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Abstract

A number of methods have been developed to infer differential rates of species diversification through time and among
clades using time-calibrated phylogenetic trees. However, we lack a general framework that can delineate and quantify
heterogeneous mixtures of dynamic processes within single phylogenies. I developed a method that can identify arbitrary
numbers of time-varying diversification processes on phylogenies without specifying their locations in advance. The
method uses reversible-jump Markov Chain Monte Carlo to move between model subspaces that vary in the number of
distinct diversification regimes. The model assumes that changes in evolutionary regimes occur across the branches of
phylogenetic trees under a compound Poisson process and explicitly accounts for rate variation through time and among
lineages. Using simulated datasets, I demonstrate that the method can be used to quantify complex mixtures of time-
dependent, diversity-dependent, and constant-rate diversification processes. I compared the performance of the method to
the MEDUSA model of rate variation among lineages. As an empirical example, I analyzed the history of speciation and
extinction during the radiation of modern whales. The method described here will greatly facilitate the exploration of
macroevolutionary dynamics across large phylogenetic trees, which may have been shaped by heterogeneous mixtures of
distinct evolutionary processes.
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Introduction

Perhaps the most general feature of biological diversity on Earth

is the extent to which it varies - either through space, through

time, or among different kinds of organisms. Biologists have long

been fascinated by the observation that some groups of organisms

contain far more species than other groups. For example, within

vertebrates, lineages such as tetrapods (22000+ species), therian

mammals (5000+ species), and teleosts (30000+ species) are several

orders of magnitude more diverse than their respective sister

clades (lungfishes, 6 species; monotremes, 5 species; holosteian

fishes, ,10 species). This phylogenetic variation in species richness

is mirrored by analogous variation in diversity through time.

Paleontological evidence indicates that species richness has

undergone dramatic changes during the past 550 million years

[1,2]. Finally, contemporary species richness varies dramatically

among geographic and climatic regions [3,4]. At least in part, the

causes of phylogenetic, temporal, and spatial variation in species

richness are thought to reside in the evolutionary processes of

speciation and extinction. Consequently, there has been great

interest in studying historical patterns of species diversification

through time, towards understanding how and why speciation and

extinction rates might vary through time, through space, and

among clades [5,6,7,8,9].

The fossil record has provided insight into the temporal

dynamics of species diversification [10,11], but analyses have

generally been restricted to groups with exceptional fossil records

and/or to relatively coarse temporal and phylogenetic scales.

Because of the difficulties in applying paleontological approaches

to many groups of organisms that lack adequate fossil records,

there is great interest in extracting information about macroevo-

lutionary dynamics from time-calibrated phylogenetic trees of

extant species only [8,12]. The increase in the availability of such

phylogenies has helped catalyze a surge of methodological

[13,14,15] and meta-analyses [16,17,18,19] on the temporal

dynamics of speciation and extinction through time. At the same

time, a range of new approaches have been developed to assess the

extent to which rates of species diversification vary among lineages

[20,21] or in association with character states [22,23,24,25].

To date, few macroevolutionary studies have simultaneously

accounted for rate variation through time and among lineages

[6,13,26]. Increasing evidence suggests that failing to accommo-

date rate variation through time and among lineages can lead to

profoundly biased parameter estimation [27] and conceptually

flawed interpretations of the factors that regulate species richness

within clades or regions [26,28].

In this article, I introduce a new framework for studying

patterns of rate variation through time and among lineages using

time-calibrated phylogenies of extant species. The approach is

premised on the idea that phylogenetic trees are frequently shaped

by heterogeneous mixtures of distinct processes. For example,

some phylogenies may reflect mixtures of both diversity-dependent

and constant-rate diversification processes (Figure 1). There is

already considerable evidence that many empirical phylogenies

have been shaped by multiple distinct evolutionary processes
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Figure 1. Example of tree simulated under mixture of three distinct evolutionary processes. (A) Clade diversification under constant-rate
‘‘background’’ diversification process with l= 0.032 and m= 0. (B) Shift to new adaptive zone with subsequent diversity-dependent regulation of
speciation and diversity-independent extinction (blue branches; l0 = 0.395; K = 66; m= 0.041). (C) Another lineage shifts to diversity-dependent
speciation regime (red branches; l0 = 0.21; K = 97; m= 0.012). Total tree depth is 100 time units. Despite undergoing two distinct diversity-dependent
slowdowns in the rate of speciation, the overall gamma statistic [63] for the tree is positive (c= 2.51) and provides no evidence for changes in the rate
of speciation through time. Note that a tree with three distinct processes contains two distinct transitions between processes.
doi:10.1371/journal.pone.0089543.g001
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[13,29], and challenges of modeling such data are expected to

increase with phylogenetic tree size.

