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ABSTRACT

Objectives: To investigate the capability of computed-tomography (CT) radiomic 
features to predict the therapeutic response of Esophageal Carcinoma (EC) to 
chemoradiotherapy (CRT).

Methods: Pretreatment contrast-enhanced CT images of 49 EC patients (33 
responders, 16 nonresponders) who received with CRT were retrospectively analyzed. 
The region of tumor was contoured by two radiologists. A total of 214 features 
were extracted from the tumor region. Kruskal-Wallis test and receiver operating 
characteristic (ROC) analysis were performed to evaluate the capability of each 
feature on treatment response classification. Support vector machine (SVM) and 
artificial neural network (ANN) algorithms were used to build models for prediction 
of the treatment response. The statistical difference between the performances of 
the models was assessed using McNemar’s test.

Results: Radiomic-based classification showed significance in differentiating 
responders from nonresponders. Five features were found to discriminate 
nonresponders from responders (AUCs from 0.686 to 0.727). Considering these 
features, two features (Histogram2D_skewness: P = 0.015. Histogram2D_kurtosis: 
P = 0.039) were significant for differentiating SDs (stable disease) from PRs (partial 
response) and one feature (Histogram2D_skewness: P = 0.027) for differentiating 
SDs from CRs (complete response). Both classifiers showed potential in predicting the 
treatment response with higher accuracy (ANN: 0.972, SVM: 0.891). No statistically 
significant difference was observed in the performance of the two classifiers (P = 
0.250).

Conclusions: CT-based radiomic features can be used as imaging biomarkers to 
predict tumor response to CRT in EC patients.

INTRODUCTION

Esophageal carcinoma is the eighth most commonly 
occurring types of malignancy, including more than 

450.000 new cancer diagnoses yearly, and also the sixth 
leading cause of cancer-related mortality with an estimated 
approximately 400.000 deaths every year [1]. Most people 
are diagnosed with esophageal cancer present with locally 
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advanced disease, to which concurrent chemoradiotherapy 
has emerged as a standard treatment [2]. However, locally 
advanced esophageal cancer has only 5-year overall 
survival of 36-47% after the CRT [3-5]. Therefore, a 
non-invasive prediction approach is expected to identify 
those who are at higher risk of poor response after CRT. 
Literatures showed that early selected patients with poor 
response to CRT may benefit from salvage surgery, with 
long-term survival [6, 7]. Therefore, identification of these 
patients prior to treatment would allow modification of 
their therapeutic plan and/or intensification of radiation 
dose to reduce unnecessary toxicity and improve 
prognosis.

Tumor internal microscopic differences (e.g., high 
cell density, necrosis, proliferation, hemorrhage, and 
hypoxia) are well-recognized features of malignancy 
that are related to worse prognosis, as well as to poorer 
response to treatment. Particularly, heterogeneity of the 
tumor blood supply will lead to the formation of cell 
hypoxia. The existence of hypoxic tumor cells increased 
tumor aggression and resistance to treatment [8] and is one 
of the most important reasons for distant metastasis [9]. 
Recent advances in radiomic analysis have been able to 
objectively and precisely quantify the tumor heterogeneity 
for predicting treatment response and prognosis.

Radiomic [10-12] is an emerging field that 
converts medical imaging to a set of high dimensional 
and quantitative features, including parameters not easily 
visible and quantifiable by simple visual analysis. By 
assessing the features of shape, texture, and transformation 
within a tumor lesion, radiomic analysis has the potential 
to provide complementary information relating to the 
tumor phenotype (e.g., shapes irregularity, heterogeneity 
or necrosis) [13-15]. Recently, many studies have 
shown that radiomic analysis could potentially provide 
a biomarker for the prediction of distant metastasis 
(DM) [16], treatment response [17-20], and radiation 
pneumonitis (RP) after radiotherapy [21, 22].

To our knowledge, there are few studies 
investigating the potential of radiomic analysis based on 
contrast-enhanced CT to predict treatment response in 
EC patients to CRT, particularly for the combination of 
multivariable prediction models, which may serve as an 
assistive tool for clinically accurate prediction. Therefore, 
the purpose of our study was to evaluate the power of 
radiomic features derived from pretreatment contrast-
enhanced CT images combined with supervised machine-
learning techniques in predicting therapeutic response to 
CRT in EC patients.

RESULTS

Treatment response after CRT

A total of 49 EC patients finished the treatment 
and observation. The evaluation of curative effect was 

performed 1 month after CRT. Patients classified as 
responders and nonresponders were 33 cases (17 CR, 16 
PR) and 16 cases (16 SD, 0 PD), respectively.

