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Abstract

Background

Aedes aegypti is a primary vector of dengue, chikungunya, Zika, and urban yellow fever

viruses. Indoor, ultra low volume (ULV) space spraying with pyrethroid insecticides is the

main approach used for Ae. aegypti emergency control in many countries. Given the wide-

spread use of this method, the lack of large-scale experiments or detailed evaluations of

municipal spray programs is problematic.

Methodology/Principal findings

Two experimental evaluations of non-residual, indoor ULV pyrethroid spraying were con-

ducted in Iquitos, Peru. In each, a central sprayed sector was surrounded by an unsprayed

buffer sector. In 2013, spray and buffer sectors included 398 and 765 houses, respectively.

Spraying reduced the mean number of adults captured per house by ~83 percent relative to

the pre-spray baseline survey. In the 2014 experiment, sprayed and buffer sectors included

1,117 and 1,049 houses, respectively. Here, the sprayed sector’s number of adults per

house was reduced ~64 percent relative to baseline. Parity surveys in the sprayed sector

during the 2014 spray period indicated an increase in the proportion of very young females.

We also evaluated impacts of a 2014 citywide spray program by the local Ministry of Health,

which reduced adult populations by ~60 percent. In all cases, adult densities returned to

near-baseline levels within one month.

Conclusions/Significance

Our results demonstrate that densities of adult Ae. aegypti can be reduced by experimental

and municipal spraying programs. The finding that adult densities return to approximately

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006378 April 6, 2018 1 / 26

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Gunning CE, Okamoto KW, Astete H,

Vasquez GM, Erhardt E, Del Aguila C, et al. (2018)

Efficacy of Aedes aegypti control by indoor Ultra

Low Volume (ULV) insecticide spraying in Iquitos,

Peru. PLoS Negl Trop Dis 12(4): e0006378. https://

doi.org/10.1371/journal.pntd.0006378

Editor: Roberto Barrera, Centers for Disease

Control and Prevention, Puerto Rico, UNITED

STATES

Received: January 1, 2018

Accepted: March 8, 2018

Published: April 6, 2018

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All data are available

through DRYAD at https://doi.org/10.5061/dryad.

160023v.

Funding: This research was funded by the National

Institutes of Health (NIH) grant R01-AI091980, the

W. M. Keck Foundation, and the National Science

Foundation (RTG/DMS - 1246991 and NSF-IGERT

- 1068676). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

https://doi.org/10.1371/journal.pntd.0006378
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0006378&domain=pdf&date_stamp=2018-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0006378&domain=pdf&date_stamp=2018-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0006378&domain=pdf&date_stamp=2018-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0006378&domain=pdf&date_stamp=2018-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0006378&domain=pdf&date_stamp=2018-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0006378&domain=pdf&date_stamp=2018-04-18
https://doi.org/10.1371/journal.pntd.0006378
https://doi.org/10.1371/journal.pntd.0006378
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://doi.org/10.5061/dryad.160023v
https://doi.org/10.5061/dryad.160023v


pre-spray densities in less than a month is similar to results from previous, smaller scale

experiments. Our results demonstrate that ULV spraying is best viewed as having a short-

term entomological effect. The epidemiological impact of ULV spraying will need evaluation

in future trials that measure capacity of insecticide spraying to reduce human infection or

disease.

Author summary

Aedes aegypti is a primary vector for medically important viruses that typically resides

within houses. Indoor, ultra low volume (ULV) adulticide space spraying is considered to

be more effective in controlling Ae. aegypti populations than outdoor spraying, and is

widely used in tropical cities. Given the widespread use of indoor ULV spraying in emer-

gencies by municipal control programs, the lack of large spatial scale evaluations is prob-

lematic. We conducted two large-scale experiments to evaluate indoor ULV pyrethroid

spraying in the city of Iquitos, Peru in 2013 and 2014, and we also evaluated a municipal

spraying effort. Our results demonstrate that densities of adults can be reduced by ULV

spraying, but that adult densities in sprayed areas return to approximately pre-spray den-

sities in less than a month. These findings agree with results from previous, smaller scale

experiments, and confirm that ULV spraying should be viewed as causing a short-term

decrease of Ae. aegypti populations. We provide extensive detail regarding our experimen-

tal design and data collection so that our results can assist in establishing best practices for

future assessments of ULV spraying efforts, as well as aid in testing predictions of mathe-

matical models of Ae. aegypti population dynamics.

Introduction

Aedes aegypti is a primary vector for dengue (DENV), chikungunya (CHIKV), Zika (ZIKV)

and urban yellow fever viruses (YFV). Dengue has become the most important human arthro-

pod-borne viral infection worldwide [1, 2]. Each of these pathogens can be associated with

explosive epidemics, where high disease incidence and public fear combine to overwhelm

health systems [3]. Such epidemics put intense pressure on public health departments to react

with emergency vector control measures [4, 5].

Ae. aegypti adults are primarily diurnal and females take frequent blood meals, predomi-

nantly from humans [6–8]. These behaviors can in part explain why Ae. aegypti has been asso-

ciated with epidemic virus transmission even when its population densities are low [9].

Because adults typically reside inside houses [8] where food, mates, and oviposition substrates

are readily available, indoor adulticide space spraying has been more effective than outdoor

spraying for suppressing Ae. aegypti populations in small scale evaluations [4, 10, 11].

When indoor space sprays are applied appropriately, in carefully controlled small-scale

experiments, adult Ae. aegypti populations often decreased by >80%. Population densities typ-

ically recovered quickly, however, [12–15] due to emergence of nulliparous mosquitoes from

larval aquatic habitats inside sprayed areas [11], through migration from locations outside of

sprayed areas [15], or from females in sprayed houses that survived. In a systematic literature

review, Esu et al. [4] found only six studies from 1970’s to 2010 that tested ultra-low volume

(ULV) indoor space spraying under natural field conditions that met minimum standards for

evaluating mosquito population suppression. None of the studies evaluated the impact of these
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methods on human virus infection or disease [4]. Results ranged from immediate reduction in

biting by 99% and adult population reduction lasting six months [16], to a more common,

modest control lasting 1–5 weeks [14, 15, 17]. Most studies were small scale, with each treat-

ment typically including one replicate of less than 50 houses.

It is important to distinguish between indoor and outdoor space spraying, the latter usually

delivered by vehicle-mounted machines and whose effectiveness is often limited by a failure of

insecticide droplets to penetrate indoors where Ae. aegypti rest [11]. A more recent review of

vector control effectiveness for dengue [18] concluded that “although space spraying is the

standard public health response to a dengue outbreak worldwide, and is recommended by

WHO [19] for this purpose, there is scant evidence available from studies to evaluate this

method sufficiently.” In fact, Bowman et al. [18] could find no well-designed trial that assessed

the impact of non-residual indoor or outdoor space spraying on human dengue infection or

disease.

Ae. aegypti populations in the Amazonian city of Iquitos, Peru have been studied exten-

sively since 1998. The spatial distribution of the species is highly clustered and does not have a

consistent spatial or temporal structure [20, 21]. Adult and immature population indices are

highly variable and subject to sampling error [22]. Evaluation of control measures for this spe-

cies, therefore, requires large sample sizes and exhaustive sampling.