My general approach assumes that shifts between macroevolu-

tionary regimes occur across the branches of a phylogenetic tree

under a compound Poisson process. This framework has been

used previously to model among-lineage variation in rates of

molecular evolution [30]. The number of such transitions between

distinct processes is assumed to follow a Poisson distribution.

Rather than assume a fixed number of distinct processes on a

given phylogenetic tree, I use reversible jump Markov Chain

Monte Carlo [31] (hereafter, rjMCMC) to automatically explore

the universe of models that differ in the number of distinct

evolutionary regimes. The method thus enables exploration of a

vast state space of possible models to explain a given phylogenetic

diversification pattern.

The method described here differs from previous methods in

several key respects. First, the method does not assume that rates

of speciation and extinction are constant through time within

clades, thus relaxing the assumption of time-homogeneous

diversification used in most previous multi-model approaches

[20,32]. Second, the location and number of distinct evolutionary

processes (‘‘regimes’’) represent random quantities that are

themselves estimated from the data. In addition, by adopting a

Bayesian approach, we can algorithmically explore a greater

number of candidate models than is possible with incremental

(e.g., stepwise) information-theoretic approaches [20]. Because

rjMCMC samples diversification models in proportion to their

posterior probability [31,33], model selection emerges automati-

cally from the analysis. Finally, the method provides marginal

distributions of speciation and extinction rates for every branch in

a phylogenetic tree.

Materials and Methods

Compound Poisson Process Model of Diversification Rate
Variation

The model assumes that phylogenetic trees are shaped by a

countable set of distinct and potentially dynamic evolutionary

processes of speciation and extinction. Transitions between

processes, or ‘‘events’’, are assumed to occur across the branches

of the phylogeny under a compound Poisson process [30]. Let ji

denote the mapping of the i’th transition to a specific location on

the tree; thus, j denotes a unique location on a specific branch of

the tree. Nodes and branches descended from a mapped transition

ji inherit the evolutionary process, denoted by Wi, that begins at

point ji. The process Wi terminates at terminal branches, or at the

next downstream transition (Figure 1). Thus, the occurrence of a

transition defines a connected subgraph of adjacent nodes, but

does not necessarily include all of the descendent nodes

downstream of a particular transition.

Any tree is necessarily governed by at least one process that

begins at the root node and the number of additional transitions is

a Poisson-distributed random variable with rate parameter L. In

the MCMC implementation of the model described below, new

transitions can be added to the tree, and existing transitions can be

moved or deleted from the tree. The addition of a transition results

in a new evolutionary process that is decoupled from the parent

process. For example, consider a phylogeny with dynamics

governed by just a single process, WR. If a transition occurs at

position ji, then all lineages downstream from point ji are

governed by a new evolutionary process, Wi. Formally, each

possible count of transitions defines a diversification model, and we

denote a model with k distinct transitions by Mk. The addition of a

process to a tree with k transitions thus entails a jump from model

Mk to Mk+1. There is no upper bound on the number of

transitions, as multiple transitions can occur on a given branch.

The minimum model, with a single process, corresponds to k = 0

and contains zero transitions.

I assume that each process W represents a distinct time-varying

process of speciation (l) and a constant background rate of

extinction (m). We used an exponential change function to model

variation in speciation rates through time within a particular

process, such that

l tið Þ~l0,i exp zitið Þ ð1Þ

where l is the rate of speciation for a process at time ti relative to

the start of the process and where l0,i and zi represent the initial

speciation rate and rate change parameter for the i’th transition.

For notational clarity, parameters associated with the root process

are denoted with zero subscripts: for example, l0,0 and z0

correspond to the initial speciation rate and rate-change param-

eter for the process associated with the root of the tree. This model

is equivalent to the SPVAR model from Rabosky and Lovette

[14]. The exponential change function is a natural choice for

modeling both time-varying and diversity-dependent speciation,

because an exponential change in speciation with respect to time

closely approximates a linear change in speciation with respect to

diversity [34]. The full model thus includes the possibility that a

single time-varying diversification process describes the entire

phylogeny [14] as well as the possibility that many independent

time-varying processes govern evolutionary dynamics across the

tree.

