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Background: Circadian rhythm stage affects many outcomes, including those of mental 

aging.

Methods: Estimations of 1 minute ∼5 times/day for a year, 25 years apart, by a healthy male 

biomedical scientist (RBS), are analyzed by the extended cosinor.

Results: Cycles of a half-week, a week, ∼30 days, a half-year and a year, in self-assessed 

1-minute estimation by RBS between 25 and 60 years of age in health, are mapped for the fi rst 

time, compared and opposite effects are found. For RBS at 60 vs at 25 years of age, it takes less 

time in the morning around 10:30 (P � 0.001), but not in the evening around 19:30 (P = 0.956), 

to estimate 1 minute.

Discussion: During the intervening decades, the time of estimating 1 minute differed greatly, 

dependent on circadian stage, being a linear decrease in the morning and increase in the evening, 

the latter modulated by a ∼33.6-year cycle.

Conclusion: Circadian and infradian rhythm mapping is essential for a scrutiny of effects of 

aging. A ∼30-day and a circannual component apparent at 25 years of age are not found later; 

cycles longer than a year are detected. Rhythm stages await tests as markers for timing therapy 

in disease.
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Introduction
Chronomics, the study of time structures (Figure 1) attempts to resolve, as a function of 

the density and length of a time series, trends such as those with age, in the context of 

other elements of chronomes such as a broad spectrum of rhythms (Halberg et al 2003a) 

for which the length of the series is critical (and/or deterministic chaos, the resolution 

of which, in the broad chronomic context, depends on the density of the time series 

[Otsuka et al 1997; Burioka et al 2005], beyond our scope herein). We explore circa-

dian and infradian rhythms in time estimation (TE), having shown that the stage of 

the former is essential for the assessment of the latter in the case of a half-year-long 

spectral component probably related to geomagnetics in human systolic blood pressure 

(SBP) (Tarquini et al 1997; Halberg et al 2001a; Cornélissen et al 2002; Sothern et al 

2006). We here ask whether changes with age in a mental function, such as the TE of an 

1-minute duration, also differ as a function of circadian stage. Our test of mental func-

tioning for precisely timed action is performed inexpensively, without the need for bulky 

instrumentation beyond a stopwatch. The test is quick and easily repeated, and may 

also tell us whether and, if so, when one aspect of subjective time—one minute—may 

change with age. What is particularly important, the circadian components here mapped 

could serve as a marker for interventions, therapeutic or other.

Background
TE is a basic and critical feature and index of mental processes (Piaget 1946; Fraisse 

1963; Geissler and Reschke 1987). A circadian rhythm characterizes several approaches 

to estimating 2 minutes under conditions of 24-hour synchronization with (Stephens 
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and Halberg 1965) or desynchronization from (Halberg et al 

1965; Siffre et al 1966; Halberg and Reinberg 1967; Ghata 

et al 1968; Halberg 1968; Wever 1979) a societal routine. 

The circadian rhythm persists under conditions of isolation 

from society with a concomitant decrease of the ratio “subject 

time/environmental time” (cf. Tables 1 and 2 as well as 

Figures 2a and 2b). Such results extend earlier pioneering 

studies by MacLeod and Roff (1935) and were confi rmed 

and extended by follow-ups that also considered putative 

effects of cosmic factors (Hillman et al 1994; Halberg 

et al 1998) and infradians (Sanchez de la Peña et al 1989), 

among others. Whether or not a change in ratio of subjective/

environmental time during isolation relates to the lengthen-

ing of the desynchronized circadian rhythm in 2-minute TE 

and in other variables, noted in most humans studied thus far 

(Wever 1979), remains to be investigated in a broader context 

(Fraisse 1963; Geissler and Reschke 1987; Glicksohn 1992; 

Halberg et al 2001a; Eagleman et al 2005). For example, 

when the subject of this paper (RBS) spent 19 days in social 

isolation near the beginning of his 40-year self-measurement 

project, the period of his circadian rhythm in 2-minute time 

estimation increased ∼4%, from 24.0 to 24.9 hours, while the 

24-hour mean increased about 22%–25%, from about 150 s 

to 188 s (unpublished observations [cf. Halberg et al 1972]). 

Both a decrease in circadian amplitude during isolation and 

an increase in circadian amplitude after isolation are seen 

in Figure 2c for the rhythm in core temperature (top) and 

2-minute estimation (bottom), along with a delaying drift of 

the acrophases due to a lengthening of period.