In addition to studying the mosquito itself, the Iquitos research program monitored DENV

transmission through passive clinic-based febrile surveillance in health care facilities through-

out the city [23] and a series of prospective cohort studies in targeted city neighborhoods [24–

26]. The combination of longitudinal entomological and epidemiological studies created a

database that could be used to examine, in real time, the impact of Ministry of Health (MoH)

vector interventions on Ae. aegypti populations and human disease. During their interven-

tions, the MoH sprayed non-residual insecticide inside homes three times over an approxi-

mately 3-week period [27]. Over a 10-year period, this kind of citywide municipal vector

control program was associated with significant decreases in Ae. aegypti adult populations [28,

29] and when interventions were applied during the first half of the dengue transmission sea-

son, fewer dengue cases were detected and the transmission season was shorter [27]. While the

qualitative results from that analysis of dengue are consistent with an expectation of a positive

public health impact of intra-domicile ULV insecticide application on dengue incidence, more

statistically robust epidemiological studies are needed [30].

Prevention of Aedes-transmitted viral disease will require integrated approaches; i.e., com-

binations of existing and/or novel vector control strategies as well as vaccination. Mathemati-

cal models provide a way to compare diverse strategies and identify the most promising

approaches. For example, data on Ae. aegypti populations in Iquitos were used to develop a

biologically detailed, spatially explicit, stochastic model that tracked Ae. aegypti dynamics and

genetics in an 18-ha area of the city [31, 32]. Preliminary validation of the model using Iquitos

data was carried out [31], but evaluation of its capacity to accurately predict the entomological

outcome of a vector control perturbation had not been tested. The experiments described here

were primarily designed to generate data that could be used to test the ability of the entomo-

logical model to predict impacts of suppression measures.

In this study, we carried out a large-scale evaluation of the entomological impact of a widely

used emergency vector intervention of Aedes-transmitted viruses in a well-characterized study

site. Our specific goal was to evaluate the impact of 6 cycles of indoor ULV pyrethroid spray

applications (hereafter referred to as “spray applications”) on reductions of Ae. aegypti popula-

tions. Our experiments spanned periods of relatively low and high Ae. aegypti density in Iqui-

tos, and compared the ULV application in experimental and public health settings. Our results

constitute an important data set for development and validation of Ae. aegypti population

Impact of ULV spraying on Aedes aegypti

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006378 April 6, 2018 3 / 26

https://doi.org/10.1371/journal.pntd.0006378


dynamics models, and provide a detailed account of indoor space spray effects on Ae. aegypti
populations.

Methods and materials

Ethics statement

The study protocol was approved by the Naval Medical Research Unit Six (Protocol

#NAMRU6.2013.0001) Institutional Review Board, which included Peruvian representation,

in compliance with all US Federal and Peruvian regulations governing the protection of

human subjects. IRB authorization agreements were established between the Naval Medical

Research Unit Six and the University of California at Davis and North Carolina State Univer-

sity. The protocol was reviewed and approved by the Loreto Regional Health Department,

which oversees health research in Iquitos. In all instances consent from adult members of

houses was obtained without written consent. Written information sheets were provided to

study participants, providing a detailed overview of the experiment design, procedures, and

study goals before initial pre-interventions surveys. Permission to enter houses was provided

at each survey or spray application visit.

Study area

The studies were conducted in two neighborhoods in the Maynas district of Iquitos (Fig 1,

Maps). Iquitos has a human population of ~380,000 (73.2˚W longitude, 3.7˚S latitude, 120 m

above sea level). Located in the Amazon Basin of northeastern Peru, Iquitos is the largest

urban center in the Department of Loreto, and has an average daily temperature of 25˚C and

an average annual precipitation of 2.7 meters. Dynamics of Ae. aegypti populations in Iquitos

are described in detail in earlier publications [20–22, 24, 33–38]. These neighborhoods were

selected because, historically, they consistently had high Ae. aegypti densities [33]. In addition,

the area was spatially configured to meet our study design of a central spray area surrounded

by buffer area that would serve as a control.

Both experimental study neighborhoods were characterized by city blocks of row houses

(dwellings that share walls). Most houses occupied lots that were narrow (3–10 m wide), but

relatively deep (20–60 m long). The majority of houses served as family residences, often con-

taining extended or multiple families. Some houses were used for small businesses or offices,

and others were unoccupied. There were a small number of vacant lots containing no struc-

tures (<1%). Many study houses were mixed-purpose, sharing living areas with a small store

(“bodega”), office, shop (e.g. carpentry or vehicle repair), or restaurant.

Vector control activities were ongoing in Iquitos. The MoH carried out regular entomologi-

cal surveillance and larviciding activities with temephos (Abate) at ~3 month intervals. Since

2002, with few exceptions, MoH carried out 1–3 emergency indoor pyrethroid spray cam-

paigns per year in response to dengue outbreaks, with variable success [27]. Our study was

completed in 2014, while resistance bioassay profiles prior to January 2013 indicated Ae.

aegypti populations in the city were susceptible to pyrethroids [39].

Fig 2 summarizes the design of our two separate experiments. The first and smaller of the

two experiments (S-2013) ran for 16 calendar weeks and included an experimental buffer sec-

tor that was not sprayed, surrounding a central experimental sector that was sprayed. The

buffer sector contained 765 houses and the spray sector had 398 houses (Fig 1A). The S-2013

study area was located on the western border of the city, proximal to Lake Moronacocha

(Fig 1C).

The larger second experiment (L-2014) ran for 44 calendar weeks, and included 1,051

houses in the surrounding buffer sector and 1,110 houses in the central spray sector (Fig 1B).

Impact of ULV spraying on Aedes aegypti
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L-2014 was carried out in a neighborhood several kilometers to the north of S-2013, centrally

located in Iquitos, and bordered on the south by an abandoned airstrip (Fig 1C). The L-2014

study area was selected because the Ae. aegypti-free airstrip provided a physical barrier to Ae.

aegypti dispersal on one of its four sides. This experimental structure of L-2014 was selected to

test our mathematical model’s ability to capture any spatial features of the recovering mosquito

population.

Entomological surveys

To monitor population densities and age structure of Ae. aegypti populations, standardized

adult mosquito collections were carried out using Prokopack aspirators [40] (henceforth adult

surveys) and standardized larval/pupal demographic surveys [41–43] (henceforth immature

surveys) were undertaken, except when noted. Survey protocols are described in detail in pre-

vious publications [20–22, 35, 40].

Collected adults were immediately transported to a field laboratory in Iquitos for processing

as described in Morrison et al. [33]. Adult mosquitoes were sedated by cold (4˚C), identified,

Fig 1. Map of experiment areas. Detail for (A) S-2013 and (B) L-2014 experimental areas, showing individual houses. Color shows sector. (C) City of Iquitos. Black

box highlights experimental areas. (D) Regional map. Black circle highlights Iquitos. See also S6 Fig.

https://doi.org/10.1371/journal.pntd.0006378.g001
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counted, and females separated. In most cases, female Ae. aegypti were scored as unfed, blood

fed (full, half full, or trace amounts), or gravid. Females were also scored for parity [44].

Pyrethroid spray applications

Both the S-2013 and L-2014 experiments consisted of 6 cycles of spray applications, which

were applied over 6 weeks. Spraying was done by MoH employees between 17:00–20:00 to

avoid high temperatures and varying winds. Each spray team was comprised of 3 individuals:

2 MoH sprayers and 1 monitor from the research team. Each week, on the initial day of a

spray cycle (usually Mondays), spraying was attempted in all houses in the spray sector. To

improve spray coverage within each cycle, on subsequent days spray teams revisited houses

that were not sprayed on the initial day of the spray cycle (a minimum of 2 and up to 10 visits,

as needed) to conduct spraying. Pyrethroid insecticides were applied using Solo or Stihl back-

pack sprayers with settings adjusted for ULV application, or Colt hand-held ULV sprayers.

