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Abstract

Background

We aimed to study the pathogenic roles of High-Mobility Group Box 1 (HMGB1) / Receptor-

for-Advanced-Glycation-End-products (RAGE) signaling and pro-inflammatory cytokines in

patients with active pulmonary tuberculosis (PTB).

Methods

A prospective study was conducted among non-HIV adults newly-diagnosed with active

PTB at two acute-care hospitals (n = 80); age-and-sex matched asymptomatic individuals

(tested for latent TB) were used for comparison (n = 45). Plasma concentrations of 8 cyto-

kines/chemokines, HMGB1, soluble-RAGE, and transmembrane-RAGE expressed on

monocytes/dendritic cells, were measured. Gene expression (mRNA) of HMGB1, RAGE,

and inflammasome-NALP3 was quantified. Patients’ PBMCs were stimulated with recombi-

nant-HMGB1 and MTB-antigen (lipoarabinomannan) for cytokine induction ex vivo.

Results

In active PTB, plasma IL-8/CXCL8 [median(IQR), 6.0(3.6–15.1) vs 3.6(3.6–3.6) pg/ml,

P<0.001] and IL-6 were elevated, which significantly correlated with mycobacterial load,

extent of lung consolidation (rs +0.509, P<0.001), severity-score (rs +0.317, P = 0.004), and

fever and hospitalization durations (rs +0.407, P<0.001). IL-18 and sTNFR1 also increased.

Plasma IL-8/CXCL8 (adjusted OR 1.12, 95%CI 1.02–1.23 per unit increase, P = 0.021) and

HMGB1 (adjusted OR 1.42 per unit increase, 95%CI 1.08–1.87, P = 0.012) concentrations
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were independent predictors for respiratory failure, as well as for ICU admission/death.

Gene expression of HMGB1, RAGE, and inflammasome-NALP3 were upregulated (1.2−2.8

fold). Transmembrane-RAGE was increased, whereas the decoy soluble-RAGEwas signifi-

cantly depleted. RAGE and HMGB1 gene expressions positively correlated with cytokine

levels (IL-8/CXCL8, IL-6, sTNFR1) and clinico-/radiographical severity (e.g. extent of consoli-

dation rs +0.240, P = 0.034). Ex vivo, recombinant-HMGB1 potentiated cytokine release (e.g.

TNF-α) when combined with lipoarabinomannan.

Conclusion

In patients with active PTB, HMGB1/RAGE signaling and pro-inflammatory cytokines may

play important roles in pathogenesis and disease manifestations. Our clinico-immunological

data can provide basis for the development of new strategies for disease monitoring, man-

agement and control.

Introduction
The global burden of tuberculosis (TB) is enormous, and the disease continues to be a major
cause of mortality worldwide [1,2]. It is estimated that over 2 billion people are infected; and in
2014 alone, 9.6 million people developed active disease, resulting in 1.5 million deaths [1].
Even in middle-to-high income countries where anti-TB treatment is more accessible, mortal-
ity of patients hospitalized for TB remains high (>5–10%) [3,4]. It is suggested that excessive
inflammation contributes to disease severity and complications in active TB; however the
immunopathogenic processes involved have not been fully elucidated [5]. Recent studies indi-
cate that in addition to cell-mediated immunity, innate immune responses and the pro-inflam-
matory cytokines play significant roles in mycobacterial control, while exacerbating tissue
damage [5,6]. Better understanding of these mechanisms in clinical infections may lead to
development of novel strategies for TB disease management and control [6–9].

High mobility group box 1 (HMGB1), a nuclear DNA-binding protein, is one of the key
danger-associated molecular patterns (DAMPs) that activate the innate immune system [8]. It
is released by necrotic cells and monocytes/macrophages in response to cytokine and bacterial
antigen stimulation [8,10,11], and shown to be inflammasome (caspase-1-activating, multi-
protein complexes containing a sensory protein, e.g. NALP3) dependent in bacterial infections
[12–14]. HMGB1 then interacts with other molecules (e.g. bacterial LPS), and bind to receptors
including the Receptor for Advanced Glycation End products (RAGE, exists in both cellular
‘transmembrane’ form, and a ‘soluble’, decoy receptor form) and the Toll-like Receptors (e.g.
TLR2), to activate a multitude of pro-inflammatory genes [8,10,11,12,15]. In addition to libera-
tion of inflammatory cytokines (e.g. TNF-α), HMGB1 will activate immune cell functions and
induce their maturation (e.g. monocytes, myeloid/plasmacytoid dendritic cells) [8,10,11]. The
strong pro-inflammatory role of HMGB1 has been shown in autoimmune diseases, trauma,
sepsis, and bacterial pneumonia [8,10,14,16,17]. Data on TB however, is scarce. Limited in
vitro and animal studies have shown thatM. tuberculosis (MTB) [18] andM. bovis BCG [19]
can effectively induce secretion of HMGB1, leading to cytokine hyperactivation and lung tissue
damage. Recently, increased HMGB1 in serum of MTB-infected patients is reported but its sig-
nificance is uncertain [20]. In the current study, we hypothesized that HMGB1/RAGE signal-
ing and the pro-inflammatory cytokine responses play significant roles in pathogenesis and
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disease manifestations in patients with active pulmonary tuberculosis (PTB). Patients pre-
sented with active PTB were compared with latent TB and non-infected asymptomatic individ-
uals. Relationships between immunological variables and disease severity were analyzed. The
cellular mechanisms involved in the signaling processes were studied.