I implemented the model in a Bayesian framework. Bayesian

approaches have already been used effectively to model single

processes on phylogenetic trees [35,36], but in this case, the

number of distinct processes is itself a random quantity. I

constructed a transdimensional Markov chain that could move

between models containing different numbers of processes. This is

known as ‘‘reversible jump’’ Markov Chain Monte Carlo

(rjMCMC), as it involves probabilistic ‘‘jumps’’ between model

subspaces of different dimensionality [31]. An attractive feature of

this approach is that the Markov chain samples diversification

models in proportion to their posterior probability. Thus, the

relative probabilities of diversification models with (0, 1, 2, 3…. k)

distinct processes can be computed immediately by tabulating the

relative frequencies of those models in the MCMC output. Several

recent studies have used rjMCMC to study variation in rates of

phenotypic evolution across phylogenetic trees [37,38].

Bayesian Implementation
The full model contains parameters for the overall rate at which

transitions occur (L), as well as location (j) and diversification

parameters (l, z, m) for each transition. I simulated a Markov

process that (i) permitted incremental transitions to new diversi-

fication models (Mk R Mk+1 or Mk R Mk-1), and (ii) updates to

parameters of the current models. Note that my usage of the word

model in this context can refer to either the overall compound

Poisson process model, or to submodels with distinct numbers of

processes (e.g., M1, M2, … MN). The Markov chain is updated

using the following moves: (1) a transition is added to the tree, (2) a

transition is deleted from the tree, (3) the position of an existing

transition (ji) is updated, (4) the rate at which transitions occur is

updated (L), (5) the initial speciation rate for the i’th transition is

changed (l0, i), (6) the rate-change parameter for the i’th transition

(zi) is updated, and (7) the extinction rate for the i’th transition is

changed (mi).

Modeling Macroevolutionary Mixtures on Phylogenies

PLOS ONE | www.plosone.org 3 February 2014 | Volume 9 | Issue 2 | e89543



For within-model moves that do not involve changes in the

dimensionality of the full model, acceptance probabilities follow

the standard Metropolis-Hastings formulation [39,40], or

min 1,
f h0ð Þ
f hð Þ

p h0ð Þ
p hð Þ

q hDh0ð Þ
q h0Dhð Þ

� �
ð2Þ

where h and h’ are parameter vectors corresponding to current

and proposed states, f(N ) and p(N ) are the corresponding

likelihood and prior densities, and q(h’ | h) is the relative

probability of proposing a move to parameter vector h’ given that

the current state is h.

The acceptance probability for moves that transition between

models requires a more general formulation [31,41], of which

standard Metropolis-Hastings is a special case. In the present

framework, we propose to jump from some model Mk with

parameter vector h to a new model Mk+1 with parameter vectors

h’ and y, where h denotes parameters that are common to both

models and y denotes parameters that occur in the proposed

model but not the current model. To move between models, we

generate a random vector n from some known density, q(n). We

Figure 2. BAMM analysis of example tree (Figure 1). Example tree was simulated under three distinct processes (one constant rate and two
diversity dependent processes; two transitions in total). The tree was analyzed under (i) the full multi-process BAMM model with time-variable
speciation; (ii) a constrained multi-process BAMM with time-constant speciation; and (iii) a fully constrained 1-process constant-rate birth-death
model. (A) Log-likelihoods for thinned MCMC chains for the constant rate birth-death process (bottom), the time-constant multi-process model
(middle), and the full BAMM model with time-varying speciation (top). (B) Numbers of transitions during rjMCMC sampling when model is
constrained to time-constant speciation rates; sidebar gives frequency distribution of sampled states. (C) Numbers of transitions under full BAMM
model with time-variable speciation processes. Black sidebar denotes true number of transitions in generating model. The true number of transitions
was estimated correctly only when the assumption of time-constant rates was relaxed.
doi:10.1371/journal.pone.0089543.g002

Figure 3. BAMM analyses of constant-rate phylogenies and prior on Poisson rate parameter (c). Histograms in (A–C) display the
frequency distribution of the estimated number of processes in the model with the maximum a posteriori (MAP) probability as a function of three
different priors on the Poisson rate parameter L (c= 1; c= 5; c= 10). This ‘‘best-fit’’ model was simply the model that was visited most often during
the MCMC simulation of the posterior. (D–F) show the distribution of posterior probabilities for the true model (M0). With a relatively flat prior on
models (c= 10), the MAP model is biased towards a model with 2 processes ( = 1 transition). However, the posterior probability of the true model M0

remains substantial (F), and M0 nonetheless had a posterior probability greater than 0.10 for the vast majority of simulations. Results are based on 500
simulated phylogenies per c scenario.
doi:10.1371/journal.pone.0089543.g003
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then map the current state and the random vector to the new state