Residents were instructed not to return to their houses for a minimum of 1 hour. See S1 Text

for more details.

Fig 2. Experiment timeline. Each box shows one circuit. With one exception (L-2014 C2), each house was visited (and possibly surveyed) at least once per circuit.

Except where noted, each circuit consisted of one or more spatially systematic subcircuits. Each subcircuit lasted approximately one calendar week. See S7 Fig. for

survey maps.

https://doi.org/10.1371/journal.pntd.0006378.g002
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A MoH emergency intervention interrupted the L-2014 experiment with a set of spray

applications (3 cycles over 2 weeks) that were applied similarly to the above experimental

sprays. The principal differences were as follows: during the emergency intervention, MoH

personnel generally sent an advance team with loudspeakers announcing the arrival of the

spray teams; MoH personnel visited each house on a block a single time (they had no mecha-

nism to spray houses missed on their initial visit); and pyrethroids were applied to both the

spray and buffer sectors using only Solo or Stihl backpack aspirators.

Quality control for spray applications

As a quality control measure, for each spray cycle, 3 to 7 houses were selected to monitor effi-

cacy of the insecticide spray. Operators did not know which houses would be selected for mon-

itoring. For each monitored house, just after the spray operator had finished the application, a

single screen cage containing adult mosquitoes was placed in each of the following locations:

bedroom, living room, kitchen, and yard, based on standard WHO protocols [45–47]. Each

cage contained 25 adult Ae. aegypti of age 24–36 hours from a pathogen-free laboratory colony

[45, 46]. A separate laboratory colony was initiated for each experiment from mosquitoes col-

lected from houses in Iquitos and held for 1–2 generations prior to use. One hour after spray-

ing, all cages were retrieved and evaluated for knockdown (no movement), stored in a

styrofoam cooler with moist paper towels for 24 hours, and then examined for mortality.

When mortality was <80%, equipment was recalibrated to ensure proper spray function on

subsequent days.

Droplet size. Teflon treated slides were placed in 2 randomly selected houses during each

spray cycle and retrieved 1-hour post-spray. Droplet size was measured using a micrometer in

Motic Images Plus 2.2. Droplets were counted and measured in a 1 cm2 square.

Experimental design

Experimental study sectors are depicted in Fig 1A & Fig 1B. We refer to the temporal sampling

units as “circuits” because they were time periods when full survey routes through all of the

blocks of houses in the spray and buffer sectors were completed (see Fig 2 for a flow chart of

experimental design, and S7 Fig for survey maps). During each circuit, attempts were made to

visit and survey 100% of the houses in the entire study area at least once (with one exception,

L-2014 C2). The percentage of total houses successfully surveyed and/or sprayed in each cir-

cuit ranged from 67–90%, due to closed or unoccupied houses, or residents who chose not to

participate in the study (see Fig 3B, S1 Table).

Each circuit was divided into subcircuits that lasted approximately one week, but never

more than 10 days. In general, subcircuit surveying was conducted systematically by block,

with surveyors attempting to visit every 4th house (25% of the circuit) each week (see S2 Text

for exceptions).

Both experiments consisted of 6 weekly cycles of ULV indoor spray applications (see

above). Immature and adult surveys were carried out before (pre-intervention) and after

(post-intervention) the spraying periods. During the experimental spray periods, only adult

surveys were carried out (no immature surveys).

In the baseline pre-intervention circuit of each experiment (C1), 8 study teams surveyed the

entire study area (2 people / team), proceeding by block until all houses in the study area were

visited at least once (see below for details regarding L-2014). Houses that were not accessible

on a day of a visit were revisited the next day and surveyed if open. After all study blocks were

surveyed, houses that remained unsurveyed were visited a final time, and surveyed if possible.

In subsequent circuits, similar spatially systematic surveying within subcircuits was carried

Impact of ULV spraying on Aedes aegypti
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Fig 3. Sampling and spraying. (A) Number of houses per week sprayed and/or surveyed. Circuits are labeled (e.g., C1), with date ranges shown by horizontal bars.

Containers were not surveyed during spray periods. The first two emergency (citywide) spray events (red +) occurred within the same calendar week, but are plotted

separately here. (B) Spray coverage by spray cycle. Percent houses sprayed is shown in text. Top row: emergency (citywide) spraying. Bottom row: experimental

spraying.

https://doi.org/10.1371/journal.pntd.0006378.g003
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out, and unsurveyed houses were visited a minimum of 3 times per circuit, or until access was

obtained or refused.

Experiment 1 (S-2013)

The initial S-2013 baseline pre-intervention circuit (C1) was carried out from 22–29 April

2013 in the spray sector, and from 29 April-16 May 2013 in the buffer sector (C1, Fig 3A). Dur-

ing the experimental treatment circuit (C2), Alphacypermetrin 10% (Turbine 10%) was

applied once per week for 6 consecutive weeks using Solo backpack sprayers (Cycles 1–6) or

Colt hand-held sprayers (Cycles 4–6). Adult surveys were typically carried out during the

spray period on Monday afternoons just prior to the initiation of each spray cycle, as described

above. This design, therefore, measured adult densities up to 7 days after a previous spraying

event. Post-intervention surveys (C3-C4) were initiated 10 days after completion of the last

spray cycle (see S7A Fig and S8A Fig for detailed maps of surveys and sprays, respectively).

Experiment 2 (L-2014)

In contrast to S-2013, the L-2014 study teams worked in two groups during the pre-interven-

tion baseline circuit (C1), with one group in each sector so as to survey both sectors simulta-

neously. Each group consisted of 4 two-person teams. Following the initial L-2014 baseline,

pre-intervention circuit (C1), the experiment was interrupted by a MoH citywide emergency

intervention in response to a dengue outbreak (see also S1 Text).

Citywide MoH intervention. In response to information from the MoH about their

imminent emergency citywide spraying program (details above), we adapted our study design

in 3 ways (see also S2 Text). First, we coordinated with the MoH to conduct adult surveys on a

subset of L-2014 houses prior to (~20% of houses, C2) and during the emergency spray period

(~20% of houses in each spray cycle, C3). No immature surveys were conducted during these

circuits (for details see Fig 3A, S7B Fig and S1 Table). Second, we conducted independent

monitoring of the 3 emergency citywide spray cycles (C3), along with standard quality control

spraying procedures. We also added an additional circuit subsequent to the MoH emergency

citywide intervention that consisted of four spatially systematic subcircuits of full surveys

(immature and adults, C4). Third, we added an extra circuit of adult surveys (~25% of houses,

C5) that preceded experimental intervention. Subsequent to Circuit 5 (11 weeks after 3 cycles

of MoH spraying), we resumed our planned L-2014 experiment (See S7B Fig for a detailed

map of survey locations).

The citywide MoH intervention consisted of 3 cycles of indoor cypermethrin 20% (SERPA

ciper 20 EW) spray applied between 04:00–09:00 or 17:00–20:00 with Solo backpack sprayers

applied to both the spray and buffer sectors (details above).

Experimental spraying. As in S-2013, 6 weekly cycles of ULV spraying were applied (C6).

A different pyrethroid insecticide, cypermethrin 20% (ESTOQUE 20 E.C., Tecnologia Qui-

mica y Comercio S.A.) was used. For each cycle, spraying began on Monday evening using

Solo backpack sprayers. Attempts were made to spray all accessible houses. Follow-up spraying

of houses missed during the first day was carried out Tuesday-Friday between 07:00 and 20:00

using Colt hand-held sprayers (see also S2 Text). In L-2014, adult surveys were typically car-

ried out 1 to 4 days after a house was sprayed.

