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We previously reported that aerobic exercise training (AET) consisted of 10 weeks of 60-min swimming sessions, and 5 days/week
AET counteracts CH in obesity. Here, we evaluated the role of microRNAs and their target genes that are involved in heart collagen
deposition and calcium signaling, as well as the cardiac remodeling induced by AET in obese Zucker rats. Among the four
experimental Zucker groups: control lean rats (LZR), control obese rats (OZR), trained lean rats (LZR+TR), and trained
obese rats (OZR+TR), heart weight was greater in the OZR than in the LZR group due to increased cardiac intramuscular fat
and collagen. AET seems to exert a protective role in normalizing the heart weight in the OZR+TR group. Cardiac microRNA-29c
expression was decreased in OZR compared with the LZR group, paralleled by an increase in the collagen volumetric fraction
(CVF). MicroRNA-1 expression was upregulated while the expression of its target gene NCX1 was decreased in OZR compared
with the LZR group. Interestingly, AET restored cardiac microRNA-1 to nonpathological levels in the OZR-TR group. Our
findings suggest that AET could be used as a nonpharmacological therapy for the reversal of pathological cardiac remodeling and
cardiac dysfunction in obesity.

1. Introduction

Obesity results from a combination of excessive food
energy intake, lack of physical activity, and genetic
susceptibility [1–4]. Data from the World Health Organi-
zation (WHO) in 2014 showed that 1.9 billion people
worldwide are overweight and 600 million are obese,
causing 2.8 million deaths annually [5]. Obesity induces
systemic inflammation and contributes to the develop-
ment of atherosclerosis and cardiovascular diseases, which
cooperate with the pathological cardiac hypertrophy (CH)
phenotype [6, 7].

Cardiac remodeling induced by obesity is a compen-
satory adaptation to volume overload and/or continuous
pressure imposed on the heart [8]. Studies in obese Zucker
rats show an increase in left ventricular mass accompanied

by pathological CH molecular markers such as β-myosin
heavy chain (β-MHC), atrial natriuretic factor (ANF),
α-skeletal actin; cardiac dysfunction; and ultimately, heart
failure [8–10]. The diastolic dysfunction in obesity is induced
both by increased collagen content and by damage to calcium
signaling pathways mediated by proteins of intracellular
calcium removal, such as SERCA-2a and the sodium/calcium
exchanger NCX1 [11, 12].

Aerobic exercise training (AET) is a nonpharmacological
strategy for preventing and treating obesity and cardiovascu-
lar disease [4, 13–16]. We have recently reported that AET
reverses pathological cardiac remodeling in hypertensive
and obese rats [4, 17, 18]. AET induces physiological CH
by increasing the ratio of α/β-MHC and decreasing car-
diac collagen content, improving ventricular compliance
[19, 20]. Furthermore, AET leads to the restoration of normal
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calcium handling protein levels, potentially contributing to
physiological cardiac hypertrophy and improved cardiac
function [21].

MicroRNAs are regulators in various physiological and
pathological processes, such as cardiac remodeling [22].
MicroRNAs are small endogenous RNAs that negatively
regulate the expression of their target genes [23]. Previous
data reported by our group showed that physiological CH
induced by different amounts of AET is related to reduced
cardiac collagen expression via elevated cardiac microRNA-
29c levels in healthy rats [24]. In addition, Melo et al. [25]
showed that AET restored the levels of microRNA-29c in
infarcted rats, contributing to a reduction in cardiac colla-
gen content. Interestingly, studies have shown the involve-
ment of microRNAs in the regulation of calcium signaling
pathways in the heart, indicating NCX1 as a target of
microRNA-1 [26–28]. However, the effects of AET on car-
diac microRNAs and cardiac remodeling in obesity are not
fully established.

We investigated whether obesity increases cardiac colla-
gen deposition and calcium handling proteins regulated by
microRNAs and if AET restores these parameters, conse-
quently contributing to the conversion of pathological into
physiological CH in obesity.