Feature inter-observer variability assessment

Five features extracted from two sets of contours 
delineated separately by two radiologists showed poor 
reproducibility (ICC < 0.8). In the other word, a total of 
209 features were considered to be highly reproducible 
(ICC ≥ 0.8). The details were summarized in Table 1.

Predictive capabilities

The Kruskal-Wallis test was performed to all highly 
reproducible features with the results showing that 5 
features could differentiate between responders (CRs and 
PRs) and nonresponders (SDs), 2 features (Histogram2D_
skewness, P = 0.015; Histogram2D_kurtosis, P = 0.039) 
could differentiate between SDs and CRs, and one feature 
(Histogram2D_skewness, P = 0.027) could differentiate 
between SDs and CRs. The 5 features were Histogram2D_
skewness, Histogram2D_kurtosis, GLSZM2D_LZE, 
Gabor2D_MSA-54, and Gabor2D_MSE-54, showed 
significantly different between responders and 
nonresponders. To discriminate between responders and 
nonresponders, we analyzed the Histogram2D_skewness 
with ROC curves and found a cut-off of 0.025, indicating 
that tumor lesions whose Histogram2D_skewness was 
higher than 0.025 were most likely from nonresponders 
(sensitivity = 56.25%, specificity = 84.85, AUC = 0.727; 
P = 0.007). Similar results were obtained from the ROC 
analysis of other 4 significant features. The detailed data 
were summarized in Table 2 and Table 3. The distribution 
of statistically significant parameters within different 
treatment response was shown in Figure 1. Additionally, 
for the pairwise comparison of AUCs between the 5 
significant features, Delong’s test showed that there was a 
significant difference in predictive performance between 
Histogram2D_skewness and Histogram2D_kurtosis 
(AUCs: 0.727 vs. 0.689; P = 0.049).

Supervised classification and statistical 
comparison

Before model construction, feature reduction was 
performed to obtain the optimal parameter subsets on the 
basis of the wrapper-based method. With this method, 
our feature reduction process resulted in different optimal 
feature subsets for each model (SVM and ANN). The 
optimal feature subset for ANN contained 7 features 
and for SVM contained 9 features. Table 4 summarizes 
the optimal feature sets for each model in detail. Three 
features (Histogram2D_skewness, Gabor_MSA-42, and 
Gabor_MSA-55) were both selected in these 2 different 
feature sets and no shape-based features were selected. 
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Table 5 summarizes the detailed results of the weighted 
average accuracy, precision, MCC, and AUC for each 
model. Results showed that both models have good 
performances in differentiating between responders and 
nonresponders, and higher accuracies were obtained 
(accuracy of ANN: 0.927; accuracy of SVM: 0.891).

Pairwise comparisons in McNemar’s test showed 
that there was no statistical difference between ANN 
and SVM models, indicating that the choice of the 
modeling algorithm was not of substantial importance 
(P = 0.250).

Validation result

Table 6 shows the detailed results of the validation 
(testing set). ANN had higher accuracy than SVM 
(accuracy of ANN: 0.917; accuracy of SVM: 0.667), which 
was consistent with internal validation (training set).

DISCUSSION

Medical imaging is not only used for diagnosis and 
follow-up, but also image-based clinical parameters (e.g., 
TNM stage and 18F-FDG uptake) are used as predictors of 
treatment response. However, these widely used clinical 
indicators do not comprehensively capture the tumor 
phenotypic information. Radiomics method is able to 
quantify tumor phenotypical differences from medical 
images by analyzing a large number of imaging features 
that can be linked to clinical outcomes of the tumors. With 
this method, the quantified phenotypic information can 
be used as imaging biomarkers in response assessment of 
cancers.

Recently, large numbers of valuable imaging 
biomarkers of prognosis for patients with EC have been 
reported. For example, a previous study demonstrated 
the PET-based textures could be predictors of treatment 

Table 2: Features show statistical difference between responders and nonresponders

Feature P-value Standard Error 95%CI AUC Cut-off

Histogram2D_skewness 0.007 0.0743 0.581-0.845 0.727 >0.025

Histogram2D_kurtosis 0.035 0.0762 0.531-0.806 0.680 ≤4.261

GLSZM2D_LZE 0.039 0.0777 0.537-0.811 0.686 >0.266

Gabor2D_MSA-54 0.041 0.0796 0.537-0.811 0.686 ≤3066.039

Gabor2D_MSE-54 0.046 0.0865 0.547-0.818 0.695 ≤1.200

AUC, area under the curve; CI, confidence interval; Responders, patients with CR and PR; Nonresponders, patients with SD.