Data analysis

Unless otherwise noted, only Ae. aegypti data were analyzed, and houses were used as the basic

spatial units of observation. A "spray status" indicator variable was assigned to each house sur-

vey conducted in the spray sector during experimental spray periods. "Prior spray" indicated
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that a spray application occurred in a surveyed house prior to the survey during the current or

previous calendar week (otherwise, "no prior spray"). During L-2014, the relative timing

between spray and subsequent survey was unclear for a limited number of surveys, which were

designated as "timing unclear" (S4 and S5 Tables).

Statistical models

For each experiment, a suite of statistical models was developed to estimate the impact of spray

treatment on mosquito densities, proportion of infested houses, and population age structure

(as determined from parity examination). With one exception, all comparisons and signifi-

cance tests were conducted within-experiment.

Two generalized linear model (GLM) specifications were employed, both of which used a

log link. For all counts, a negative binomial GLM (NB-GLM) was used. Here, the response was

the count of mosquitoes per house, and was assumed to follow a negative binomial distribu-

tion. The NB-GLM estimates the log of mean counts, and is akin to Poisson regression, while

allowing for response over-dispersion (separate mean and variance) [48]. For all proportions,

a logistic GLM (L-GLM, i.e., logistic regression) was used. Here, the response was the propor-

tion of successes (out of total number of events), and was assumed to follow a binomial distri-

bution. The choice of “success” was an arbitrary label applied to one of two mutually exclusive

possibilities (presence or absence). The L-GLM estimates the log probability of success. For

ease of interpretation, all model results were un-transformed after analysis and displayed in

the original (unlogged) scale of observations.

To identify structural, pre-perturbation differences between sectors, an NB-GLM was used.

This estimated the number of Ae. aegypti adults per house (AA/HSE) in the baseline circuit

(C1) in response to physical characteristics of houses, including building, floor, and roof con-

struction, as well as number of containers, rooms, and surveyed rooms.

To assess the effect of spraying, an NB-GLM was employed to estimate AA/HSE in response

to circuit and spray sector. In addition, a companion L-GLM was used to predict Adult House

Index (AHI: proportion of houses with 1 or more Ae. aegypti adults) in response to circuit and

spray sector. Finally, the NB-GLM model formulation was tested with alternate responses:

female Ae. aegypti adults per house, and non-Aedes adults per house.

An NB-GLM was also used to estimate the effect of study year and spray status on AA/HSE.

This model included only surveys conducted in the spray sector during experimental spray

periods.

Counts from immature surveys and parity surveys were converted to proportions: container

surveys yielded per-house proportion of positive containers (henceforth called the PrPC),

which is also referred to as the container index. Parity surveys yielded the per-house proportion

of nulliparous females (henceforth called the PrNF). Each proportional measure (PrPC, PrNF,

and PrIH) was analyzed using a pair of L-GLM, weighted by the number of observations, with a

separate model for each study year. Predictors included circuit and sector. The response was the

log proportion of “successful” events per house, i.e., detection of positive containers or nullipa-

rous females. The container model estimated the log proportion positive containers per house,

log(PrPC), and the reproductive status model estimated log proportion nulliparous females per

house, log(PrNF). The total number of Ae. aegypti positive containers per house (PC/HSE) was

modeled using an NB-GLM. Note that Breteau Index (BI) = 100�(PC/HSE).

To further evaluate the effect of spraying on mosquito densities, contrast analysis [49] was

employed on the sector-by-circuit NB-GLM. Contrasts were made between circuits (spray sec-

tor only), and between sectors. The between-circuit contrast was complicated by temporal var-

iation, either in extrinsic environmental factors, such as weather, or in intrinsic ecological
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processes, such as demographic stochasticity. The between-sector contrast was complicated by

potential spatial ecological differences between sectors. More robust conclusions can be made

if both types of contrasts provide similar assessments of the effect of spraying.

For the statistical models of adult, immature, and parity surveys, statistically indistinguish-

able groups and 95% confidence intervals (CI) of experimental group effects were estimated

using least-squares means, also known as predicted marginal means, via the lsmeans R package

[49]. Tukey’s method was used to control the family-wise error rate [49].

Results

Overview

During S-2013, 1,860 ULV spray applications (6 weekly cycles) were carried out in 398 houses.

During L-2014, 4,986 spray applications (6 weekly cycles) were carried out in 1,110 houses.

During the MoH emergency spray campaign that interrupted the L-2014 experiment there

were 3,502 spray applications in 1,617 houses over 10 calendar days. A total of 3,843 surveys

over 16 weeks and 12,124 surveys over 44 weeks were carried out in S-2013 and L-2014

(including MoH emergency campaign), respectively (Fig 3A, Table 1). Adult Ae. aegypti densi-

ties were highly variable over space (S1 Fig) and time (S4 Fig) with highly skewed distributions.

No adult mosquitoes were collected from most houses, and large numbers of adults were cap-

tured in very few houses (S1 Fig).

Model results (AA/HSE and AHI) are shown in Fig 4; model contrasts (AA/HSE) are

shown in Fig 5; details of adult densities and house indices are shown in S6 and S7 Tables.

Overall, adult densities in the S-2013 baseline circuit (early May, C1) were 0.26 and 0.40 Ae.

aegypti per house (AA/HSE) in the buffer and spray sectors respectively. During this same

baseline circuit, 15% and 16% of houses contained one or more Ae. aegypti adults (AHI) in the

buffer and spray sectors, respectively (S7A and S7B Table). The L-2014 baseline circuit (Janu-

ary, C1) showed that Ae. aegypti adult densities were higher than in S-2013: 0.62 and 0.77 AA/

HSE in the buffer and spray sectors, respectively. A later pre-intervention circuit in April (C5,

prior to experimental spraying) yielded 0.44 and 0.67 AA/HSE in the buffer and spray sectors,

respectively. The corresponding AHIs for these surveys were 31% and 34% in the spray and

buffer sectors, respectively for January, C1, and 22% and 28% for April, C5.

Adult Ae. aegypti densities and house indices within the spray sector during spray periods

were also lower during S-2013 (0.07 AA/HSE; AHI 5.5%) compared to L-2014 (emergency

spraying, C3: 0.30 AA/HSE; AHI 18%; experimental spraying, C6: 0.31 AA/HSE; AHI 11%).

In the S-2013 post-intervention circuits (C3-C4), Ae. aegypti adult densities in the spray sec-

tor achieved a maximum of 0.35 AA/HSE (AHI 23%). In L-2014 (C7-C9), Ae. aegypti adult

densities in the spray sector reached a maximum of 1.31 AA/HSE (AHI 41%).

Table 1. Summary of Aedes aegypti collected in 2013 and 2014 experiments evaluating ultra-low-volume space sprays in Iquitos, Peru. Observation counts include

houses, surveys�, sampled adult mosquitoes, sampled containers, and adult female dissections�� (parity).