2. Materials and Methods

2.1. Experimental Groups. Twenty male Zucker rats (20
weeks of age) were assigned to four groups (n = 5 each):
control lean Zucker rats (LZR), trained lean Zucker rats
(LZR+TR), control obese Zucker rats (OZR), and trained
obese Zucker rats (OZR+TR). The animals were housed in
cages, and food and water were provided ad libitum. The
room temperature was 23°C, and an inverted 12 : 12 h
dark-light cycle was maintained throughout the experiment.

All protocols and surgical procedures used were in
accordance with the guidelines of the Brazilian College for
Animal Experimentation and were approved by the Ethics
Committee (1023/07) of the Biomedical Science Institute of
the University of Sao Paulo.

2.2. Exercise Training Protocol. Swimming training was
performed as described previously [4]. Animals were trained
in a swimming apparatus specially designed to allow indi-
vidual exercise training of rats in warm water at 30–32°C.
Physical training consisted of swimming sessions of 60-min
duration, five times a week, for 10 weeks, with 4% of body
weight workload hold in tail [tail weight−% body weight
(BW)]. All animals were weighed once a week and the
workload was adjusted according to BW variations. LZR
and OZR were placed in the swimming apparatus for
10minutes twice a week without applying a workload.
This protocol consists of a low/moderate intensity and
long training period and is effective in promoting cardio-
vascular adaptations and increases in muscle oxidative
capacity [19].

2.3. Tissue Harvesting. Twenty-four hours after the last train-
ing session, and after twelve hours of fasting, the rats were

killed by quick decapitation. The tissues and tibia were har-
vested, the heart (H) was weighed, and carefully, the left ven-
tricle (LV free wall plus septum) and right ventricle (RV)
were dissected. Epididymal and retroperitoneal fats were also
weighed and normalized by the tibial length (TL) of each ani-
mal. The tissues were frozen at −80°C until biochemical and
molecular analysis was performed.

2.4. Cardiac Morphometric Analysis. For cardiomyocyte
(CMO) diameter analysis, the LV was fixed in Tissue-Tekand
frozen in liquid nitrogen. The tissues were then fixed in
6% formaldehyde, embedded in paraffin, cut into 10μm
sections at the level of the papillary muscle in a cryostat
(−20°C), and subsequently stained with hematoxylin and
eosin for the visualization of cellular structures. Two ran-
domly selected sections from each animal were visualized
by light microscopy using an oil immersion objective with
calibrated magnification (×400). CMOs with visible nuclei
and intact cellular membranes were chosen for diameter
determination. The width of individually isolated cardio-
myocyte displayed on a viewing screen was manually
traced across the middle of the nucleus with a digitizing
pad, and the diameter was estimated using a computer-
assisted image analysis system (Quantimet 520; Cambridge
Instruments, Woburn, MA). For each animal, ~20 visual
fields were analyzed. The results were expressed as micro-
meters (μm).

The myocardial interstitial collagen volumetric fraction
(CVF) was determined using the Picrosirius red prepared
tissues, as reported previously [13]. In brief, 20 fields were
selected from sections placed in a projection microscope
(×200), and interstitial collagen was determined using a
computer-assisted image analysis system (Quantimet 520;
Cambridge Instruments). The CVF was calculated as the
sum of all connective tissue areas divided by the sum of all
muscle areas in all fields. Perivascular tissues (reparative
fibrosis) were specifically excluded from this determination.
The results were expressed as μm for area.

LV intramuscular fat was determined using oil red
staining. The tissues were cut into 7μm sections in a cryo-
stat (−20°C) and fixed in 3.7% formalin for one hour. Sub-
sequently, the tissues were washed with distilled water and
then stained with a mixture of 12ml working solution
(500mg oil red added to 100ml of aqueous 60% triethyl
phosphate [Fluka]) and 8ml of deionized water for 30
seconds. The slides were assembled with the aid of glycerol
[10% glycerol in 10mM Tris-HCl, pH 8.5]. The area
comprising intramuscular fat was determined using a
computer-assisted image analysis system (Quantimet 520;
Cambridge Instruments). The results were expressed as
% of fiber area [29, 30].