Table 1: ICC of features resulting from two radiologists contouring

Feature Type ICC<0.8

Shape-based 0/4

Histogram-based 1/6

Texture-based 1/91

Transform-based 3/98

ICC, intra-class correlation coefficient.

Table 3: Features that classify different treatment responses

Feature type Responders (CR, PR) Versus 
Nonresponders (SD)

SD Versus PR SD Versus CR

Shape-based None None None

Histogram-based Histogram2D_skewness
Histogram2D_kurtosis

Histogram2D_skewness
Histogram2D_kurtosis

Histogram2D_skewness

Texture-based GLSZM2D_LZE None None

Transform-based Gabor2D_MSA-54
Gabor2D_MSE-54

None None

CR, complete response; PR, partial response; SD, stable disease.
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response [20]. ROC curve analysis showed that tumor 
texture (i.e., homogeneity, entropy, and size zone 
variability) achieved higher AUCs (0.82 - 0.89) than 
any SUV measurement (AUCs from 0.59 to 0.70) in 
differentiating responders from nonresponders. Similarly, 
in their second study, several features (i.e., metabolic 
tumor volume [MTV], entropy, intensity variability, and 
zone percentage) were achieved good discriminatory 
power (AUCs from 0.80 to 0.90) for predicting 

nonresponders [23]. Based on baseline and post-treatment 
18F-FDG PET scans, Tan et al. reported that changes 
in features over treatment appeared better predictive 
performance than pre or post-treatment assessment alone 
[24]. However, PET is expensive and time-consuming. 
In the long-term follow-up of cancer patients, CT is still 
the main imaging method which is performed in routine 
clinical practice. Ganeshan et al. [19] reported that CT-
based textural heterogeneity has the potential to provide 

Figure 1: Box plots of the amplitudes of features, successfully differentiating nonresponders (stable disease [SD]) 
from responders (complete response [CR], partial response [PR]). (A) Histogram2D_skewness (P=0.0078). (B) Histogram2D_
kurtosis (P=0.0355). (C) GLSZM2D_LZE (P=0.0396). (D) Gabor2D_MSA-54 (P=0.0418). (E) Gabor2D_MSE-54(P=0.0465). (F) ROC 
curve for Histogram2D_skewness, Histogram2D_kurtosis, GLSZM2D_LZE, Gabor2D_MSA-54 and Gabor2D_MSE-54 for classification 
responders from nonresponders.
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a prognostic indicator for survival. In their study, coarse 
uniformity (OR = 4.45; P = 0.039) showed the predictive 
power by Cox regression analysis. Yip et al. [25] explored 
the value of contrast-enhanced CT image features before 
and after neoadjuvant CRT and corresponding changes 
for the prediction of therapeutic response. The study 
suggested that two features (pre and post treatment SD) 
were found to be associated with treatment response. 
However, the aforementioned studies only used histogram-
based and less texture-based features, which could not 
comprehensively assess the phenotype of the tumor. And 
no multi-parameter prediction model was established 
to dig out the predictive value of the multiple feature 
combination.

In present work, Shape-based and histogram-
based metrics are global features that characterizing the 
geometric properties of the tumor and the overall statistical 
characteristics of the pixel gray values in tumor lesion, 
respectively. With these methods, Histogram2D_skewness 
and Histogram2D_kurtosis can be applied to distinguish 
nonresponders (SDs) from responders (CRs and PRs). 

Histogram2D_skewness and Histogram2D_kurtosis also 
have the same ability to discriminate PRs from SDs and 
Histogram2D_skewness can be used to discriminate CRs 
from SDs. The texture-based features depicted the spatial 
arrangement of the voxels and the change of local intensity 
in tumor region [26]. In the other words, the distribution 
of pixels in heterogeneous tumors showed more irregular 
than that in homogeneous tumors [22]. GLSZM2D_LZE, 
corresponding to the variability in the size and intensity 
of 2D ROIs, can be used to classify responders and 
nonresponders. Our radiomic model contained more 
features than the model constructed by Vallières et.al 
[27] by adding Gabor transform and LoG filter approach. 
Gabor transform is a form of short time Fourier transform 
that computing features via time-frequency analysis 
with different frequencies and orientations [28], and 
LoG filter is a differential operator applied to highlight 
the texture of different coarseness within an image first 
smoothened by the Gaussian filter according to the sigma 
value [29]. We showed the power of Gabor2D_MSA-54 
and Gabor2D_MSE-54 to differentiate the nonresponders 