Experiment Sector Houses Surveys Adult Females Total Adults Positive Containers Total

Containers

Nulliparous Females Females Dissected

S-2013 Buffer 765 2,448 439 904 236 5,311 49 406

S-2013 Spray 308 1,395 153 354 109 2,170 23 142

L-2014 Buffer 1,051 5,810 1,585 3,165 251 6,811 81 1,444

L-2014 Spray 1,110 6,314 2,092 4,244 278 7,454 191 2,004

�Note that houses were surveyed repeatedly

�� Nearly all sampled adult females (column 5) were dissected to determine parity status (columns 9 & 10). See also S1 Table.

https://doi.org/10.1371/journal.pntd.0006378.t001
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Meteorological conditions

Meteorological conditions were consistent between the two experiments, with average tem-

peratures of 25.5˚C (average minimum = 22.0˚C, average maximum = 32.0˚C) and 25.6˚C

(average minimum = 22.0˚C, average maximum = 31.9˚C) during the S-2013 and L-2014

experiments, respectively (National Climatic Data Center, https://www.ncdc.noaa.gov/cdo-

web/). Precipitation during both years was approximately 0.84 cm per day. During the L-2014

entomological surveys for the MoH emergency citywide spray operation (January-March

2014), the temperatures were higher (average 25.9˚C, average minimum = 23.3˚C, average

maximum = 32.6˚C) and it was rainier (average 1.09 cm per day) than at other times during

the S-2013 and L-2014 experiments.

Fig 4. Model estimates of Ae. aegypti adults per house (AA/HSE, top row) and proportion infested houses (PrIH = AHI). A separate generalized linear model

(GLM) was constructed for each experiment (column) and for each measured response (row). (A) AA/HSE, negative binomial GLM (NB-GLM). (B) PrIH, logistic

GLM (L-GLM). Models describe response of measure (row) to time period (X-axis) and treatment sector (color & shape). Shading indicates spray events: experimental

spraying (light) and citywide spraying (dark). Vertical bars show 95% CI; non-overlapping CI indicate highly significant difference. Letters (s, t) indicate significant

differences between pairwise contrasts: s, between sector (within time, S2 Table); t, between time (within spray sector, relative to baseline C1, S3 Table). See also S6A

and S6B Table, S7A and S7B Table, and S5 Fig.

https://doi.org/10.1371/journal.pntd.0006378.g004
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Baseline surveys

Comparisons of spray and buffer sectors in both experiments indicated that the two sectors

had similar housing characteristics. No household physical characteristic was a predictor of

adult mosquito density. Consequently, these characteristics were not included in our statistical

models. Overall, for both years baseline numbers of Ae. aegypti adults were comparable

between spray and buffer sectors (S2 Table). During S-2013, however, a marginally significant

difference was found between the buffer and spray sectors during the baseline (C1) circuit

(0.26 vs 0.40 AA/HSE, resp.; Fig 5, S2 Table, p = 0.039), making some statistical analyses of

spray impacts conservative. During L-2014, baseline densities (C1) were not significantly dif-

ferent between the buffer sector (0.62 AA/HSE, AHI = 31.1%) and spray sector (0.77 AA/HSE,

AHI = 33.7%) (Fig 5, S2 Table, p = 0.09). No statistically significant baseline differences in

adult female age structure were observed between buffer and spray sectors (PrNF, S8 Table).

Baseline immature indices were similarly not different; for example, Breteau Indices (BI = 100
� PC/HSE) ranged from 9.4–10 in the buffer and spray sectors in both experiments (S9 Table).

Container indices (i.e., percentage of water-holding containers infested with larvae or pupae,

100�PrPC) ranged from 3.9–4.1 in S-2013 and 3.1–3.3 in L-2014 (S10 Table).

Spray coverage

The average percent of houses sprayed was lowest during the 3 MoH citywide emergency

spray cycles in L-2014, ranging from 71% during cycle 1 to 62% in cycle 3 (Fig 3B). For S-2013,

Fig 5. Contrast ratios of AA/HSE, based on NB-GLM. Results from NB-GLM models (Fig 4A). Top row (between-sector): Spray/Buffer. Bottom row (between-time,

within spray sector): contrast relative to baseline (C1). Vertical bars show 95% CI. Horizontal dashed line indicates null hypothesis of equality (H0: ratio = 1). Asterisks

(�) indicate significant difference between pairwise contrasts (reject H0).

https://doi.org/10.1371/journal.pntd.0006378.g005
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coverage started at 77% in cycle 1, decreased to 73% in cycle 3, and then improving in each

subsequent cycle to 90% (cycle 6). During L-2014 experimental spraying, coverage started at

74% in cycle 1, then modestly increased over time to approximately 82% in cycle 6 (Fig 3B).

In both experiments, most spray sector houses were sprayed in more than 3 out of 6 spray

cycles, and more than half of target houses were sprayed in all 6 spray cycles (S2 Fig). The pri-

mary reasons for not spraying a house were: house closed when personnel visited (3–16% for

S-2013 spray, 19–28% for L-2014 MoH emergency spray, 7–16% for L-2014 spray), or resi-

dents did not allow access to the house (6–14% for S-2013 spray, 9–11% for emergency spray,

8–11% for L-2014 spray). During the S-2013 experiment, but not in L-2014, the reasons given

by residents for refusing access were recorded. In many cases, teams were allowed access on

subsequent visits. In early cycles, about one-third of the refusals cited a direct objection to

fumigation, saying they did not believe it was effective or that the teams were not really using

insecticide. In other cases, the reason given was inconvenience to the residents: eating, bathing,

working, selling food, or that a sick person or newborn was in the house and could not leave.

In some instances, the homeowner was not present and consent could not be given.

Spray efficacy

During S-2013, 24-hour mortality of caged sentinel mosquitoes ranged from 87–97% with

some variation across cycles (S3 Fig). Mean mortality was lower in L-2014, ranging from 53–

87%. Overall, a significant decrease in spray efficacy was observed in L-2014 relative to S-2013

(Table 2). During S-2013, Colt hand-held ULV sprayers were used on 1/3rd of the blocks dur-

ing spray cycles 4–6. Higher mortality and knockdown were observed in cycles 4–6, while less

variation was observed in cycles 1–3, which employed only backpack sprayers.

Droplet size (mean±SD) varied between experiments and sprayer type. Colt sprayers had

smaller and more consistent droplets (19.1±12.6 μm) than backpack sprayers (29.2±19.5 μm).

During the L-2014 MoH emergency spray, backpack sprayers were not properly calibrated

during the initial cycle, with an average droplet size of 39.8±25.8 μm. This improved to 20.6

±14.1 μm in subsequent cycles. During the L-2014 6-cycle experiment, droplet size averaged

18.1±14.7 μm and 23.6±13.2 μm for Colt and backpack sprayers, respectively.

Experiment 1 (S-2013)

Surveys conducted during the 6-week spray period (C2) generally occurred about one week

after spraying. During the spray period, ULV spraying reduced adult Ae. aegypti population

densities rapidly and significantly from 0.40 to 0.07 AA/HSE after six cycles of spraying (Fig

4), yielding an 82.5% reduction relative to baseline (Fig 5, S3 Table, p<0.00001). The buffer

sector, in contrast, had 0.26 AA/HSE both before (C1) and during (C2) the spray period.

Adult densities in the sprayed sector were 73.1% lower than in the buffer sector during the

spray period (C2, Fig 5, S2 Table, p<0.00001). Ongoing surveys within the spray sector during

Table 2. Generalized linear mixed model (L-GLMM) results: Ae. aegypti control cage mortality and knockdown.

Experiment Assay nObs Group Est SE 95% CI

S-2013 Kill (24 hours) 112 A 0.94 0.01 0.90–0.96

L-2014 Kill (24 hours) 76 B 0.75 0.05 0.62–0.84

S-2013 Knockdown (1 hour) 112 A 0.94 0.02 0.86–0.97

L-2014 Knockdown (1 hour) 76 B 0.65 0.10 0.41–0.83

L-GLMM results, fit for each assay, show a significant decrease in spray efficacy in L-2014. Experiment is a fixed effect. Spray cycle and house are nested random effects.