Materials and Methods

Study design and subjects
A prospective study was conducted on adults hospitalized for laboratory-confirmed pulmonary
tuberculosis (PTB) over a period of 24 months (November 2011–November 2013) at two acute,
general public hospitals operating under the Hospital Authority of Hong Kong, which serve an
urban population of>1.5 million [4,21]. Hong Kong is classified as an area of intermediate TB
burden, with an annual incidence about 80–100 per 100,000 population; multidrug resistance
and HIV co-infection are rare [1,4,22]. Adults aged 18 years or above, presented with and diag-
nosed active PTB during the current episode of hospitalization were consecutively recruited.
Active PTB was defined as the presence of symptoms (respiratory and systemic) and radiologi-
cal findings indicative of active tuberculous infection, and confirmed by positive acid fast bacilli
(AFB) staining, mycobacterial culture, PCR, histological findings, or a combination of these
tests, as previously described [4,21,22]. Patients with recent trauma, HIV/AIDS (routinely tested
in TB cases in Hong Kong), active malignancy, autoimmune diseases and long-term immuno-
suppressant use were excluded because of possible induction/suppression of HMGB1 [10,11].
Age- and sex-matched asymptomatic adults were recruited from the general medical, out-
patient clinics for comparison; latent TB infection was diagnosed by an interferon-gamma
release assay (IGRA, see below). Exclusion criteria were symptoms suggestive of any form of
active infection, history or radiographic evidence of TB, and underlying compromising condi-
tions aforementioned. In Hong Kong, prevalence of latent TB is high among the general popula-
tion, as shown previously [21]. Informed written consent was obtained for every enrolled
subject; ethics approval for the study was obtained from the Institutional Review Board of the
Hospital Authority of Hong Kong and The Chinese University of Hong Kong.

Study procedures and definitions
Active PTB cases were identified by the clinical/laboratory research team once the diagnosis
was established; clinical data, peripheral blood and sputum samples were collected immediately
after recruitment. A standardized research tool was used to collect clinical data [4,21], includ-
ing demographics, co-morbidities (as defined in the Charlson comorbidity index)[23]; 11 clini-
cal variables (fever, cough, hemoptysis, dyspnea, chest pain, night sweating, pallor, tachycardia,
lung auscultation abnormalities, body weight and height, mid-upper arm circumference) for
the calculation of ‘TB severity score’[24]; concomitant extra-pulmonary involvement; hypox-
emia requiring supplemental oxygen support; durations of fever and hospitalization
[4,25,26,27]; and outcomes of ICU admission and death that occurred within the same episode
of hospitalization [4]. All plain frontal chest radiographs performed at admission were
reviewed by an independent radiologist (LJSY) blinded to clinical information. Radiographic
changes (consolidation, cavitation, miliary nodules, effusion) and the percentage of lung paren-
chyma affected was recorded, using methods previously described [21,28,29].

A total of 25 ml of peripheral blood (EDTA) was collected from each subject for cytokine/
chemokine, HMGB-1, RAGE, inflammasome, gene expression and ex-vivo stimulation studies
(see below). Expectorated sputum samples provided before anti-TB treatment were subjected
to mycobacterial culture in liquid medium (MGIT, Bactec culture system); the ‘time-to-culture
positivity’ (defined as the number of days after inoculation until a positive signal was obtained,
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shown to be inversely proportional to log10 CFU of inoculum) was recorded to provide an esti-
mate on the mycobacterial load [30]. Semi-quantitative AFB smear results (WHO grading)
were also recorded. For the asymptomatic individuals (tested HIV-negative), an IGRA (Quan-
tiFERON-TB Gold In-Tube, Cellestis, Australia) was used to diagnose latent TB infection as
described [21].

Assays of plasma HMGB1, soluble RAGE, and cytokines/chemokines
concentrations
Plasma concentrations of interleukin(IL)-1β, IL-6, IL-8/CXCL8, IL-10, IL-12p70, and tumour
necrosis factor(TNF)-α were assayed using cytometric bead array (CBA) reagents (BD Phar-
mingen Corp., San Diego, CA, USA) with four-color FACSCalibur flow-cytometer (BD Biosci-
ences Corp, San Jose, CA, USA) as described [25–27]. Plasma concentrations of HMGB1,
soluble RAGE (soluble receptor of HMGB1), IL-18, and sTNFR-1 (soluble tumour necrosis
factor receptor-1, which indirectly indicating TNF-α release) were measured using enzyme-
linked immunosorbent assays (Shino-Test, Kanagawa, Japan; R&D systems, Minneapolis, MN,
USA; and MBL International Corp., Des Plaines, IL, USA) (S1 File). These cytokines/chemo-
kines were selected based on their reported involvement in the pro-inflammatory, innate
response in active PTB (the ‘adaptive’ Th1/Th2 cytokines e.g. IFN-γ, IP-10/CXCL-10, IL-4, will
be studied separately) [5,6,31].