Glicksohn (1992) “hypothesized that the more varied the 

sensory environment (ie, perceptual overload versus percep-

tual deprivation), the longer the time that is verbally estimated, 

and the shorter the time estimation obtained by the method of 

production”. His data on 96 subjects exposed to various com-

binations of auditory and visual stimulation gathered by the 

latter method agreed, but not those with the former method. 

He concluded that “visual and auditory stimulation interact in 

their production of an altered sensory environment, and that 

the rate of functioning of the cognitive timer is environment 

dependent.” Eagleman and colleagues (2005) review “New 

discoveries in psychophysics, electrophysiology, imaging, 

and computational modeling [that] are contributing to an 

emerging picture of how the brain processes, learns, and per-

ceives time”, emphasizing that “Most of the actions our brains 

perform on a daily basis, such as perceiving, speaking, and 

driving a car, require timing on the scale of tens to hundreds 

of milliseconds.” Sothern and colleagues (2007) most recently 

found a near-transyearly period, τ (1.00 year � [τ − CI {95% 

confi dence interval}] � τ + CI] � 1.20 years), and several 

far-transyearly τs (1.2 years � [τ − CI] � [τ + CI] � 1.9 

years) in 1-minute TE (about 5 times a day for 35 years) as 

a magnetoperiodism, with a differential congruence of these 

RHYTHMS
Ultradian
Circadian
Infradian

COMPLEXITY

TRENDS
Age

Disease
Treatment

DETERMINISTIC
CHAOS    

Other Unresolved
       Variation

FEEDSIDEWARDS
“NOISE”

(α, β, γ, δ. . .)

Figure 1 Sketch of the measurable time structure (chronome, of an environmental and/or biospheric variable) consisting of endpoints of rhythms, trends and deterministic 
chaos, resolvable as a function of the length and density of a time series, respectively, and any residual variation.
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near- and far-transyear periods with the periods of cycles in 

the solar wind’s speed and geomagnetics. Here we focus on 

the photic circadian and other rhythm-stage dependence of 

changes in 1-minute TE and on any effects of age.

Subject and methods
For 3.5 decades, 1 minute was estimated by counting two to 

seven times daily (on the average about 5 times/day), by a 

clinically healthy man (RBS), who started estimating 2 minutes 

by counting at ∼20.5 years of age in 1967. In view of differences 

between TE of 2 minutes, performed at the start of monitoring 

for ∼3 years and subsequent 1-minute TE continued a year 

later for 3.5 decades, only data from the longer 35-year record 

(of 1-minute TE) are here considered. Data were analyzed 

spectrally, by the extended linear-nonlinear cosinor (Halberg 

1980; Cornélissen and Halberg 2005; Refi netti et al 2007) with 

Table 1 Indices used for evaluating circadian rhythms in human estimations of spans ranging from minutes to hours or days – applicable 
to “intuitive” (empty) estimations or to “rational” ones (eg, by counting)

Index N Units entering index Relation of environmental time to 
“subject” time when given

Examples

ESTIMATION OF “SHORT DURATIONS”

1 Seconds elapsed (during estimation) 
(seconds estimated not stated)

Environment seconds only (corresponding 
to fi xed N of subject seconds)

eg, 240 seconds (elapsed during 
count from 1–120)

2 Seconds elapsed (during estimation)
Seconds estimated (by subject)

Environment seconds (or minutes)
Subject seconds (or minutes)

eg, 240
120

 = 2 (seconds per count)

3 Seconds estimated (by subject)
Seconds elapsed (during estimation)

Subject seconds
Environment seconds

eg, 120
240

 = 0.5 (counts per second)

ESTIMATION OF “LONGER DURATIONS”