Each cage contains 25 mosquitoes taken from a field-derived colony (one colony per experiment). Group: significance groups (Tukey HSD). See also S3 Fig.

https://doi.org/10.1371/journal.pntd.0006378.t002
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the spray period ranged from 0.04–0.08 AA/HSE, and did not change significantly over the

course of the six sprays (Fig 6). Spray sector AA/HSE remained 45% lower than baseline levels

during the first post-intervention period (C3, Fig 5, S3 Table, p = 0.035), but densities increased

from 0.04 to 0.27 AA/HSE between the first and second week post-spray. During the second

post-intervention period (C4), spray sector adult densities returned close to baseline densities,

increasing from 0.22 to 0.35 AA/HSE (S6A Table) which was 89% of baseline (Fig 5, S3 Table,

p = 0.94) and 83.3% of the buffer sector density at that time (Fig 5, S2 Table, p = 0.36).

Adult house indices in the spray sector, by comparison, decreased from 16% during base-

line surveys to 5.5% during the spray period (C2), then increased to 12.7% and 17.3% during

the first and second post-intervention periods, respectively (C3-C4, S7A Table). In the buffer

sector, AHIs were 15% during both baseline and spray periods, then increased to 21% and 23%

in the first and second post-intervention evaluations (S7A Table).

During the S-2013 spray period (C2), only a small number of females (9 total) were col-

lected in the spray sector (S8A Table). Therefore, no attempt was made to compare the age

structure of Ae. aegypti populations before and after spray applications for this experiment.

Model estimates of the proportion of nulliparous females (PrNF) showed accordingly high

uncertainty (S5B Fig and S8A Table).

Results from pupal demographic surveys followed a pattern similar to that of adult house

indices. Baseline BIs were 10.0 in both the buffer and control sectors (S9A Table). BIs were not

measured during the spray period; during the first post-intervention period (C3), however, BI

decreased slightly in the spray sector to 7.4 and increased to 16.1 in the buffer sector. During

the second post-intervention period (C4), BIs were 15.1 and 22.3 in the buffer and spray sector,

respectively. The post-treatment spray sector had statistically significantly higher PrPC than

Fig 6. Detailed time series of AA/HSE response to ULV spraying, aggregated by week. X-axis shows week start date. Color and symbol shape shows sector (orange

triangle: spray sector). Point size shows number of surveyed houses. Vertical dashed lines show approximate dates of experimental spraying (spray sector only).

Vertical colored bars show bootstrap 95% CI (1e+04 draws per circuit).

https://doi.org/10.1371/journal.pntd.0006378.g006
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any other sector or time period (S5B Fig, S10A Table). In the spray sector during C4, PrPC

reached approximately 0.11, significantly higher than seen in the spray sector during the base-

line C1 (0.04) or in the buffer sector during C4 (0.06).

Experiment 2 (L-2014)

MoH citywide emergency spray. MoH ULV spray applications were carried out in both

L-2014 sectors (spray, buffer) prior to initiation of L-2014 experimental spraying. In the base-

line circuit (C1), AA/HSE ranged from 0.62–0.77 (S6B Table), and AHI ranged from 31–34%

(S7B Table). During the subsequent citywide emergency spray period, AA/HSE decreased to

0.37 (AHI 16%) in the buffer sector and 0.30 AA/HSE (AHI 18%) in the spray sector, thus

showing a modest 40–50% reduction in adult densities relative to the C1 baseline (Fig 5, S3

Table, p<0.0001). Ae. aegypti densities in the geographically central spray sector were more

variable than for houses in the surrounding buffer sector. Ae. aegypti densities did show some

recovery in the post-emergency circuit (C4), rising from 0.37 to 0.58 AA/HSE in the buffer sec-

tor and from 0.30 to 0.53 AA/HSE in the spray sector. There was also a small trend toward an

increase in the proportion of nulliparous females (PrNF) between baseline and the emergency

spray period, from 0.03 to 0.10 and from 0.07 to 0.11 in the buffer and spray sectors, respec-

tively (C1 to C3, S8B Table).

Immature indices, which were measured at baseline (C1) and the post-emergency survey

(C4), were similar over time. For example, the baseline spray sector BI (10.0) was not statisti-

cally different than in post-intervention surveys (6.3–11.9, S9B Table). The proportion of posi-

tive containers (PrPc) ranged from 0.4–0.5 across the baseline and post-emergency circuits

(C1 and C4, S10B Table).

Experimental spray. For our experimental evaluation, a circuit of pre-intervention adult

surveys was carried out during April (C5) before initiating 6 cycles of ULV spray applications.

In both spray and buffer sectors, adult densities were consistent with the January baseline sur-

veys (Fig 5, S3 Table p = 0.95). During C5, however, there were significantly higher adult den-

sities in the spray sector (0.67 AA/HSE) relative to the buffer sector (0.44 AA/HSE) (Fig 5, S2

Table, p = 0.0034). During the experimental spray period (C6), AA/HSE decreased signifi-

cantly in the spray sector (from 0.67 to 0.31) compared to the unsprayed buffer sector (from

0.44 to 0.46, S6B Table). In addition, AHI decreased significantly in the spray sector (from

28% to 11%) compared to the unsprayed buffer sector (from 22% to 21%, S7B Table).

Adult densities rebounded quickly after cessation of spraying (C7, Fig 4, Fig 6, S6B Table).

AA/HSE increased from 0.31 during the spray period (C6) to 0.51 post-spray (C7). The latter

(C7) was not statistically significantly different from the January baseline of 0.77 (C1) or from

that of the April pre-intervention survey (C5, 0.67). During the L-2014 post-spray monitoring

period (C7-C9), increases in adult densities were observed in the spray sector, with a 170%

increase above January (C1) baseline levels in the final circuit (C9, S3 Table). In the buffer sec-

tor, from C6 to C9, AHI ranged from a low of 21% during the spray period (C6) to a high of

27% (C7). In contrast, in the spray sector, AHI increased during each post-intervention survey,

ranging from 11% during the spray period (C6) to 41% during the final post-intervention

period (C9) (Table 7B). Adult densities during the first post-intervention circuit (C7)

remained significantly lower than baseline (C1) levels (Fig 5, S3 Table, p = 0.017). In C8-C9,

however, densities were significantly higher than baseline levels (S3 Table, p�0.01). When

comparing the buffer and spray sector, a similar pattern was observed. Adult densities during

C7 remained significantly lower in the spray sector compared to the buffer sector. During C8

and C9, however, the spray sector had significantly more adult Ae. aegypti than the buffer sec-

tor (Fig 5, S2 Table).
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A strong effect of experimental spraying on parity was observed. During the spray period

(C6), the proportion of youngest (nulliparous) females (PrNF) was significantly higher in the

spray sector than in the buffer sector. Likewise, an approximate doubling of PrNF in the spray

sector relative to baseline was observed (S8B Table).

Immature indices increased between the post-emergency spray survey (C4) and first post-

experimental study survey (C7). For example, BI increased from 7.9 to 15.0 and from 8.3 to

11.9 in the buffer and spray sectors, respectively (S9B Table). Between the first and second post

intervention surveys (C7-C8), BI dropped to 5.9 and 6.3 in the buffer and spray sectors, respec-

tively. Two months later (C9), the BI decreased to 4.4 in the buffer sector and increased to 7.6

in the spray sector. Similar patterns were seen for the proportion of containers with immatures

(S10B Table).