2.5. Molecular Analysis

2.5.1. mRNA and MicroRNA Quantification Using Real-Time
PCR. The relative expression of COLIAI, COLIIIAI, ANF,
α-MHC, α-actin skeletal, β-MHC, microRNA-1, micro-
RNA-29a, microRNA-29b, and microRNA-29c was analyzed
using real-time polymerase chain reactions (real-time PCR)
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as described previously [24]. Frozen heart samples (100mg)
were homogenized in Trizol (1ml), and ribonucleic acid
(RNA) was isolated according to the manufacturer’s instruc-
tions (Invitrogen Life Technologies, Strathclyde, UK). Sam-
ples were quantified using a spectrophotometer at 260nm
and checked for integrity by EtBr-agarose gel electrophoresis.
RNA was primed with 0.5 g/l oligo(dT) (12–18 bp) (Invitro-
gen Life Technologies) to generate the first strand of cDNA.
Reverse transcription (RT) was performed using SuperScript
II Reverse Transcriptase (Invitrogen Life Technologies).
Primers were designed using Primer 3 software (http://
frodo.wi.mit.edu/primer3/). DNA sequence was obtained
from GenBank, and primers were designed in separate exons
to distinguish PCR products derived from cDNA from those
derived from genomic DNA contaminants on the basis of
their size. The mRNA expression of type I/III collagen was
assessed using oligonucleotide primers as follows: for COLIA,
5′-AgA gAg CAT gAC CgA Tgg A-3′ and 5′-gAggTT gCC
AgT CTg TTg g-3′; for COLIIIA, 5′-AAg gTC CAC gAg
gTg ACA A-3′ and 5′-Agg gCC Tgg ACT ACC AAC T-3′.
Real-time quantification of the target genes was performed
with a SYBRgreen PCR Master Mix (Applied Biosystems,
PE, Foster City, CA) using an ABI PRISM 7500 Sequence
Detection System (Applied Biosystems). The expression of
cyclophilin A (5′-AAT gCT ggA CCA AAC ACA AA-3′
and 5′-CCT TCT TTC ACC TTC CCA AA-3′) was
measured as a real-time PCR internal control. An aliquot of
the real-time PCR reaction was used for 40-cycle PCR
amplification in the presence of SYBRgreen fluorescent dye,
according to the protocol provided by the manufacturer
(Applied Biosystems, PE, Foster City, CA). The α-MHC
and β-MHC mRNA expressions were assessed by
oligonucleotide primers as follows: for α-MHC, 59-CGA
GTC CCA GGT CAA CAA G-39 and 59-AGG CTC TTT
CTG CTG GAC C-39); for β-MHC, 59-CAT CCC CAA
TGA GAC GAA G-39 and 59-AGG CTC TTT CTG CTG
GAC A-39; for α-skeletal actin, sense: 5′-ACC ACA GGC
ATT GTT CTG GA-3′, antisense: 5′-TAA GGT AGT CAG
TGA GGT CC-3′; and for ANF, sense: 5′-CTT CGG GGG
TAG GAT TGA C-3′, antisense: 5′-CTT GGG ATC TTT
TGC GAT CT-3′. The expression of cyclophilin A (59-AAT
GCT GGA CCA AAC ACA AA-39 and 59-CCT TCT TTC
ACC TTC CCA AA-39) was measured as an internal
control for sample variation in real-time PCR reaction.

To accurately detect mature microRNAs, real-time PCR
quantification was performed using primers for microRNA-
1, microRNA-29a, microRNA-29b, and microRNA-29c (Life
Technologies) with the TaqMan microRNA Assay protocol
(Applied Biosystems, CA, USA). Samples were normalized
by evaluating U6 expression. Each heart sample was analyzed
in duplicate. Relative quantities of target gene andmicroRNA
expression in the LZR, OZR, LZR+TR, and OZR+TR
groups were compared after normalization using the expres-
sion values of internal controls [change in threshold cycle
(ΔCT)]. Fold change was calculated using the differences in
ΔCT values between the two samples (ΔΔCT) and the
equation 2−ΔΔCT. The results are expressed as a percentage
of the control value.