4 Hours *thought to be elapsed (by subject)
Hours *elapsed in environment

Subject hours
Environment hours

eg, 1
2

 = 0.5

5 Days thought to be elapsed (by subject)
Days elapsed in environment

Subject days
Environment days

eg, 40
60

 = 0.667

Notes: *Converted to minutes prior to division; Index 1 is simple to record, but has shortcomings: (a) The index does not indicate the time span believed by the subject 
to have elapsed (“subject time”); it denotes only a span of environmental time, corresponding to a (not stated) span estimated by the subject. Therefore, the time estimated 
(ie, the equivalent of subject time) must be given separately, with each value. For example, in using the index, one must separately specify the estimation of 120 secs (of subject 
time) for which a given interval, say of 240 secs (environment time) has elapsed during a test. (b) Since, as indicated above, index 1 does not establish a relation between 
subject time (not explicitly contained in the index) and environment time, it is not comparable, without transformation, among tests involving even slight differences in the 
time span estimated by a given subject. (c) The index is inversely related to the passage of subjective time; it will assume a higher value when “subject time” passes more slowly 
than “environment time” and vice versa. Thus, the index is physiologically somewhat confusing in that a number of other biological variables with which this index might be 
compared, such as heart rates, assume higher values when a process speeds up and lower ones when it slows down. Shortcomings (a) and (b) above do not apply to indices 
2–5. None of the above-listed shortcomings applies to indices 3–5, all constituting ratios of Subject time

Environment time
.

Table 2 Time estimation of four human adults in the absence of known time cues

EH (M) MS (M) TS (M) JL (F)

Procedure 
(interval)

Index evaluated N of obs
(N of days)

R
(± SD)

N of obs
(N of days)

R
(± SD)

N of obs
(N of days)

R
(± SD)

N of obs
(N of days)

R
(± SD)

Isolation

“Intuitive”
(empty)

R* = S months
E months

2
(59)

0.58 2
(121)

0.54 2
(87)

0.84

R = S hours
E hours

108
(11)

1.01
(± 0.17)

231
(59)

0.56
(± 0.28)

536
(125)

0.66
(± 0.31)

294
(88)

0.45
(± 0.25)

Yes

Rational (fi lled, 
ie, counting 
from 1 to 120) R = S seconds

E seconds

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 

168
(59)

0.67
(± 0.12)

310
(125)

0.92
(± 0.09)

175
(88)

0.62
(± 0.12)

161
(31)

0.96
(± 0.08)

196
(31)

0.88
(± 0.09)

No

Notes: *R = 
S (Subject) time

E (Environment) time  ; these ratios are in italics; they represent means, except for those in fi rst row of table; Means and standard deviations in table refer to data 
previously “clipped” to mean ± 3 SD; iterative clippings until 4 decimal places remain the same.
Abbreviations: S = subjective; E = environmental.
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Figure 2A Macroscopic records of the effect of human isolation upon the sleep-wakefulness rhythm. For the individual, the subjectively estimated time of day and calendar 
date differ greatly in the isolation of a cave (upper row) from that recorded in societal life (lower row). Waking and sleeping of 3 subjects is plotted on top as a function of 
subjectively estimated time in isolation and at the bottom as complemented by one-way (cave-to-surface only) telephone to a team outside a cave by Michel Siffre (MS) and 
two other subjects, TS and JL (top). Note that on returning to society, all 3 subjects thought they had spent much less time in isolation than they actually had. JL readjusted her 
clock-hour and calendar-date estimate following each menstruation, hence the gaps in the fi gure on the top right (see also Table 2).

parameter tests (Bingham et al 1982; cf. Halberg et al 2003a) 

and by comparing the fi rst and the last year’s original data in 

8 time-of-day bins of 3 hours each with Student’s t-test and 

all 8 timepoints by a paired t-test.

Results
In Figure 3, the periodogram of RBS’s data is plotted linearly 

in frequency, yet with periods given on top for each half of 

the fi gure, the upper half summarizing results at 25 years 

of age, and the lower one at 60 years of age. The original 

ordinate at the bottom of each, the upper and lower halves, 

is given on the right. In the insert of each half, the ordinate is 

truncated to prevent the dominating circadian from obscuring 

lower-than-circadian frequencies (infradians). The inserts 

show that with advancing age (lower vs upper half), some 

frequencies differ in prominence. While a circaseptan and 

a circasemiseptan component are detected with statistical 

signifi cance at both ages, a 30-day component is detected 

prominently only at the younger age. At 60 years of age, 

a 1-year component’s prominence is replaced by that of a 

half-yearly component, probably of geomagnetic (nonphotic) 

origin (Cornélissen et al 2002).

Figure 4 provides a highly qualifi ed yet clear answer to 

the question whether there is an acceleration of the subjective 

“minute” with age in RBS. This fi gure stacks data in two 

chronograms along the 24-hour scale, each summarizing a 

year’s data 35 years apart, at 25 vs 60 years of age, respectively. 