Flow cytometric assay of transmembrane RAGE on monocytes and
dendritic cells surface
Expression of transmembrane RAGE on surface of peripheral blood monocytes (CD14+), mye-
loid dendritic cells/mDC (CD16-CD14-CD85k+CD33+) and plasmacytoid dendritic cells/
pDC (CD16-CD14-CD85k+CD33-) was assessed by flow cytometric analysis using established
methods (S1 File) [27]. Unconjugated polyclonal rabbit anti-human RAGE antibody for flow
analysis (Millipore Co., MA, USA), and PE-conjugated goat anti-rabbit IgG (H+L) secondary
antibody (Invitrogen Corp., CA, USA) were used for the detection of RAGE. The CD14+ gated
population was set to identify the monocyte population. For the analysis of DC, FITC-conju-
gated CD14 and CD16, PC7-conjugated immunoglobulin-like transcript (ILT)-3/CD85k/
CD1c/BDCA2 (Beckman Coulter Inc, CA, USA), and APC-conjugated CD33 (BD Biosciences,
San Jose, CA, USA) were used. The DC population was identified as CD14 and CD16 double
negative and ILT3 positive population; mDCs and pDCs were differentiated by high and low
CD33 expression, respectively. Monocytes (10,000 viable cells) and DC populations (200,000
viable cells) were gated and analyzed with 4-color FACSCalibur flow cytometer (BD Biosci-
ences Corp, San Jose, CA, USA). All results were expressed in Mean Fluorescence Intensity
(MFI).

Real-time quantitative PCR assay of mRNA expression of HMGB1,
RAGE, and NALP3 genes
Total RNA of PBMC was extracted, and the mRNA expression of HMGB1, RAGE, and the
inflammasome-related NALP3 genes was measured by real-time RT-PCR assay using the
Applied Biosystems 48-well StepOne™ Real Time PCR System (Applied Biosystems Inc., CA,
USA) (S1 File). The relative gene expression of HMGB1, RAGE, and NALP3 was calculated by
comparing with the housekeeping GAPDH gene, and expressed as Relative Quantitation (RQ)
values [26,27]. In addition, assay of Caspase-1 (inflammasome-related) activity in PBMC was
performed using the Caspase-1 colorimetric assay kit (Millipore Corp., MA, USA).
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Ex vivo stimulation studies with recombinant-HMGB1 and
Lipoarabinomannan (LAM)
Human PBMCwere isolated using a density gradient centrifugation. PBMC (5 × 106/well) were
distributed into 96-well plates, and incubated at 37°C in 1 ml of RPMI-1640 medium, supple-
mented with 10% (v/v) fetal calf serum (FCS) for 24 hours, with or without the following ligands:
(1) recombinant-HMGB1; (2) lipoarabinomannans (LAM, a MTB cell wall related glycolipid, a
TLR2 ligand); (3) a combination of recombinant-HMGB1 and LAM (for any additive effect);
and (4) oligodeoxynucleotide (CpG-ODNs, a TLR-9 ligand; for comparison), to assess for their
effects on cytokine stimulation (S1 File). Concentrations of cytokines/chemokines released into
the culture supernatant were quantitated by CBA or ELISA as described above. The fold-change
in cytokine release with/without ligand stimulation was calculated for individual cytokine (e.g.
TNF-α concentration after incubation with recombinant-HMGB1 / with medium alone). A
value of>1.0 was considered as a positive response to ligand stimulation [25,27].

Statistical analyses
Active PTB patients were compared with IGRA-positive and IGRA-negative asymptomatic
individuals (ie, with or without latent TB infection) [21]. Sample size calculation was based on
our pilot study data (2:1 ratio; PS software, version 3.0.34). Immunological variables were
expressed in median (IQR, interquartile range) unless otherwise specified, and analyzed using
non-parametric (Mann-Whitney U) tests. Significant variables were further examined for their
correlations with parameters indicating mycobacterial load and clinical severity, using Spear-
man’s rank correlation coefficient (rs). Moreover, associations with respiratory failure (defined
as hypoxemia requiring supplemental oxygen support), and ICU admission/death were exam-
ined [25,26]. Variables with P-values<0.10 in univariate analyses were entered into logistic
regression models as covariates, together with potential confounders of age, gender, comorbid-
ity and TB severity score to identify independent associations. Adjusted Odds Ratios (OR) and
the 95% confidence intervals (CI) were reported. All probabilities were 2-tailed, and a P value
of<0.05 was considered to indicate statistical significance. We also calculated Bonferroni-
adjusted P value thresholds for the multiple comparisons performed in Tables 1, 2 and 3 for
reference purpose. Statistical analysis was performed using the PASW Statistics software, ver-
sion 17.0.

