 93 and 114 clusters, in contrast with discrete, apparently 
time-limited transmissions, exemplified by IMP-4–produ-
cing Klebsiella oxytoca of novel ST (Figure 2). While plasmid 
transmission was not directly examined in local transmission 
investigations, 50 of 73 (68%) cases of an ST not associated 
with local clonal dissemination contained IMP-4, indicating 
limited plasmid transmission of other carbapenemases.

Following identification of environmental CPE contamination 
in some facilities, version 2 of the guideline incorporated sus-
pected acquisition from an environmental source within the defi-
nition of a TRA. Four such TRAs were observed, all involving sink 
drains contaminated with IMP-4–positive S Serratia. marcescens 
within intensive care units across 2 health services.

Effects of Comprehensive Carbapenemase-producing Enterobacterales 
Surveillance
Targeting Patients Present at Time and Location of Suspected 
Transmission Increases Screening Yield
A TRA designation enables communication of the time and 
place of CPE transmission risk to other health services, with 
persons admitted to the TRA location during the designated 
period requiring isolation and screening on admission to any 
healthcare facility (Supplementary Table 2). Version 2 of the 
guideline increased follow-up of exposed patients, including 
a requirement to send letters informing patients of their CPE 
exposure [20]. Subsequently, the proportion of screened cases 
linked to a TRA increased 11-fold to 0.9% (n = 21/2394; 
P = .002, Fisher’s exact).
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Intensified Screening Increases Case Ascertainment, Clinical 
Infections Stabilize

To assess the effect of the intervention, rates of CPE identifi-
cation and active clinical infection were examined. Incidence 
of CPE increased by 13%/half-year (95% confidence interval 
[CI], 6–19%; P < .001) (Figure 5A) to 1.42 cases/100 000 popu-
lation in the second half of 2018. Despite this, both the rate and 
number of cases identified as active clinical infections remained 
steady since 2017 (incidence rate ratio [IRR], .94; 95% CI, .73–
1.21; P = .640) (Figure 5B), indicating the observed increase in 
rate of CPE cases is likely due to increased screening and case 

ascertainment. By the second half of 2018, 36% (n = 33/92) of 
cases were identified through infection-control interventions 
following case or transmission identification, such as contact 
screening (Figure 5B). This coincided with a steady decrease in 
cases where source of acquisition could not be determined, from 
30% (n = 18/61) in the second half of 2016 to 15% (n = 14/78) in 
the second half of 2018 (χ 2, P = .033) (Figure 5C), indicating in-
creased ascertainment and resolution of transmission networks.

No change in the population rate of KPC occurred over the 
surveillance period (IRR, 1.00; 95% CI, .85–1.19; P = .968). 
However, active clinical infections with KPC-2–producing 
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Enterobacterales decreased significantly following the im-
plementation of the program, from a high of 0.29 infec-
tions/100 000 population in 2014 to 0.03 infections/100 000 
population in 2018 (P = .003). A  nonsignificant decrease in 
total KPC-2 cases was observed over the same period (P = .554) 
(Figure 5D).

DISCUSSION

We have described the findings, feasibility, and impact of 
one of the first centralized comprehensive and systematic 
phylogenomic and epidemiological surveillance and response 
programs for a primarily healthcare-associated MRO glob-
ally [21, 22]. The aim of this program was to rapidly detect 
and control transmission of CPE in a low-prevalence setting. 
Implementation was possible due to an existing public health 
genomics program, enabling analysis to be completed in a time 
frame applicable for infection-control action, and through 
embedded cooperation between public health authorities, di-
agnostic laboratories, and healthcare facilities to implement 
responses. While resourcing and capacity for genomic sur-
veillance, centralized case investigation, and patient screening 
differ between settings, we share this information to demon-
strate the value of a statewide centralized “search and contain” 
intervention for a low-prevalence MRO [23].

Historically, Victoria has had limited central coordination 
regarding MROs, and outbreaks were managed within indi-
vidual institutions. The alarming occurrence of a disseminated 
interfacility KPC outbreak necessitated action by public health 
authorities [14] and resulted in this comprehensive surveillance 
and response program. We have demonstrated the success of the 
program through increased case ascertainment with a steady rate 
of active clinical infections, a reduced number of cases where 
source of acquisition could not be determined, an increased pro-
portion of cases identified through infection-control interven-
tions, the identification of small transmission networks enabling 
early response, and through the significant decrease in KPC-2 
clinical infections observed following program implementation.