2.6. Western Blotting. The frozen hearts were thawed and
homogenized in cell lysis buffer containing 100mM Tris,
50mM NaCl, 10mM EDTA, 1% Triton X-100, and protease
and phosphatase inhibitor cocktail [1 : 100; Sigma-Aldrich,
MO, USA]. Insoluble heart tissues were removed by centrifu-
gation at 3000g, 4°C, for 10min. Samples were loaded and
subjected to SDS-PAGE in 10% polyacrylamide gels. After
electrophoresis, proteins were electrotransferred to nitrocel-
lulose membranes (Amersham Biosciences, Piscataway, NJ).
Equal loading of samples (50μg) and even transfer efficiency
were monitored with the use of 0.5% Ponceau S staining of
the blot membrane. The blot membrane was then incubated
in a blocking buffer [5% nonfat dried milk, 10mM Tris-HCl,
pH 7.6, 150mM NaCl, and 0.1% Tween 20] at room temper-
ature and then with a polyclonal antibody directed against
SERCA-2a (ab3625), PLB (ab86930), pPLBser16 (ab15000),
and NCX1 (ab2869) [1 : 1000; Abcam, Cambridge, United
Kingdom] overnight at 4°C. Primary antibody binding
was detected with the use of peroxidase-conjugated second-
ary antibodies, and enhanced chemiluminescence reagents
(Amersham Biosciences, Piscataway, NJ) and detection were
performed in a digitalizing unit (ChemiDoc; BioRad, CA,
USA). The bands were quantified by ImageJ software
(National Institute of Health, USA). GAPDH expression
levels were used to normalize the results, which were
expressed as a percentage of the control values as described
previously [24].

2.7. Statistical Analysis. Results are represented as means±
standard error of the mean (SEM). Statistical analysis was
performed using randomized two-way ANOVA. Tukey’s
post hoc test was used for individual comparisons between
means when a significant change was observed with
ANOVA. p ≤ 0 05 was considered as statistically significant.

3. Results

3.1. Adipose Tissue. We evaluated the effect of AET on body
fat content in lean and obese groups after the training proto-
col (Figures 1(b) and 1(c)). As expected, the AET normalized
epididymal fat content in the OZR+TR (0.04± 0.003 g/mm)
groups compared with the control (0.126± 0.012 g/mm) and
trained (0.022± 0.012 g/mm) LZR groups (Figure 1(b)). The
epididymal fat content (Figure 1(b)) was decreased in
OZR+TR (0.04± 0.007 g/mm) compared with OZR (0.58±
0.043 g/mm). In addition, AET was effective in reducing
the epididymal fat content in LZR+TR (0.022± 0.006 g/
mm) compared with the LZR group (0.126± 0.012 g/mm)
(Figure 1(b)). The retroperitoneal fat content in the control
OZR group was higher (0.94± 0.21 g/mm) than in the
control LZR group (0.031± 0.25 g/mm; p < 0 0004) and
LZR+TR (0.1± 0.007 g/mm; p < 0 0004) (Figure 1(c)).

3.2. Cardiac Hypertrophy. A previous study from our group
showed pathological CH in OZR observed by echocardiogra-
phy and LV mass/TL ratio [1]. Corroborating these data,
we showed that the HW/TL ratio (mg/mm) was increased
29% in the OZR group compared with the LZR group,
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and the AET training decreased (8%) in the OZR+TR
group (Figure 2(c)).

We assessed the LV intramuscular fat content and
CMO diameter by histological analysis. LV intramuscular
fat was increased in OZR compared with the trained groups
(LZR+TR and OZR+TR) and decreased in LZR+TR com-
pared with the LZR group (Figure 2(b)). Curiously, there
were no significant differences in CMO diameter among the
groups (LZR 13.8± 2.7μm; LZR+TR+17.7± 2.1μm OZR
17.1± 0.9μm; OZR+TR 18.2± 1.1μm) (Figure 2(a)). How-
ever, AET was effective in counteracting obesity-induced
cardiac remodeling.

3.3. Molecular Markers of Pathological Cardiac Hypertrophy.
Pathological cardiac remodeling induces the expression of
genes commonly expressed only in the fetal period such
ANF, skeletal α-actin, and β-MHC (Figure 3). The results
of this study showed that obesity associated with
increased β-MHC was increased in the OZR group com-
pared with LZR, LZR+TR, and OZR+TR (Figure 3(b)).
Similarly, ANF gene expression and swimming training
were able to counteract it when compared with OZR+TR
(Figure 3(c)). The results of this study showed that obesity

and/or swimming training did not modify α-MHC gene
expression (Figure 3(a)).