Without extrapolating to other subjects (Halberg et al 1981) 

and/or to the intervening years, admittedly great limitations, 

both the (sparsely documented) maxima and some of the 

(solidly documented) minima (numbers of TE at each time 

are given in parentheses) are numerically lower during year 

35 than during the fi rst year (Figure 4), ie, at 60 vs 25 years 

of age, suggesting acceleration. Figure 4 shows further that 

even if overall the time-structure-adjusted mean (MESOR) is 

numerically lower at an advanced age, the demonstration of an 

age change is not possible on this basis (P = 0.300). A circadian 

stage-dependence in Figure 4 is found by Student t-tests that 
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Figure 2B The amplitude of a circadian rhythm in a mental function, time (2-minute) estimation, is much smaller under conditions of desynchronization vs. that under 24-hour 
synchronized conditions. Note that in all subjects, during isolation, there is a peak in the spectrum away from the vertical line that corresponds to exactly 24 hours. In TS and 
JL, who had continued to record sleep-wakefulness during the days after isolation, the amplitude is much smaller in isolation than under a societal routine.

show an aging effect in RBS to be not demonstrable at certain 

circadian stages, while it is statistically highly signifi cant at 

other times of day; each result, that around 10:30 vs that at 

19:30, is documented with relatively ample data.

Discussion
These results, albeit amply documented for RBS, cannot 

be extrapolated to others. In another case, HL, a physician 

with aldosteronism, the estimation of 2 minutes took longer 

at 63 years of age than it did at 53 years, as if time passed 

more slowly in this particular elderly man (Halberg et al 

1981). While in HL the change during a decade seems to be 

linear, it was nonlinear over several decades in the yearly 

and transyearly amplitudes of RBS’ heart rates (HR) (Sothern 

et al 2004) and what it was in TE remains to be assessed.

Differences in “age trends” assessed for RBS and HL 

may perhaps be reconciled, at least in part, by the pres-

ence of low-frequency cycles. In the case of RBS, an about 

26-year cycle is detected for 1-minute time estimation. Even 

decade-long records may thus exhibit either an increasing 

or a decreasing trend depending on when during this about 

26-year cycle monitoring took place. A similar situation 

was encountered in a 15-year record of urinary excretion 

of 17-ketosteroids characterized by an about 10-year cycle 

(Halberg et al 2001b).

In the case of RBS, subjective time elapsed during the 

19 days of isolation was shorter by 17.5 hours or ∼4%. 

This is contrasted with 2-minute time estimation by RBS 

that was increased by 25% from ∼150 to ∼188s, suggesting 

a dissociation between short-term and long-term time 

perception, the difference along the two time scales possibly 

accounted for, at least in part, by the rest-activity cycle, 

which provides an important clue of elapsed time along the 

scale of days.

Differential congruence of periods (τs) in helio- and/or 

geomagnetics and in human psychophysiology is also 
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Oral temperature (top) and 2-minute time estimation (bottom) of a clinically healthy
 man (RBS) 3 weeks before and  after 19 days in isolation*
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Figure 2C Chronomic serial sections of oral temperature and 2-minute estimations show time courses during isolation (as compared to before and after isolation) of a 
gradually decreasing amplitude and a delaying phase.  The delaying phase corresponds to a lengthened period.  The interval used for analysis (of 168 hours) involves, before and 
after the transitions, the use of some data from before and after isolation and shows, for time estimation but not for oral temperature, a spurious anticipatory amplitude rise 
before the end of the isolation span.
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documented for RBS assessed (by overlying or overlapping 

95% confi dence intervals) of τs found in a mental func-

tion (1-minute TE) and in SBP and HR in about 4 decades 

of around-the-clock self-measurements (Sothern et al 

2007). A combination of the extended cosinor by nonlinear 

analyses complemented by a population-mean cosinor sum-

marizes the same series analyzed in consecutive subsections. 

There are corresponding τs in TE, SBP and HR themselves 

and in the spectrum of solar wind speed and in geomagnet-

ics (aa index) for several orderingly statistically signifi cant 

peaks between trial τs of 2.0 and 0.7 years; this congruence 

differs among variables and τs involved; it is differential. 