As consistently demonstrated in retrospective outbreak 
studies, and in our present case study, the increased pathogen 
discrimination provided by genomic analysis enhances assess-
ment of alternate transmission hypotheses generated by epide-
miological investigation [14, 22, 24, 25]. Our results support this 
principle, demonstrating that due to CPE colonization patients 
involved in a transmission event can be temporally and/or geo-
graphically dispersed upon CPE identification, and such patients 
can have considerable intra-host genomic diversity, making 
genomic or epidemiological data alone insufficient to define 
transmission events. When used prospectively, this process has 
enabled us to identify the temporal and geographical focus of 
transmission networks early, while case numbers remain small, 
allowing targeted intervention and reducing the resources re-
quired for intense epidemiological data collection [19].

While the importation of CPE, particularly from South and 
Central Asia, and the predominance of IMP carbapenemase in 
local transmissions within Australia were anticipated [9, 10, 12, 
13, 26], our results differed from those previously reported, in 
several ways. First, intensive case investigation identified travel 
to South and South-East Asia without healthcare contact as an 
emerging risk factor for NDM-producing E. coli; IMP transmis-
sion, thought to be endemic in Australia’s eastern states [26], 
and initially debated for inclusion in the program, affected only 
a small number of facilities; and intensive infection-control ac-
tions have resulted in a higher proportion of CPE cases iden-
tified through screening, and a lower occurrence of serious 
infections, than reported elsewhere [24].

There are several limitations to the current program. The 
system is resource intensive and sustainability may be threat-
ened by accumulating case numbers, rising global incidence 
of CPE, and broadening risk factors for acquisition—all 
increasing the risk of CPE introduction and resources required 
for screening and isolation of at-risk patients [27–29]. While 
other comprehensive interventions have shown success in re-
ducing incidence in outbreak or high-burden settings, rapid 
transmission detection and intervention may help maintain low 
prevalence, and costs must be assessed against the escalating 
economic burden of CRE infection demonstrated internation-
ally [30, 31]. Program evaluation, including cost-effectiveness 
analysis, is underway. Screening all patients with travel to high-
burden countries without healthcare contact, which we have 
identified as a risk factor for CPE acquisition, is infeasible, yet 
such patients may represent an ongoing threat of CPE introduc-
tion to our health services. We are encouraged by our results 
demonstrating increased case ascertainment through screening 
and low levels of active clinical infection; however, we may not 
identify all subsequent clinical infection in patients with known 
CPE colonization. Research into pathogen and host factors 
influencing CPE colonization in diverse, nonoutbreak settings 
is needed to focus resources for screening and isolation towards 
those at higher risk of ongoing carriage and transmission and 
within limits of duration of colonization [29, 32, 33].

Case ascertainment and sensitivity to detect transmission are 
strongly influenced by screening practices, which may differ be-
tween settings and facilities. While we have attempted to stand-
ardize screening of at-risk persons, transmissions may not be 
identified due to unrecognized colonized patients, difficulty in 
screening exposed contacts postdischarge or when presenting 
to another healthcare facility, and in identifying transmission 
in community settings. Further, we are currently unable to 
routinely determine transmissions that result from transfer of 
resistance elements between species and clones. This is under 
investigation for future action; however, the low proportion of 
cases where source was unable to be determined suggests this 
is not a dominant feature of CPE transmission in our setting. 
Finally, TRAs enable focused intervention but may be difficult 
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to determine where large case numbers within a cluster result in 
multiple temporal and geographical overlaps between cases. In 
facilities or settings with higher CPE incidence, targeted inves-
tigation and control measures may not be feasible; protocols to 
identify and manage transmission in such settings are needed. 
Further research into infection-control interventions effective 
against persistent propagated outbreaks and environmental res-
ervoirs is also required.

In an era when AMR threatens the stability of the health system 
globally, significant effort and resources are justified if they can 
reduce the burden of AMR, especially the highest-risk pathogens 
such as CPE. We have described the successful implementation 
of a comprehensive, centralized program, and some indicators of 
success. Further work is required to define the economic value 
of the intervention, and to further refine enhanced screening ac-
tivities at the hospital level, enabled by the comprehensive sur-
veillance data collected. The methodologies used are transferable 
to other low-prevalence settings and MROs globally and will be 
expanded to other emerging AMR threats, such as Candida auris.

Sequences used in phylogenetic analyses are available at NCBI 
BioProject PRJNA529744 and https://github.com/MDU-PHL/
CPE-Paper.
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