Table 4: Optimal feature set obtained from wrapper-based feature selection

Feature type SVM ANN

Shape-based
Histogram-based

None
Histogram2D_skewness

None
Histogram2D_skewness

Texture-based GLCM3D_Correlation GLCM3D_Entropy
GLSZD3D_LZE

GLSZD3D_SZHGE

Transform-based Gabor_MSA-11, -22, -32, -37, -42, -44,-55 Gabor_MSA-42, -55
Gabor_MSE-26

SVM, support vector machine; ANN, artificial neural network.

Table 5: Summary of classification results obtained from training set using 10-Fold CV

Algorithm TP
rate

FP
rate

Precision Accuracy F-Measure MCC AUC

ANN 0.973 0.064 0.974 0.972 0.973 0.936 0.927

SVM 0.892 0.256 0.906 0.891 0.884 0.743 0.818

SVM, support vector machine; ANN, artificial neural network; FP, false-positive; TP, true-positive; MCC, Matthews 
correlation coefficient.

Table 6: Classification results obtained from testing set

Algorithm TP
rate

FP
rate

Precision Accuracy F-Measure MCC AUC

ANN 0.917 0.117 0.927 0.917 0.915 0.837 0.800

SVM 0.667 0.467 0.778 0.667 0.593 0.357 0.600

SVM, support vector machine; ANN, artificial neural network, FP, false-positive; TP, true-positive; MCC, Matthews 
correlation coefficient.
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Table 7: Baseline characteristics of patients in training set

Characteristic Responders (n=26) Nonresponders (n=11) P value

Age

  Median (range) 64(52-82) 66(56-81) 0.670*

Sex

  Male/ Female 15/11 7/4 >0.999**

TNM staging

  T1/T2/T3/T4 2/7/13/4 0/5/5/1 0.666**

  N0/N1/N2 5/14/7 0/8/3 0.445**

  M0/M1 25/1 10/1 0.512**

AJCC stage

  I/II/III/IV 1/12/12/1 0/4/6/1 0.737**

*Independent-samples t-test.
**chi-square test.

Table 8: Baseline characteristics of patients in testing set

Characteristic Responders (n=7) Nonresponders (n=5) P value

Age

  Median (range) 56(50-61) 66(56-73) 0.198*

Sex

  Male/ Female 4/3 3/2 >0.999**

TNM staging

  T1/T2/T3/T4 0/3/3/1 0/3/1/1 0.773**

  N0/N1/N2 0/4/3 0/3/2 >0.999**

  M0/M1 7/0 4/1 0.417**

AJCC stage

  I/II/III/IV 0/3/4/0 0/1/3/1 0.735**

*Independent-samples t-test.
**chi-square test.

Figure 2: �Region of interest (ROI) was contoured by two radiologists, and corresponding 2D/3D ROI (A for ROI-1 and B for ROI-2). 
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from responders. The results demonstrate the possibility of 
radiomic features extracted from pre-treatment CT images 
to differentiate different treatment response.

To our knowledge, multiple features combination 
can provide a comprehensive view to depict entire tumor, 
furthermore, achieve a full evaluation of their prognostic 
power. Zhang et al. [30] showed that features combined 
SVM model achieved a higher accuracy in predicting 
treatment response of ECs to CRT, whereas, there was 
no independent validation set (testing set) was used to 
evaluate the real performance of the model. In our study, 
SVM and ANN classifiers were performed on the training 
set (n = 37) and then validated on a testing set (n = 12). 
To minimize the risk of modeling over-fitting and bias, we 
used a robust processing approach: feature reproducibility 
assessment, wrapper-based feature selection, and model 
construction with 10-fold cross-validation. With these 
processes, the ANN model showed better performance 
than the SVM model, although the difference was not 
statistically significant. These predictive models may be 
of future interest as a clinical adjunct tool in response 
prediction. Overall, this demonstrates that radiomic 
models have the potential for predicting treatment 
response in patients with EC, however, this need to be 
further confirmed in larger prospective cohorts.