5 of 8 SBP peaks are congruent with the solar wind in the 

spectral window examined at τs different from a calendar 

year, as are 3 of the 4 SBP peaks that are congruent with 

geomagnetics. Congruence of SBP with magnetoperiod-

isms occurs in the presence of a large photoperiodic annual 

component in SBP. Congruence of τs with solar wind is 3 out 

of 7 for HR and 5 out of 10 for TE, and with geomagnet-

ics it is 2 out of 7 for HR and 4 out of 10 for TE. Different 

physiological variables and even the same variable’s dif-

ferent spectral components may be infl uenced by different 

environmental τs. While no congruence in all 5 variables was 

seen, all 3 psychophysiological variables were congruent 

with Richardson’s ∼1.3-year oscillation in solar wind speed 

during the span of RBS’s data. Congruence among an as-yet 
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of each half, the period is also given. The 24-hour synchronized component stands out clearly, as it does in other cases under conditions of ordinary life (see also Figure 2b’s 
spectrum), as well as in isolation from society in caves, albeit with a much lesser amplitude, Figure 2b.
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undefi ned fraction of τs in other physical and biological 

variables monitored by RBS and others is also differential; it 

is not conclusive in itself but is desirable for a follow-up by 

superposed epochs and by comparison of time courses of τs 

in and around us, whenever rendered possible due to removal 

and replacement of intermittent τs by the sun and earth. Mag-

netoperiodism coexists and competes with photoperiodism to 

infl uence dynamics in the same individual and can dominate 

in TE in the range of near-transyears, while photoperiodism 

dominates in the circulation of the same individual in both 

the para-annual and circadian spectral domains.

In any event, Figure 4 suffi ces to infer that in the estimation 

of subjective time different aspects of the body’s temporal 

make-up interact in a circadian stage-dependent way in the 

case of RBS; hence, age-dependent acceleration in estimation 

of 1 minute is best specifi ed as to circadian time and prob-

ably as to other rhythms’ stages so that a different outcome, 

such as an acceleration vs no age effect, and in another case 

(HL) opposite inferences, can be taken at face value. On the 

positive side, the recognition of cycles, including non-photic 

Circadian Stage-Dependence of Age-Related Difference
 in 1-minute Time Estimation 

(RBS: M, 25y at start)

Time (clock hours)

1-
m

in
 T

E 
(s

)

0.493 0.616 <0.001 <0.001 <0.001 0.956 0.6870.021
90

80

70

60

50

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

N(yr01)
N(yr35)

64
106

2 123 330
3515 352

279
311

337
335

187
210

300
412

Year 35

Year 01

Mean ± SE

Student t-test
of equality of timepoint means
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MESOR:           P = 0.300
Amplitude:        P = 0.767
Acrophase:       P = 0.491

Paired t-test (8 time points):
t = 2.822, P = 0.026

Figure 4 The data of the fi rst and last years of 1-minute estimation were stacked along the 24-hour scale. Whereas parameter tests did not detect any change in the char-
acteristics of the 24-hour synchronized rhythm, a paired t-test comparing eight 3-hourly mean values shows a difference below the 5% level. Moreover, Student’s t-test on 
data in each of 8 equidistant bins reveal that at certain circadian stages, 1 minute passed faster in the last year than in the fi rst year (year 35 vs year 1). This difference was 
statistically signifi cant at all test times between 06:00 and 18:00 (in some of them with P � 0.001), but was not found between 18:00 and 06:00, suggesting that the change in 
1-minute time estimation with age is circadian stage-dependent, with highly signifi cant differences during part of the daily active phase, but not at other circadian times. In RBS, 
chronomics demonstrate interaction between the circadian rhythm’s stage and age.

ones such as transyears, in time estimation that differ from the 

photic day and year opens new perspectives of how a mental 

function can be infl uenced by the solar wind’s cyclicities 

that may have entered the genome, as circadians clearly did 

(Touitou and Haus 1992; Halberg et al 2003b; Koukkari and 

Sothern 2006; Refi netti 2006). The importance of nonphotic 

cycles beyond those in the estimation of 1 minute is evident 

from those infl uencing sudden death (Halberg et al 2006), 

suicide (Gordon and Berk 2003; Berk et al 2006; Cornélissen 

and Halberg 2006; Shumilov et al 2008; Chernouss et al pers 

comm), terrorism (Cornélissen et al 2007; Grigoryev and 

Vladimirskii 2007; Halberg et al 2007; Wendt 2007), and 

psychophysiology more generally (Persinger 1987; Oraevskii 

et al 1998; Breus et al 2002; Palmer et al 2006).