Results

Description of patients
Altogether, 80 patients with active PTB and 45 asymptomatic adults were recruited for study.
The median (IQR) age of PTB patients was 52 (39–69) years; 45% had underlying comorbidi-
ties, and 28% were current smokers. The median duration of symptom prior to presentation
was 4 (IQR 2–13) weeks. About 73% of cases were AFB smear-positive in one or more clinical
samples; all mycobacterium isolates obtained were tested susceptible to first-line agents. In 6%,
concomitant extra-pulmonary manifestations were documented (laryngitis 3, peritonitis 1,
osteomyelitis 1). About 61%, 26% and 13% of patients had severity scores classified as class I
(0–5), class II (6–7), and class III (>7) respectively. Chest radiographs showed bilateral
involvement, area of consolidation>50%, cavitation, effusion, and miliary nodules in 51.3%,
21.3%, 30.0%, 31.3%, and 3.8% respectively. Twenty-one (26%) patients developed respiratory
failure requiring oxygen support, and 8 (10%) were admitted to ICU or died. The median
(IQR) length-of-stay was 22 (13–36) days for the survivors. All patients were given anti-TB
treatment.
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Table 1. Plasma concentrations of pro-inflammatory cytokines/chemokines, HMGB1, and RAGE in patients with active PTB, compared with IGRA-
positive and IGRA-negative asymptomatic individuals.

Active PTB
cases(n = 80) 1

IGRA-positive,
asymptomatic(n = 17) 2

IGRA-negative,
asymptomatic(n = 27) 3

IGRA-positive/negative,
asymptomatic(n = 45) 4

P-value[1
vs 2]

P-value [1

vs 3]
P-value [1

vs 4]

IL-1β (pg/mL) 7.2 (7.2–7.2) 7.2 (7.2–7.2) 7.2 (7.2–7.2) 7.2 (7.2–7.2) 0.217 0.561 0.670

IL-6 (pg/mL) 9.4 (6.0–20.5) 3.4 (2.6–4.5) 3.1 (2.6–4.2) 3.2 (2.6–4.3) <0.001** <0.001** <0.001**

IL-8/CXCL8
(pg/mL)

6.0 (3.6–15.1) 3.6 (3.6–4.8) 3.6 (3.6–3.6) 3.6 (3.6–3.6) 0.003* <0.001** <0.001**

IL-10 (pg/mL) 3.3 (3.3–3.3) 3.3 (3.3–3.3) 3.3 (3.3–3.3) 3.3 (3.3–3.3) 0.246 0.145 0.061

IL-12p70 (pg/
mL)

1.9 (1.9–2.4) 2.1 (1.9–2.6) 1.9 (1.9–2.2) 2.0 (1.9–2.3) 0.320 0.792 0.722

IL-18 (pg/mL) 1559.9
(1273.2–
1906.0)

1514.1 (1117.1–1734.8) 1103.4 (984.1–1622.8) 1161.9 (1004.1–1661.7) 0.155 <0.001** <0.001**

TNF-α (pg/
mL)

7.0 (5.8–8.0) 6.0 (3.8–8.0) 7.7 (6.0–9.7) 6.6 (4.4–8.9) 0.072 0.136 0.924

sTNFR-1 (pg/
mL)

1556.1
(1064.6–
2425.1)

1155.3 (1033.7–1512.8) 1023.4 (828.5–1422.7) 1116.7 (886.4–1440.4) 0.030* 0.001** <0.001**

HMGB1 (ng/
mL)

3.1 (1.7–4.5) 2.8 (1.0–4.7) 2.0 (1.3–5.0) 2.1 (1.3–4.7) 0.690 0.307 0.386

soluble
RAGE (pg/
mL)

446.4 (220.9–
701.8)

807.7 (614.8–1295.1) 797.8 (562.6–971.4) 797.8 (569.3–1017.1) <0.001** <0.001** <0.001**

Note: All results are described as median (IQR) unless otherwise specified. One asymptomatic individual had indeterminate IGRA result. All 80 active PTB

cases were prospectively and consecutively recruited (refusal, n = 21); 5 patients were excluded based on study criteria or subsequent culture results

showed non-tuberculous mycobacteria. Duration of drug exposure was <48 hours (IQR 24–72 hours). Detection limits for IL-1β, IL-6, IL-8/CXCL8, IL-10, IL-

12, IL-18, TNF-α, sTNFR-1, and soluble RAGE are 7.2, 2.5, 3.6, 3.3, 1.9, 9.0, 3.7, 0.4, and 1.2 pg/mL respectively (HMGB1, 1.0 ng/mL). Mann-Whitney U

test, ** P�0.001, * P <0.05; a Bonferroni-corrected P value significance threshold (P�0.003) is calculated for reference.

doi:10.1371/journal.pone.0159132.t001

Table 2. Expressions of RAGE, HMGB1 and inflammasome in active PTB patients, compared with IGRA-positive and IGRA-negative asymptomatic
individuals.