To confirm the involvement of obesity-regulated
microRNAs in pathological CH, we analyzed the cardiac
microRNA-29 family (microRNA-29a, microRNA-29b and
microRNA-29c), whose expression affects collagen content.
MicroRNA-29c expression was decreased in the OZR group
compared with LZR, LZR+TR, and OZR+TR. AET resulted
in microRNA-29c expression in the OZR+TR group
approaching control levels (LZR: 100± 16.2%; LZR+TR:
92± 6.1%; OZR: 43± 4.7%; and OZR+TR: 118± 24.2%)
(Figure 4(c)). The LV interstitial collagen volumetric fraction
(CVF) was inversely proportional to the microRNA-29c
expression level. These results show that CVF was increased
in the OZR group compared with the LZR group. Interest-
ingly, AET counteracted cardiac fibrosis in obesity, normaliz-
ing the CVF in the OZR-TR group (Figure 4(b)). However,
gene expression of collagen IA and collagen IIIA did not
change among the groups (Figures 4(c) and 4(d)).

3.4. Cardiac MicroRNA-1 and Calcium Signaling Proteins.
MicroRNA-1 targets the NCX1 gene that is one of the
most important cellular mechanisms for Ca2+ removal.
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Figure 1: Effects of AET and obesity on epidydimal and retroperionetal fat. Schematic panel of study design (a). Content of retroperitoneal
(b) and epidydimal fat (c) in LZR (control lean group), LZR+TR (trained lean group), OZR (control obese group), and OZR+TR (trained
obese group). †p < 0 01 versus LZR and LZR+TR, ∗p < 0 05 versus OZR+TR, and &p < 0 001 versus LZR+TR.
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MicroRNA-1 expression was increased in the OZR group
compared with LZR, LZR+TR, and OZR+TR. Interestingly,
AET was able to normalize microRNA-1 levels in the
OZR+TR group. In addition, AET reduced microRNA-1
expression in LZR+TR compared with the LZR and OZR

groups (Figure 5(a)). In parallel with the microRNA-1
expression, NCX1 expression was significantly reduced in
the OZR group compared with LZR, LZR+TR, and
OZR+TR. However, AET restored NCX1 expression in the
OZR-TR group toward control levels (Figure 5(b)). The
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Figure 2: Effects of AET and obesity on cardiac intramuscular fat content and cardiomyocyte diameter. Cardiomyocyte (CMO) diameter (a).
Representative histological images stained with hematoxylin and eosin (b). Cardiac intramuscular fat contents (c) were evaluated by
histological analysis in LZR (lean group control), LZR+TR (lean trained group), OZR (obese group control), and OZR+TR (obese
trained group). (d) Representative histological images stained with oil red for intramuscular fat. Arrows indicate fat red staining. (e) Total
heart weight corrected by tibia length in LZR (lean group control), LZR +TR (lean trained group), OZR (obese group control), and
OZR+TR (obese trained group). †p < 0 005 versus LZR+TR, &p < 0 05 versus OZR+TR ∗p < 0 0001 versus LZR and LZR+TR, and
#p < 0 001 versus LZR and LZR+TR.
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representative protein level by western blot is shown in
Figure 5(c). These results show that NCX1 expression in
obesity-induced pathological CR could be possibly reduced
via increasing microRNA-1 expression by exercise training.

Other components of the calcium signaling pathway were
also evaluated. Ryanodine (RYR2) gene expression increased
in both groups (OZR+TR: 57± 5%; LZR+TR: 47± 19%)
compared to the control group LZR (100± 9%) and also
when compared with OZR (Figure 6). Figure 7(a) shows that
SERCA-2a protein levels were decreased in the LZR+TR
group compared with the LZR group; there were no signifi-
cant differences in PLB and pPLBser16 protein levels among
the groups (Figures 7(b) and 7(c)). The representative pro-
tein level by western blot is shown in Figure 7(d).