Literature and clinical experiences show pathology 
difference in esophageal carcinoma between Asian and 
Western populations [1]. Asian patients with esophageal 
carcinoma are mostly squamous cell carcinoma, and for 
the Western patients are mostly adenocarcinoma. By 
extrapolation of this different pathology of Esophageal 
carcinoma, treatment response [31] and radiation-induced 
complication [32] may be different between these two 
populations. Thus, the results from squamous EC in 
our study are inappropriate to the adenocarcinoma EC 
from the other population. In addition, our results may 
be moderated by several limitations in our study: small 
sample size and the retrospective nature of this study. 
These limitations may have an impact on the reliability of 
our result, keeping nevertheless the fact that our radiomic 
models predict significantly in treatment response.

In conclusion, combined with supervised machine-
learning techniques, radiomic features derived from 
pretreatment contrast-enhanced CT scans could serve as 
an effective tool for the prediction of treatment response 
to CRT in EC patients, with the advantage of low cost, 
using existing CT image sets, without subjecting patients 
to further radiation exposure or imaging.

MATERIALS AND METHODS

Patient database

The retrospective database contained pretreatment 
contrast-enhanced CT scans from 49 patients who were 
histologically diagnosed as esophageal squamous cell 

carcinoma at Nanjing Drum Tower Hospital Cancer 
Center since March 2015 to December 2016. The patient 
characteristics were summarized in Table 7 and Table 8. 
All the patients were considered to be inoperable and not 
received chemotherapy or radiotherapy before CT scan. The 
other enrolled criteria included: normal cardiac, pulmonary, 
and hematologic function.

Chemoradiotherapy

During the whole course of radiotherapy, patients 
underwent 2-3 cycles of synchronous chemotherapy 
(nedaplatin + docetaxel/paclitaxel). All patients’ primary 
tumors were irradiated with 2Gy per fraction in 30 
fractions for intensity modulated radiation therapy 
(IMRT), and two patients received an additional dose 
(2Gy per fraction in 3 fractions) to the lymph node area 
in order to improve regional control. For all patients, the 
dose prescriptions were designed to cover at least 96% of 
planning target volume (PTV).

Treatment evaluation

The treatment response was assessed one month 
after the treatment by CT image with contrast. Response 
Evaluation Criteria in Solid Tumors (RECIST) [33] was 
referred for evaluating the treatment responses. Complete 
response (CR), partial response (PR), stable disease (SD) 
and progressive disease (PD) were evaluated. Patients with 
CR or PR were considered responders, while patients with 
SD or PD were classified as nonresponders.

CT image acquisition and tumor segmentation

All planning CT scans were obtained from the same 
CT scanner (Philips Brilliance 6; Philips Healthcare, Best, 
the Netherlands) according to a standard clinical acquisition 
protocol (tube voltage, 120 kVp; tube current, 200 – 250 
mAs; rotation time, 0.75 s ; pitch, 0.9; matrix, 512x512; 
field of view, 350 mmx350 mm; convolution kernel, 
standard), following intravenous injection of 300 mg/mL 
iodinated contrast agent at a rate of 3mL/s. In our database, 
the imaging slice thickness was 2.5mm or 3mm and the 
in-plane resolution was 0.97mm by 0.97mm. The primary 
3D region of interests (ROIs) were manually delineated 
slice-by-slice in mediastinal window on Pinnacle software 
(Philips Medical Systems, Andover, MA) by two expert 
radiologist (Ren W. for ROI-1 and Li S. for ROI-2) and 
then reviewed by an experienced radiologist (Yan J.). For 
each ROI, the contours were drawn around the gross tumor 
volume (GTV) avoiding air, fat, and bone (Figure 2).

Image preprocessing

Although patients underwent CT examination using 
the same scanner under a standard clinical acquisition 
protocol, changes of parameter settings may result in 
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variation of intensity ranges. To minimize the effect of 
variations in image acquisition parameters and enhance 
the feature characteristics in quantitative image analysis, 
voxel values within the contoured ROIs were normalized 
with a finite gray-level range as follows:
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Where 2k represent the number of discrete values (16-
128), I is the intensity of the raw image, and Ω is the set of 
pixels in the contoured ROI. This discretization process 
improves sensitivity relative to the raw data and weakens the 
image noise across all patient cohorts. Tixier et al. [20] showed 
that no statistically significant differences in the radiomic 
features derived using different resampling values (16, 32, 64, 
or 128). All subsequent reported results were obtained using 
16 discrete values in the gray-level normalization process. 
All ROIs with voxel size of 0.97x0.97x2.5/3 mm3 were 
isotropically resampled to a voxel size of 1x1x1 mm3 using 
cubic interpolation algorithm to unify the voxel size across the 
cohort.