Active PTB
cases(n = 80) 1

IGRA-positive,
asymptomatic(n = 17) 2

IGRA-negative,
asymptomatic(n = 27) 3

IGRA-positive/negative,
asymptomatic (n = 45) 4

P-value [1

vs 2]
P-value [1

vs 3]
P-value [1

vs 4]

Monocytes,
RAGE (MFI)

173.7 (97.7–
259.2)

154.2 (92.6–185.9) 137.8 (81.2–197.9) 140.2 (83.2–193.6) 0.271 0.070 0.077

Total DC, RAGE
(MFI)

100.0 (62.1–
192.2)

102.4 (65.5–129.1) 68.9 (53.3–109.4) 84.2 (58.1–126.5) 0.740 0.049* 0.140

mDC, RAGE
(MFI)

138.0 (25.7–
331.9)

131.8 (10.0–312.0) 133.9 (68.2–248.9) 114.0 (10.0–262.7) 0.415 0.955 0.333

pDC, RAGE
(MFI)

112.8 (10.0–
215.7)

10.0 (10.0–10.0) 20.7 (10.0–83.8) 10.0 (10.0–118.5) 0.254 0.240 0.247

HMGB1 (RQ) 1.2 (0.6–3.0) 1.0 (0.2–1.4) 1.0 (0.1–1.6) 1.0 (0.1–1.5) 0.058 0.109 0.016*

RAGE (RQ) 1.4 (0.6–3.4) 0.4 (0.1–0.7) 0.5 (0.2–1.1) 0.5 (0.1–1.0) <0.001** 0.001** <0.001**

NALP3 (RQ) 2.1 (1.3–3.9) 1.1 (0.6–1.5) 2.0 (0.9–3.7) 1.4 (0.7–2.9) <0.001** 0.342 0.006*

Caspase-1 (μg/
mL)

21.7 (9.3–
42.8)

5.4 (2.0–10.2) 6.9 (1.7–24.2) 6.9 (1.7–16.4) <0.001** 0.012* <0.001**

Note: MFI, mean fluorescence intensity; RQ, relative quantitation of gene expression (mRNA/GAPDH). ** P�0.001, * P <0.05; Bonferroni-corrected P

value significance threshold (P�0.003) is calculated for reference. Plasma IL-6, IL-8/CXCL8 and sTNFR1 concentrations positively correlated with RQ of

RAGE (rs 0.214, P = 0.018; rs 0.280, P = 0.002; rs 0.273, P = 0.002 respectively).

doi:10.1371/journal.pone.0159132.t002
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Cytokines/chemokines, HMGB1, RAGE, and inflammasome activation
in PTB
As shown in Table 1, we found significantly higher plasma concentrations of IL-8/CXCL8 and
IL-6 in patients with active PTB (~1.7–3.0 folds), when compared with IGRA-positive and
IGRA-negative asymptomatic individuals. Plasma sTNFR1 and IL-18 concentrations were
higher in the MTB infected individuals.

We found that transmembrane RAGE on dendritic cells and monocyte surfaces was
increased, and RAGE and HMGB1 gene expressions were upregulated in active PTB (~1.2–2.8
fold); whereas the decoy, plasma soluble RAGE was significant depleted (Table 2). There was a
trend of increase of plasma HMGB1 level in active PTB patients (~1.1 and 1.6 fold higher than
IGRA-positive and IGRA-negative individuals respectively), but the comparisons did not reach
statistical significance. The inflammasome-related Caspase-1 activity and NALP3 gene expres-
sion were shown to be increased. We found significant correlations between RAGE expression
and plasma proinflammatory cytokine levels (IL-8/CXCL8, IL-6, sTNFR1; Table 2 footnotes).

Bacteriological and clinical correlations
As shown in Table 3, we found significant correlations between mycobacterial load (as indi-
cated by the semi-quantitative smear results and ‘time-to-culture positivity’) and plasma IL-8/
CXCL8 and IL-6 concentrations in patients with active PTB. IL-8/CXCL8 showed strong corre-
lations with extent of lung consolidation (rs +0.509, P<0.001), duration of hospitalization
(rs +0.407, P<0.001), and TB severity scores; similar results were shown for IL-6. Significant
associations were found between RAGE, HMGB1 and NALP3 gene expressions, and extent of
consolidation (Table 3 footnotes). Plasma HMGB1 concentration correlated with fever dura-
tion (rs +0.272, P = 0.015).

As shown in Fig 1, high plasma IL-8/CXCL8 [median(IQR), 17.6(5.9–27.3) vs 4.3(3.6–9.0)
pg/mL, P<0.001) and IL-6 [16.2(7.4–37.7) vs 8.7(5.5–15.0) pg/mL, P = 0.026] concentrations
were significantly associated with development of respiratory failure; the same cytokines were
also associated with ICU admission/death. Patients with respiratory failure showed trend of
increase in HMGB1 [plasma concentration, median(IQR), 3.5(2.1–5.2) vs 3.2(1.7–4.5); 10th–90th

Table 3. Correlations between plasma cytokine levels, and clinical and bacteriological variables in patients with active PTB (n = 80).