Comparison of sprayed and unsprayed houses

During the S-2013 experiment, entomological surveys were carried out during the afternoon

before each ULV spray cycle was initiated. For the majority of S-2013 house surveys with a prior

spray application, Ae. aegypti densities were measured 7 days after the previous spraying, and

308 out of 311 surveys with prior sprays occurred from 5 to 8 days after the spray application. In

contrast, L-2014 house surveys with prior sprays were typically conducted 1 to 4 days after the

surveyed house’s prior spray. This difference was the result of logistical concerns, as L-2014

involved many more houses. For 164 of the 1,054 house surveys with prior sprays during L-2014

(16%), the exact timing of the spray event relative to the subsequent survey was not available. In

addition, some houses within the spray sector were surveyed without a prior spray (S5 Table).

Thus, the average interval between a house’s spray application and subsequent survey was

shorter in L-2014 than in S-2013 (median 2 days and 7 days, respectively). In both experiments,

AA/HSE were lower in spray sector houses that had been sprayed prior to surveying compared

to those that had not. In S-2013, AA/HSE was 0.06 and 0.11 in houses with prior spray and no

prior spray, respectively, while L-2014 experienced 0.28 and 0.56 AA/HSE in houses with prior

spray and no prior spray, respectively (S5 Table). A (marginally) significant difference in AA/

HSE between spray status groups was observed only during 2014 (S4 Table, p = 0.047).

Discussion

Despite the lack of a well-informed evidence base [18], vector control of Ae. aegypti is often

described as ineffective yet continues to be widely practiced by public health programs [11, 18,

50–52]. Increasing attention has been given to integrated vector management, community

involvement, and sustainability [53]. There is increasing recognition, however, that programs

lacking interventions specifically directed at adult mosquitoes are insufficient for suppression

of dengue and other Aedes-borne diseases [10, 54]. A WHO dengue Scientific Working Group

identified “analysis of the factors that contribute to the success or failures of national programs

in the context of dengue surveillance and outbreak management”, including vector control, as

a priority topic for future research [55].

Through two large-scale experimental studies and an assessment of a MoH emergency

intervention campaign, our study evaluated an adulticiding strategy that is embedded in some

national Aedes-transmitted virus control programs. We observed a clear Ae. aegypti population

reduction during the extended period of repeated spray applications. These reductions were,

however, not sustained after cessation of spraying.

Our study design could not logistically include randomized replicates [30, 51, 56] because

we focused on monitoring spraying in large neighborhoods of houses. A review of previous

Ae. aegypti space spray studies [4] shows that each replicate included 50 or fewer houses so
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that movement of adults from surrounding houses could have impacted results. In contrast,

we monitored spraying in large numbers of houses: more than 1,100 houses (up to 2,100

houses) during the two experimental interventions, and a MoH citywide emergency spray pro-

gram. Our experimental design reduced the potential impact of adults moving into the sprayed

sector from unsprayed locations. In the citywide spraying, all areas of the city were expected to

have about the same decrease in Ae. aegypti densities so adult movement should not have

impacted the recovery at all. There is clearly a tradeoff between degree of replication possible

and the size of experimental units.

In order to maintain study quality, our experimental interventions were supervised by

trained entomologists. Our monitoring of the impacts of the L-2014 citywide emergency spray-

ing provides a realistic and complimentary effectiveness assessment under practical, public

health circumstances. It is also important to note that our study was primarily designed to pro-

vide data that could then be used to evaluate a computer simulation model [32] under extreme

perturbation conditions, which was a major reason for evaluating a single centralized spray sec-

tor surrounded by a buffer sector. If viewed as an evaluation of a vector control measure, the

design of our study has some important limitations: relatively short pre-intervention surveys,

lack of randomization of intervention areas, and the absence of replicates in time. Cluster ran-

domized trials (CRTs) are considered the gold standard for efficacy trials [30, 57]. Yet properly

powered studies are large, expensive, and logistically challenging, especially when measuring an

impact on disease. When CRTs are not possible, large, carefully monitored studies such as ours

can reassure public health agencies that employ emergency indoor space spraying programs. In

addition, studies such as this one can provide target coverage goals and help manage expecta-

tions about the real-world impacts of spraying. Furthermore, studies of similar rigor are needed

to evaluate the more commonly employed outdoor space spray campaigns.

The effectiveness of pyrethroid applications varied between years, but was similar between

citywide emergency sprays and experimental sprays in 2014. Interestingly, in all experiments

adult Ae. aegypti densities decreased significantly after the first cycle of spraying then fluctu-

ated at relatively low levels during the remaining spray cycles: that is, additional cycles did not

lower mosquito densities further. In all three interventions, adult populations partially recov-

ered within 2 weeks of spray cessation. The pattern of rapid recovery of the Ae. aegypti popula-

tion in our study is consistent with several previous reports [5]. Studies by Perich et al. [13, 14]

in Honduras and Costa Rica showed an approximately 90 percent reduction in adults one

week after spraying, but the effect of the treatment was no longer significant after 6–7 weeks.

In the two experimental suppression trials we could not definitively determine if recovery

of population densities was from adults migrating in from the surrounding buffer sector and/

or from new adults emerging from development sites within the spray sector. However, in the

emergency citywide spraying, the recovery was similar to that in the experimental trials. This

suggests that movement of adults was not the key factor. Mosquito densities after the L-2014

experimental spray were monitored for a longer period of time: 23-weeks post-spray in L-2014

versus 9-weeks post-spray in S-2013. During L-2014, the density of adults in the spray sector

increased to well above that in the buffer. In L-2014, ULV spraying resulted in a higher propor-

tion of nulliparous females, indicating a shift to a younger adult female age distribution. This

indicates that the spray sector continued to have active larval habitats that were producing new

Ae. aegypti adults. In S-2013, for example, 22 Ae. aegypti positive containers were identified in

a single house during a post intervention survey, whereas the baseline survey of that house

revealed only three containers total, of which only one was positive. This kind of variation

illustrates the stochastic and dynamic nature of Ae. aegypti larval habitats [20, 21]. The dra-

matic L-2014 post-treatment increase cannot, however, be explained by an outlier in the form

of a “superproductive” household [33]. One possibility is compensation by the immature
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population due to a reduction in larval population densities, which led to reduced density

dependent competition within containers and increased survival to adult emergence. This

kind of rebound effect merits further investigation.

In L-2014, both emergency and experimental spraying had significant, but lesser impact on

the adult densities than in S-2013, even though L-2014 spray sector surveys with prior sprays were

conducted (on average) fewer days after spray applications. The L-2014 24-hour mortality of

caged sentinel mosquitoes was lower than in S-2013, something that could be due to characteris-

tics of the different insecticide used, changes in pyrethroid resistance levels in Iquitos mosquito

populations between S-2013 and L-2014, and/or differences in spray quality between the two

experiments. By the end of 2014, significant pyrethroid resistance was detected in Iquitos [39].

Although we did not detect pyrethroid resistance before the S-2013 experiment, we do not have

similar assay information from populations evaluated just prior to the L-2014 experiment. It is

possible, therefore, that the lower efficacy observed in the L-2014 experiment was due in part to

resistance in the local Ae. aegypti population. By 2015 the MoH had abandoned use of pyrethroid

insecticides for indoor spraying and switched to malathion in an effort to improve efficacy.