4. Discussion

Obesity is a chronic disease that results from a convergence
of genetic, psychological, and social factors. It is a risk factor
for the development of cancer, diabetes, and cardiovascular
diseases that induce pathological CH [2, 4, 29, 30]. This study
evaluated molecular mechanisms of pathological cardiac
remodeling induced by obesity and investigated whether

AET reverses and/or prevents cardiac remodeling. Our
results show that obesity-induced pathological cardiac
remodeling leads to an increase in cardiac pathological
hypertrophy markers and downregulation of microRNA-
29c expression, which can be associated with the increase in
the LV collagen volumetric fraction. In addition, obesity
upregulated microRNA-1, which targets NCX1. NCX1 was
decreased in the OZR group. In contrast, AET restored the
pathological expression of microRNA-1 and microRNA-
29c and their target genes, which likely counteracted the
pathological cardiac remodeling and cardiac dysfunction
in obesity.

As shown in a previous study from our group, AET was
efficient in producing cardiovascular changes in OZR, such
as a reduction in heart rate due to vagal hypertonia in the
trained groups [4]. Barretti et al. [4] demonstrated that
obesity leads to increased LV mass in OZR and that
AET prevents this increase. Soci et al. [24] demonstrated
that different intensities of swimming training lead to dif-
ferent magnitudes in the expression of microRNA-29c
levels. Animals trained on the same protocol as the cur-
rent study showed that the microRNA-29c levels decreased
by 52% and that COLIAI and COLIIIAI expressions
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Figure 3: Effects of AET and obesity on α-MHC and β-MHC (alpha/beta-myosin heavy chain) (a, b), ANF (atrial natriuretic factor) (c), and
α-actin skeletal (d) ratio in rat ventricles. Data are reported as means of 6 and SEMs of 5 animals in each group. ∗p < 0 05 versus LZR
and #p < 0 03 versus LZR, LZR+TR, and OZR+TR.
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Figure 4: Effects of AET and obesity on cardiac microRNA-29 family expression, interstitial collagen volumetric fraction (CVF), and collagen
expression. Cardiac microRNA-29a, microRNA-29b, and microRNA-29c expressions were evaluated by real-time PCR (a–c). LV interstitial
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decreased by 27% and 38%, respectively. Animals trained
on a higher intensity protocol presented an increase of
123% in microRNA-29c expression and decreases of 33%
and 48% for COLIAI and COLIIIAI, respectively [24].

In the present study, as expected, AET was effective
in decreasing epididymal and retroperitoneal fat. The
OZR+TR group had a lower body fat content than the

OZR group, as also shown by Disanzo and You who found
that obesity led to an increase in endothelial growth factor
A (VEGF-A) that is responsible for stimulating angiogenesis
in adipose tissue counteracting glycolytic metabolism in this
tissue and contributing to their decrease by exercise [31].

The OZR group presented pathological CH [4]. We
quantified the CMO diameter; however, there were no
differences among the groups, which suggest that the
increase in cardiac mass in the OZR group is due to increased
LV intramuscular fat and/or cardiac collagen. Moreover,
to corroborate with the pathological cardiac hypertrophy
phenotype, obesity induced an increase of fetal gene expres-
sions, such as ANF and β-MHC.

Here, we showed that LV intramuscular fat was higher in
the OZR group compared with LZR, LZR+TR, and OZR+
TR. In fact, the reduced cardiac fat in the OZR-TR group
caused by AET can be explained as part of the 13% reduction
in LV mass or even the 7% reduction in total heart weight
compared with that in OZR. Some studies suggest that this
increased fat content in the myocardium leads to heart
dysfunction and predisposition to chronic diseases [32, 33].
These findings reinforce the importance of AET as a preven-
tive tool against cardiovascular pathologies.

The microRNA-29 family has been described to nega-
tively regulate collagen content and to be highly responsive
to AET [22, 24, 25]. Studies have shown that AET increases
microRNA-29 expression in the heart and consequently
decreases collagen expression and protein levels [24, 25]. In
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the present study, obesity decreased the cardiac microRNA-
29c expression in OZR by 47% compared with LZR, which
induced an increase in the cardiac CVF. Thus, AET was
able to normalize cardiac microRNA-29c expression and
CVF in OZR+TR, and these results suggest that AET
has a cardioprotective effect against pathological CH as
shown in Figure 8.