Consolidation on
CXR, %

Duration of fever,
day

Duration of
hospitalization, day

TB severity score 1 Semi-quantitative
AFB smear 2

Time-to-culture
positivity 3

rs P-value rs P-value rs P-value rs P-value rs P-value rs P-value

IL-6 (pg/mL) 0.373 0.001** 0.272 0.015* 0.359 0.001** 0.207 0.065 0.264 0.024* -0.445 0.007**

IL-8/CXCL8 (pg/mL) 0.509 <0.001** 0.137 0.230 0.407 <0.001** 0.317 0.004** 0.247 0.035* -0.335 0.046*

IL-18 (pg/mL) 0.024 0.834 -0.043 0.704 0.236 0.041* -0.027 0.812 0.220 0.061 0.208 0.222

sTNFR1 (pg/mL) -0.088 0.442 0.029 0.799 0.018 0.878 0.073 0.524 -0.058 0.627 -0.101 0.564

Note: rs = Spearman’s rank correlation coefficient; * P <0.05, **P <0.01; a Bonferroni-corrected P value significance threshold (P�0.01) is calculated for

reference.
1 TB severity score, constructed based on 13 symptoms and clinical signs [24];
2 semi-quantitative AFB smear results (WHO grading 0, 1+, 2+, 3+);
3 time-to-positivity in the liquid-medium culture system (shorter time to positivity indicated a higher mycobacterial load; data available in 36 cases)[30].

Correlations between percentage consolidation on CXR, and RQ of HMGB1, RAGE and NALP3 were rs 0.204 (P = 0.074), rs 0.240 (P = 0.034), and rs 0.278

(P = 0.014) respectively. Cavitatory vs non-cavitatory disease: IL-8, median(IQR), 8.5(4.3–15.1) vs 5.2(3.6–14.8), P = 0.159; IL-6, 11.6(7.4–24.8) vs 8.8(4.9–

20.4), P = 0.099. There was a trend to show RQ of HMGB1 correlated with fever duration (rs 0.222, P = 0.053). Higher plasma IL-18 level was found in

patients with extra-pulmonary manifestations: median (IQR), 2713.8 (1551.5–3555.8) vs 1488.6 (1268.3–1890.1) pg/mL, P = 0.019.

doi:10.1371/journal.pone.0159132.t003
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percentile, 1.6–13.5 vs 1.0–6.0 ng/mL; gene expression RQ, 1.4(0.9–3.1) vs 1.0(0.6–3.0)]. After
adjustment for severity score at presentation, age, gender, and comorbidity, IL-8/CXCL8
(adjusted OR 1.12 per unit increase, 95%CI 1.02–1.23, P = 0.021) and HMGB1 (adjusted OR
1.42 per unit increase, 95%CI 1.08–1.87, P = 0.012) concentrations were shown to be indepen-
dently associated with respiratory failure (Table 4a and 4b). A separate model accounting for the
same confounders showed that IL-8/CXCL8 (adjusted OR 1.14 per unit increase, 95%CI 1.01–
1.30, P = 0.041) and HMGB1 (adjusted OR 1.44 per unit increase, 95%CI 0.97–2.13, P = 0.074)
independently predicted ICU admission/death.

Ex vivo cytokine response upon stimulation with recombinant-HMGB1
and MTB-antigen
When stimulated with recombinant-HMGB1 alone, PBMC from active PTB patients showed a
small but significantly greater response in releasing TNF002Dα compared with the uninfected
individuals (PTB vs IGRA-negative subjects: fold-change>1.0, in 44.3% vs 22.2%, P = 0.042; vs
IGRA-positive/negative subjects 28.9%, P = 0.090). When co-stimulated with MTB antigen (i.e.,
HMGB1 + LAM), a substantial increase in TNF-α release was observed in active PTB patients;
and the response was about 2 times greater than the uninfected (PTB vs IGRA-negative subjects,
median(IQR) fold-change, 14.4(4.7–39.9) vs 6.6(2.6–11.1), P = 0.005; PTB vs IGRA-positive/
negative subjects, 14.4(4.7–39.9) vs 6.1(2.8–11.0), P = 0.001) (Fig 2). When stimulated with
ODN (a TLR9-specific ligand), no significant cytokine stimulation was observed. Results for
other cytokines (e.g. IL-18, IL-10) with HMGB1/LAM stimulation are provided in S2 File.

Discussion
Our results showed increased pro-inflammatory cytokines and activation of the HMGB1/
RAGE signaling pathway in active PTB, which correlated with clinico-/radiographical severity.