In a follow-up study focusing on the years intervening 

between ages 25 and 60, opposite effects at different cir-

cadian test times could be validated with statistical signifi -

cance. These fi ndings extend the scope of the comparison 

of the fi rst and the last year of a 36-year record, which 

latter suffi ced to show that one can have different results 
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Spectrogram of 1-minute time
estimation during 35 years 
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Figure 5 Spectrograms of 1-minute estimations around the clock for 35 years, with time (35 years) on the abscissa and frequency on the ordinate. 5a shows a very prominent 
about (∼) 10-year period, an ∼21-year or even longer period, with changes in its location along the frequency ordinate from the fi rst ∼17.5 years in the left half of the graph, 
to the next ∼17.5 years in the right half of the fi gure. Figures 5b and in particular 5c and 5d visualize the aeolian character of the spectral components. Many of them are 
intermittent, changing in frequency and amplitude when present, a fl eeting, nonstationary behavior. Whether the failure to detect a component at a given time is due to its 
absence or to its being buried in noise cannot be decided.
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concerning aging, depending on when along the scale of a 

day, 1 minute is estimated by counting. A 1-minute dura-

tion passed faster at 60 vs 25 years of age at some circadian 

stages, eg, between 09:00 and 12:00, while at other circadian 

stages no difference or an opposite trend between 18:00 and 

21:00 (r = 0.400, P = 0.010) was detected. The implication 

of this fi nding regarding experimental method is very much 

broader.

If one examines the change with age of hormones 

in women, one fi nds an increase (P � 0.001) for LH 

and a decrease for E2 (P � 0.001) (Halberg et al 1981). 

Decreases are also found for aldosterone, melatonin and 

in particular for dehydroepiandrosterone sulfate (Halberg 

et al 1981; Cornélissen et al 2000). Accordingly, a change 

in amplitude with age, ceteris paribus, will involve neces-

sarily as a function of age opposite results at the circadian 

peak versus trough: an increase in amplitude will have 

a corresponding increase at the time of circadian peak 

and a decrease at the time of circadian trough and vice 

versa in the case of a decrease in amplitude there will be 

a decrease at the time of circadian peak and an increase 

at the circadian trough. This applies to circadian rhythms 

and has been documented in Halberg and colleagues (1981) 

and Cornélissen and colleagues (2000). Similar effects 

will apply to any other cycle changing with age and con-

troversies will be unavoidable even if the time of day is 

fi xed but chosen differently in various studies, according 

to investigators’ convenience.

A further complication is also relevant to studies on 

aging between just reaching maturity and at 60 years of age. 

A plethora of aeolian cycles, Figure 5, are characteristic of 

many functions monitored not only by RBS but also on over 

a dozen other subjects of both genders with decades-long 

time series. Many of these spectral components are of non-

photic origin, coexisting and competing with, and sometimes 

replacing the calendar-year component. These cycles con-

stitute pertinent control information and are also of interest 

in their own right, since some of them are associated with 

suicide (Cornélissen and Halberg 2006) and sudden cardiac 

death (Halberg et al 2006).

Conclusion
Aging can be studied without or with chronomics: so it 

appears to be the case today. But if opposite inferences are 

drawn at different circadian stages, as documented herein and 

earlier for another subject, SBS (Sothern et al 2006), it seems 

possible that we may generalize and consider requiring the 

time of day as an indication in all studies of human aging. 

This seems indicated based on evidence available today, 

so that controversies are avoided and expensive long-term 

studies must not be repeated.

Moreover, an indication of calendar date in any and all 

studies of aging seems to be similarly required, since some of 

the cycles documented here and elsewhere can be signatures 

of environmental periodicities, which latter are recorded by 

governmental agencies and can thus be consulted and used 

for computing reference cycles.

For human mental function, there is a saying: Use it or 

lose it. When to use it, to avoid the loss of cognitive function, 

and when to treat, is already extensively documented for 

circadians and may also apply to infradians, for instance, 

since negative affect is primarily circaseptan periodic, while 

positive affect is dominantly circadian (Cornélissen et al 

2005), as shown herein for mental functioning by the proxy 

of time estimation.

The amplitudes of the new rhythms mapped may be small, 

but small amplitudes are compatible with large and important 

associations (Halberg et al 2003c).

The circadian amplitude in the mental function mapped 

along the age scale remains large and may serve immediately 

for timing intervention; timing, like dosing, has demonstrated, 

albeit as yet not routinely utilized, therapeutic benefi t.
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