Radiomic feature extraction

A feature computation module was developed for 
this study using MATLAB 2015a (Mathworks, Natick, 
MA, USA). DICOMs files (CT images + ROI structures) 
were first exported from Pinnacle software and then 
imported into above module to calculate radiomic features. 
In this study, 60 three-dimensional (3D) and 154 two-
dimensional (2D) features were extracted. Specifically, 
three-dimensional texture features obtained from 3D 
ROIs base on density histogram, gray-level co-occurrence 
matrix (GLCM), gray-level run-length matrix (GLRLM), 
gray-level size zone matrix (GLSZM), and neighborhood 
gray-tone difference matrix (NGTDM) [27]. Two-
dimensional texture features obtained from largest cross-
sectional area of the tumor outline contained more metrics 
than 3D feature extractive method by adding gray-level 
gradient co-occurrence matrix (GLGCM), Laplacian 
of Gaussian (LoG) band-pass filters with different 
filter values (1.0 for highlighting fine texture, 2.0 for 
highlighting medium texture, 2.5 for highlighting coarse 
texture) and Gabor transform (5 scales, 8 orientation) [29, 
34]. Conventional imaging features (shape-based) for 
lesion characteristics were also considered in this study. 
These shape-based metrics contained tumor volume, size 
(taken as the longest diameter of the 3D tumor lesion 
segmented from CT scans), solidity, and eccentricity [27].

In all, 214 radiomic features were extracted from 
four principal methods: shape-based (conventional 
metrics), histogram-based, texture-based (GLCM_2D/3D, 
GLRLM_2D/3D, GLSZM_2D/3D, NGTDM_2D/3D, 
GLGCM_2D, and LoG filter), and transform-based 

(Gabor transformation). For more detailed contents are 
summarized in the Supplementary Table 1.

Statistical analysis

All statistical analyses were performed using R 
software version 3.3.2. Kruskal-Wallis test was used to 
compare the capability of each feature to differentiate 
patients (n = 49) with respect to treatment response 
after CRT. P < 0.05 was considered to be significantly 
different. Receiver operating characteristic (ROC) 
curve analysis was used to assess the performance of 
each studied features in distinguishing among various 
treatment responses (specificity, sensitivity, and 95% 
confidence intervals [CIs] were also calculated). Area 
under the curve (AUC) with a value of 1 indicates 
an ideal result, while values lower than 0.5 means 
insignificant. Delong’s test was performed to evaluate the 
statistical significance between AUCs of the influential 
features [35]. In addition, intra-class correlation 
coefficient (ICC) (“irr” package version 0.84 in R [36]) 
was used to quantify the feature reproducibility in repeat 
delineation. Radiomic features with ICC greater than 0.8 
were considered as reproducible.

Feature selection and model construction

Support vector machine (SVM) and artificial neural 
network (ANN) algorithms were performed to build 
models for the prediction of treatment response. The 
patients were separated into two groups: 37 patients (26 
responders, 11 nonresponders) for training and 12 patients 
(7 responders, 5 nonresponders) for testing. The clinical 
information was summarized in Table 7 and Table 8. To 
avoid model overfitting and reduce the training time, the 
number of features should be reduced firstly. Based on the 
training group, wrapper-based feature selection method 
[37] was used to obtain an optimal feature subset for 
the specific model (SVM or ANN). It ranks all features 
by recursively removing features and then evaluating 
the predictive ability of the remaining features without 
missing any critical ones.

To evaluate classification performance, K-fold 
cross-validation (CV) method was served as the internal 
validation in the training set. The 10-fold CV was used, 
as the predictive performance had a good likelihood 
of closely reflecting the real performance with high 
efficiency [30]. True positives (TP), false positives 
(FP), true negatives (TN), and false negatives (FN) 
were obtained to calculate the sensitivity, specificity, 
and accuracy of the predictions. In addition, Matthews 
correlation coefficient (MCC) was used to measure 
prediction ability of the classifier. The MCC ranged from 
-1 to +1, values close to +1 represented ideal prediction, 
0 indicated the equivalent of a random guess, and -1 
implied the inverse prediction.
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Statistical comparison between ANN and SVM 
classifiers

McNemar’s test was performed to determine 
whether the predictive performance of different classifiers 
was significantly different [38]. The test was conducted on 
the outcomes achieved from the 10-fold CV.

Validation

Patients (n = 12) who were not involved in classifier 
establishment were then served as a separate validation 
set. The confusion matrix containing prediction result 
was obtained from the established models to calculate the 
specificity and accuracy.
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