Fig 1. High plasma IL-6 and IL-8/CXCL8 concentrations were significantly associated with
development of respiratory failure (hypoxemia, upper panels), and the adverse outcomes of ICU
admission/death (lower panels) in patients with confirmed active PTB (n = 80). Note. Other cytokines,
hypoxemia [yes vs no]: IL-18 [median (IQR), 1655.0 (1266.6–2185.8) vs 1516.3 (1285.8–1882.3) pg/mL];
sTNFR1 [median (IQR), 1460.2 (1054.1–2008.7) vs 1664.6 (1089.2–2571.4) pg/mL; HMGB1 [median(IQR),
3.5(2.1–5.2) vs 3.2 (1.7–4.5)], outliers excluded; all P >0.05.

doi:10.1371/journal.pone.0159132.g001
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HMGB1 may potentiate the inflammatory responses induced by MTB antigens. Such findings
shed light on the pathogenesis of severe TB, and may assist hypothesis generation for the devel-
opment of new management and control strategies.

We found significant elevation of the pro-inflammatory cytokines IL-8/CXCL8 and IL-6 in
patients with active PTB; IL-18 and sTNFR-1 (indicating TNF-α release) were also increased in
infected individuals. Notably, plasma levels of these proinflammatory cytokines (e.g. IL-8/
CXCL8, IL-6) were shown to significantly correlate with mycobacterial load, extent of radio-
graphic consolidation, TB severity score, and durations of fever and hospitalization. Further,
multivariate analyses showed that IL-8/CXCL8 concentration was an independent predictor
for development of respiratory failure (adjusted OR 1.12 per unit rise, 95%CI 1.02–1.23)
adjusted for confounders such as old age and underlying comorbidities. Associations with
adverse outcomes of ICU admission/death were also observed. Besides enhancing tissue injury,
IL-8/CXCL8, as well as IL-6 and IL-18 have been shown in experimental MTB infections to
promote macrophage and T-cell–mediated anti-mycobacterial immunity such as IFN-γ secre-
tion and recruitment of inflammatory cells. TNF-α is known to be crucial in mycobacterial
control including granuloma formation [5,31,32]. However few studies have shown clinical rel-
evance despite their frequent detection in TB patients; in one report, high IL-8/CXCL8 concen-
tration in bronchoalveolar lavage fluids and its association with fatality was described [31,33–
37]. Our clinical data provide important support for the pathogenic roles of pro-inflammatory
cytokines in active PTB, and suggest further evaluation of their clinical utility for prognostica-
tion and treatment response monitoring (as ‘biomarker’, e.g. IL-8/CXCL8) [35,37–42].

Table 4. Independent variables associated with development of respiratory failure in active PTB, as shown in final multivariable logistic regression
models.

(a) Model 1: plasma HMGB1 concentration as a covariate

Variable Adjusted Odds Ratio (OR) 95% Confidence Interval (CI) P-value

Age, per 20 years 2.57 1.28–5.13 0.008

Sex, male 0.40 0.10–1.60 0.193

Comorbidity 1 2.41 0.63–9.20 0.198

TB score 2

class II 9.32 1.97–44.2 0.005

class III 11.17 1.81–69.2 0.009

HMGB1 3 1.33 1.05–1.68 0.020

(b) Model 2: plasma HMGB1 and cytokine/chemokine concentrations as covariates

Variable Adjusted Odds Ratio (OR) 95% Confidence Interval (CI) P-value

Age, per 20 years 2.82 1.26–6.29 0.011

Sex, male 0.15 0.03–0.84 0.032

Comorbidity 1 1.73 0.38–7.85 0.478

TB score 2

class II 8.19 1.47–45.51 0.016

class III 4.00 0.47–33.94 0.204

HMGB1 3 1.42 1.08–1.87 0.012

IL-6 1.00 0.97–1.03 0.770

IL-8/CXCL8 3 1.12 1.02–1.23 0.021

IL-18 1.00 1.00–1.00 0.530

1 Comorbidity: presence of major comorbidities as defined in the Charlson’s comorbidity index;
2 TB severity score, constructed based on 13 symptoms and clinical signs (Class II score 6–7, Class III score 8–13; compared with Class I score 0–5);
3 HMGB1: per ng/mL increase, IL-8/CXCL8: per pg/mL increase [NB. including the variable ‘symptom duration prior to presentation’ as a covariate did not

change the results.]