A strong argument can be made that logistical challenges associated with application of

ULV spray over a larger sector in the L-2014 experiment contributed to lower efficacy. First,

Colt hand-held sprayers were only used in L-2014 when initially unsprayed houses were revis-

ited, whereas in S-2013 they were used on at least 33% of the houses. Colt sprayers had signifi-

cantly better and consistent droplet sizes than backpack sprayers. The L-2014 experiment was

a much larger effort with at least double the number of backpack machines and MoH fumiga-

tors participating, and droplets were only evaluated on a fraction of the machines used. In

addition, during the L-2014 experiment coverage rates were lower overall.

Our results demonstrate that intensive, carefully administered space spraying can tempo-

rarily decrease the number and average age of female Ae. aegypti in houses. These results sup-

port smaller scale studies showing space spray induced reductions in Ae. aegypti density [12–

15]. When, where, and how ULV mosquito control leads to meaningful reductions in disease

remains a critical unanswered public health problem for policy makers. Computer simulation

models have been employed to inform outcomes in limited situations, such as pathogen strain

invasions (e.g. Newton and Reiter [58]). Certain tentative recommendations, however, can be

made based on existing data. Emergency indoor ULV spray interventions have the potential to

mitigate Ae. aegypti-transmitted viruses, but coverage must be maximized with multiple spray

cycles per house; i.e., at least 3 spray cycles based on our experience in Iquitos [27]. Officials

should have no expectations of sustained reductions in mosquito densities and must recognize

that these sprays only have the potential to mitigate the immediate impact of an arbovirus out-

break. Quality control of spraying efforts and insecticide resistance testing must be an inte-

grated component of national programs. Although these are not new messages [47, 59], our

study adds new data to the vector control evidence base that we hope will better inform inter-

vention programs and, thus, help refine policy for the application of space spray as a public

health response to Ae. aegypti-transmitted viruses.
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S1 Appendix. All supporting tables and figures.
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S1 Fig. Histogram of AA/HSE at baseline (C1). Rows show treatment sector. X-axis is sqrt-

scaled. The majority of house surveys find no adults.
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S2 Fig. Summary of spray coverage in S-2013 (A) and L-2014 (B). In both years, most

houses were sprayed in at least 5 out of 6 spray cycles, while a small number of houses were

never sprayed. In L-2014, experimental spray coverage was much higher than emergency (city-

wide) spray coverage.

(PDF)

S3 Fig. Boxplot of control cage house means: 25 adults per cage, 4 cages per house, approx-

imately 5 houses per spray cycle. Insects were from a laboratory colony (one colony per

year).

(PDF)

S4 Fig. Time series of survey results, aggregated by week. X-axis shows week start date.

Color and line-type shows treatment sector (orange triangle: spray sector). Point size shows

number of surveyed houses. Vertical lines show approximately spray dates: dashed, experi-

mental spraying (spray sector only); dotted, citywide spraying (February 2014, all sectors).

Vertical colored bars show bootstrap 95% CI (1e+04 draws per circuit). (A) Adult surveys. (B)

Container (PrPC) and parity (PrNF) surveys.

(PDF)

S5 Fig. Model results, as in Fig 4. All models include fixed effects of sector and circuit, with a

separate model for each year. (A) Counts: negative binomial GLM (NB-GLM). (B) Propor-

tions: logistic GLM (L-GLM). Note that Breteau Index (BI) = 100�PC/HSE. See also S2–S10

Tables.

(PDF)

S6 Fig. Maps of experimental areas, showing satellite imagery. Note the scale differs between

experiments. See also Fig 1.

(PDF)

S7 Fig. Maps showing survey locations by circuit (panel) and week with circuit (color). (A)

S-2013. (B) L-2014.

(PDF)

S8 Fig. Maps of spray events (red) by spray cycle (rows). (A) S-2013. (B) L-2014. During L-

2014, in addition to experimental spraying, 3 cycles of emergency citywide spraying were con-

ducted. Note the map scale differs between A and B. See also Fig 1.

(PDF)

S1 Table. Observation counts by circuit. Weeks: Week number from experiment start.

Houses: number of unique houses surveyed. Surveys: total surveys (either adult, or combined

adults and immature). Full surveys: surveys where both adult and immatures were surveyed.

Buffer, Spray: surveys in buffer and spray sector, respectively.

(PDF)

S2 Table. Comparison between sectors (within time). Ratio of AA/HSE in spray sector rela-

tive to buffer sector (spray/buffer). Bold p-values: significant difference between sectors. In

both years, the spray sector starts with more adults per house, and spraying reduces AA/HSE

relative to buffer sectors. As in S3 Table, the effects of spraying are more pronounced in S-

2013. See also Fig 4A.

(PDF)

S3 Table. Comparison between times (within spray sector). Ratio of AA/HSE relative to

baseline (C1, spray sector only). Bold p-values: significant difference from baseline circuit. In
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both years, spraying reduces AA/HSE relative to baseline (C1). The effects of spraying are

most pronounced in S-2013, but are short-lived in both years. See also Fig 4A.

(PDF)

S4 Table. Comparison between spray status (whether house was sprayed prior to survey).

Ratio of AA/HSE in houses that were either sprayed or not sprayed prior to surveying (no

prior spray/prior spray). Bold p-values: In L-2014, houses without prior spraying yielded sig-

nificantly more adults than houses with prior spraying. In S-2013, most houses were sprayed

in the prior week. In L-2014, the exact date of spraying was uncertain for a small number of

houses. See S5 Table for details.

(PDF)

S5 Table. Effect of prior spray on AA/HSE. A single model (NB-GLM) includes both experi-

ment year and spray status as predictors. Group: significance groups (Tukey HSD) compare

among all rows. Only house surveys in the spray sector during experimental spraying are

included (i.e., S-2013 C2 and L-2014 C6). Not all sprayed houses were subsequently surveyed.

The average interval between each house’s spray application and survey was shorter in L-2014

(median 2 days) than in S-2013 (median 7 days). See also S4 Table.

(PDF)

S6 Table. Aedes aegypti adults per house (AA/HSE). (A) S-2013. (B) L-2014. Model esti-

mates by circuit and treatment sector. Horizontal line separates treatment sectors; significance

groups (Tukey HSD) compare among all rows. See Fig 4A for model description.

(PDF)

S7 Table. Proportion of Aedes aegypti adult-infected houses (PrIH). (A) S-2013. (B) L-

2014. Model estimates by circuit and treatment sector. Horizontal line separates treatment sec-

tors, significance groups (Tukey HSD) compare among all rows. See Fig 4B for model descrip-

tion.

(PDF)

S8 Table. Proportion nulliparous Aedes aegypti females (PrNF). (A) S-2013. (B) L-2014.

Model estimates by circuit and treatment sector. Horizontal line separates treatment sectors,

significance groups (Tukey HSD) compare among all rows. See S5 Fig.

(PDF)

S9 Table. Aedes aegyptipositive containers per house (PC/HSE). (A) S-2013. (B) L-2014.

Note that Breteau Index (BI) = 100�PC/HSE. Model estimates by circuit and treatment sector.

Horizontal line separates treatment sectors, significance groups (Tukey HSD) compare among

all rows. See S5 Fig.

(PDF)

S10 Table. Proportion Aedes aegyptipositive containers (PrPC). (A) S-2013. (B) L-2014.

Model estimates by circuit and treatment sector. Horizontal line separates treatment sectors,

significance groups (Tukey HSD) compare among all rows. No container surveys were con-

ducted during spraying See also S5 Fig.

(PDF)

S1 Text. Spraying details.

(PDF)

S2 Text. Sampling details.

(PDF)
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