In our previous study, although there was no statistical
difference (p = 0 07), a 25% reduced time E/A wave ratio
was found when OZR was compared with untrained LZR
[4], suggesting damage in the contractile myocardium. In
the present study, we demonstrated that the cardiac collagen
content in OZR could induce impaired compliance. Dong
et al. [12] showed reduced compliance in isolated CMO from
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obese mice. In our study, we investigated molecular mecha-
nisms involved in diastolic dysfunction induced by obesity.
We evaluated the levels of calcium transporter proteins
involved in contractile mechanisms. MicroRNA-1 targets
the NCX1 protein and is an important regulator of calcium
mechanisms in the heart [26]. MicroRNA-1 was significantly
increased in OZR compared with LZR, LZR+TR, and
OZR+TR, in contrast to previous studies that have shown
a reduction in microRNA-1 in pathological cardiac remodel-
ing caused by others pathologies [22, 24, 26]. Thus, we
hypothesized that cardiac remodeling induced by obesity is
a milder compensatory response than that found in other
pathologies, such as CH due to ischemic diseases [22].
Interestingly, AET caused downregulation of microRNA-1
expression in OZR+TR compared with OZR, showing that
it could be an important tool against the pathological pheno-
type caused by obesity. AET was also able to reduce the
expression of microRNA-1 in LZR+TR compared with
LZR, data that reinforces the profile observed in the previous
AET studies [24].

The NCX1 protein, which is the direct target of micro-
RNA-1, was downregulated in OZR compared with the other
groups (LZR, LZR+TR, and OZR+TR); this data indicates
a possible antagonism between NCX1 and microRNA-1
expressions [34]. In contrast, AET was effective in restoring
NCX1 levels in OZR+TR compared with OZR.

In the present study, there was an increase in the RYR2
receptor expression in both trained groups (LZR+TR and
OZR+TR) compared with their controls (LZR and OZR).
Our findings were different from those found in a study with
rats submitted to AET and food restriction, where no signif-
icant change in RYR2 receptor expression was found [35, 36].
This could be because the swimming training was most
effective to promote this adaptation in obesity phenotype.
Increased RYR2 receptor expression improves the release
of sarcoplasmic Ca2+, which could lead improvements in
cardiac contractility [20, 34–36].

We also observed that SERCA-2a expression was
decreased in LZR+TR compared with LZR and a tendency
in OZR+TR compared with OZR. While SERCA-2a expres-
sion decreased, the RYR2 expression was increased that
could be causing an imbalance in the sarcoplasmic Ca2+ con-
tent. However, it is known that SERCA-2a function is
dependent on the phosphorylation of the PLB protein [11]
and there were no differences in total PLB and pPLBser16

expressions. Thus, NCX1 could be contributing to maintain
intracellular normal Ca2+ concentration, at least in OZR+
TR compared with OZR, in these trained animal models.
These findings and the results concerning the upregulation
of microRNA-1 can be associated with the downregulation
of NCX1 in OZR which suggest that cardiac contractile
dysfunction was prevented in OZR+TR improving these
mechanisms, thus improving the cardiac function [4].

Our study demonstrates for the first time that AET was
efficient in restoring the microRNA-1 and microRNA-29c
to nonpathological levels in obesity, as well as its targets
NCX1 and collagen, respectively.

Despite the strong association between microRNAs and
their target genes, we do not demonstrate a direct proof

of concept between them. However, the genes were vali-
dated to these microRNAs by other authors [34, 37]. Thus,
further studies are needed to assess whether modulation of
the microRNA-1 and microRNA-29c in vivo in the obesity
phenotype would play a key role in preventing pathologic
cardiac remodeling.

In conclusion, obesity downregulated microRNA-29c in
OZR possibly leading to increased cardiac collagen content.
Conversely, microRNA-1 levels were upregulated, and their
target gene NCX1 was decreased in OZR, maybe causing
diastolic dysfunction in these animals as we showed before
[4]. Figure 8 shows a schematic representation of these data.
One implication of our findings is that AET protects the
heart against an aberrant increase of extracellular matrix
components and prevents calcium-signaling pathway dys-
function in the cardiac remodeling phenotype caused by
obesity through microRNA modulation.
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