doi:10.1371/journal.pone.0159132.t004
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We found evidence of HMGB1/RAGE signaling pathway activation in active PTB. HMGB1
and RAGE genes were both upregulated; surface expression of transmembrane RAGE on the
immune cells was increased [8,10,12,43]. Although only a slight increase in the circulating level
of HMGB1 was detected (see section on Limitations), its decoy receptor soluble RAGE, was
found to be significantly depleted [8,17,44]. Increased expression of RAGE correlated with
plasma cytokine levels, and extent of lung consolidation (similar results for HMGB1). In multi-
variable analyses which controlled for clinical confounders and cytokine levels, HMGB1 was
shown to be an independent predictor for severe outcomes (adjusted odds ratio ~1.4 per unit
rise). In animal models of PTB, increased expressions of HMGB1 (and pro-inflammatory cyto-
kines) were detected in the lungs, correlating with degree of tissue damage [18]. Its pathogenic
role has been described recently in other infectious diseases including community-acquired
pneumonia [16], influenza [45], skin and soft tissue [46] and intra-abdominal infections [17],
contributing to serious complications or fatal outcomes. Being a receptor for HMGB1, signal-
ing through RAGE activates the NF-κB pathway (possibly via ERK and p38-MAPK), which
promotes transcription of the pro-inflammatory genes (e.g. IL-8/CXCL8, IL-6, TNF-α) in lung
and immune cells [8,10,12,44]. Recent animal data suggest that RAGE may play a role in myco-
bacterial control [40]. Soluble RAGE is proposed to function as a counteractive, ligand-binding
decoy [8,17,44],and depleted plasma level has been associated with excessive inflammation in
respiratory diseases [47–49]. We first report inflammasome hyperactivation (NALP3 gene up-
regulation and increased Caspase-1 activity) in active PTB patients. Experimental data suggest
that secretion of HMGB1 and several inflammatory cytokines (e.g. IL-18) in severe sepsis is
inflammasome-dependent [8,10,12,14]. Recently, MTB has been shown to specifically activate
the NALP3-inflammasome to trigger the inflammation cascade in mice [50].

These observations are further supported by our ex vivo study results. A small but signifi-
cant TNF-α response was detected in the PTB cases with recombinant-HMGB1 stimulation

Fig 2. Ex vivo stimulation of PBMCwith recombinant-HMGB1 alone, LAM alone and their
combinations. TNF-α release was substantially higher with HMGB1 and LAM co-stimulation; the response
in active PTB patients was about 2 times greater than in the uninfected (PTB vs IGRA-negative subjects,
median(IQR) fold-change, 14.4(4.7–39.9) vs 6.6(2.6–11.1), P = 0.005). Footnotes: ATB, patients with active
PTB; Control, IGRA-negative individuals. Fold change: TNF-α release with/without ligand stimulation.
Box and whisker represent 50th and 75th percentiles respectively; MannWhitney U test. Median fold-change
of TNF-α with HMGB1+LAM stimulation in ATB cases vs all IGRA-positive/negative individuals: 14.4 (4.7–
39.9) vs 6.1 (2.8–11.0), P = 0.001.

doi:10.1371/journal.pone.0159132.g002
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alone; however when combined with MTB antigen (LAM), a substantial response was shown
(double that of the uninfected), indicating a possible additive/synergistic effect. Stimulation
with another ligand, ODN, either alone or in combination with HMGB1, did not produce any
significant effect (data not shown). HMGB1 is known to interact with various microbial anti-
gens to increase its binding and pro-inflammatory actions [5,10,11,12]. Consistent with our
findings, potentiation of cytokine induction (e.g. TNF-α) had been shown in experimentalM.
bovis BCG infection with the addition of HMGB1 [18].

Collectively, our results suggest that innate immune mechanisms play important pathogenic
roles in active PTB, which warrant more detailed characterization [8,10,11,12,32]. Besides
implications for disease monitoring [16,31], such data may provide basis for the on-going
research on novel adjunctive therapies (e.g. anti-HMGB1 monocloncal antibodies,
HMGB1-binding small molecules, RAGE-binding molecules as competitive antagonists,
PPARγ activation to attenuate HMGB1 production) to reduce excessive inflammation in TB
disease [5,7,8,10,11,17,51],and next-generation TB vaccines with enhanced immunogenicity
(e.g. HMGB1-adjuvanted TB subunit vaccine) [9,32].

The strengths of this study include its prospective, case-control design; active TB, latent TB,
and the uninfected were compared; events occurring along the proposed signaling pathway
(inflammasome–HMGB1/RAGE–cytokines) were investigated at multiple levels (plasma, cell
surface, gene expression) to provide a more comprehensive picture. However, additional stud-
ies are required to ascertain their causal relationships, as well as the other related cytokines/
chemokines and receptors (e.g. IL-17, IFN-γ, CCL2/MCP-1, CXCL10/IP-10; the toll-like recep-
tors) [5,8,10,27]. Unlike in vitro experiments, detection of circulating levels of certain cytokines
(e.g. IL-1β, IL-10, TNF-α) can be challenging; and circulating ‘receptor-bound’HMGB1 (e.g.
bound to soluble RAGE) cannot be measured accurately with the current assays [16,20,25,26].
As such, gene expressions were also studied. Since HMGB1 can promote or suppress inflam-
mation and the immune response depending on its redox state [52],further study to determine
reduced/oxidized HMGB1 by Western blotting is also warranted. We could not study lung tis-
sues as obtaining these specimens were infeasible in most TB patients. Follow up studies on
HMGB1/RAGE targeting to attenuate cytokine responses, and serial monitoring of immuno-
logical parameters during the course of anti-TB treatment have been planned.

In conclusion, our results showed that in patients with active PTB, there was activation of
HMGB1/RAGE signaling and increased pro-inflammatory cytokine responses which correlated
with disease severity. Such findings has important implications on pathogenesis and provide
basis for the development of new strategies for disease monitoring, management and control.
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