(h’, y) through use of a mapping function g(h, n). The random

vector n has a number of elements equal to the number of

parameters in y, thus satisfying the dimension-matching require-

ment for transdimensional moves. The acceptance probability for

this move is given by

min 1,
f h0,yð Þ

f hð Þ
p h0,yð Þ

p hð Þ
p Mkz1ð Þ

p Mkð Þ
q Mk DMkz1ð Þq hDh0ð Þ

q Mkz1 DMkð Þq h0Dhð Þq nð Þ D
Lg h,nð Þ
L h,nð Þ D

� �
ð3Þ

where q(Mk | Mk+1) denotes the probability of proposing a move

from model Mk+1 to model Mk, p(Mk) is the prior probability of

model Mk, and the last term is the determinant of the Jacobian

matrix for the transition from the vector (h, n) to (h’, y) via the

mapping function g(N). The corresponding reverse move is

deterministic and the acceptance probability is given by the

inverse of the numerator in equation 3, with the exception of the

case where k equals 0 or 1 (discussed below).

In the model described here, an increase from Mk to Mk+1

involves the addition of four new parameters to the process:

y = (jk+1, l0,k+1, zk+1, mk+1). During model-jumping proposals, all

parameters h are mapped to h’ via the identity function, such that

h’ = h. The mapping from n to y, or g(n), was also defined using

simple identity relationships:

Figure 4. Frequency distribution of evolutionary rate regimes
estimated using BAMM, compared with true number of
processes. For each simulation, the estimated number of processes
was simply the model that was most frequently sampled during MCMC
simulation of the posterior distribution. Black bars denote true number
of processes in generating model. For example, 84% of trees simulated
under a single-shift exponential change model (exp2; top panel; two
processes in the generating model) were correctly inferred to have
been generated under a two-process model. For a diversity-dependent
model with five processes (DD5), power to detect the true number of
processes is lower, although though most analyses (80.4%) recovered
either 4 or 5 process models as the MAP model. Results for each model
are based on 500 simulated phylogenies and used a conservative c= 1
prior on the expected number of non-root processes (see Figure 3).
doi:10.1371/journal.pone.0089543.g004

Figure 5. BAMM estimates of speciation and extinction rates
for phylogenies simulated under constant-rate birth-death
process. (A) Relationship between speciation rate in generating model
and reconstructed mean rate across the tree under BAMM. Solid black
line: identity line, expected if lTRUE =lESTIMATED. Solid gray line: fitted
OLS regression to estimates (black points) obtained using full BAMM
model (multiple processes with time-variable speciation rates). (B)
Corresponding extinction rate estimates for same set of trees.
doi:10.1371/journal.pone.0089543.g005
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jkz1~v1

l0,kz1~v2

zkz1~v3

mkz1~v4

ð4Þ

Variables n1, n2, n2, and n3 were sampled from the correspond-

ing prior distributions for j, l0, z, and m. The Jacobian term

reduces to the identity matrix and has a determinant of 1.

Under the compound Poisson process, the overall (whole-tree)

rate at which transitions occur under the model is L. The prior

ratio for models Mk+1 to Mk, given L, is simply the ratio of Poisson

densities with k+1 and k transitions, or

p Mkz1DLð Þ
p Mk DLð Þ ~

Lð Þkz2
e{L
.

kz1ð Þ!
Lð Þkz1

e{L
.

k!

~
L

kz1
ð5Þ

Figure 6. Precision and bias of BAMM in the estimation of branch-specific rates of speciation. Phylogenies were simulated under 5
distinct evolutionary scenarios. For each simulated phylogeny, I reconstructed branch-specific speciation rates using BAMM and modeled these as a
function of the true branch rates from the generating model. Frequency distributions of the estimated slope of this relationship are shown in the left
column for each simulation scenario. Center column denotes corresponding r2 values from the same OLS regressions. Right column is distribution of
mean relative rate differences (RRD) for each scenario. A value of 1 implies that, on average, branch-specific speciation estimates are unbiased; a value
of 0.5 would imply that branch-specific estimates are, on average, equal to 50% of the true value. Results for each simulation scenario are based on
500 simulated phylogenies (thus giving 500 slopes, r2 values, and RRD values for each simulation scenario).
doi:10.1371/journal.pone.0089543.g006

Table 1. Relationship between branch-specific BAMM
estimates of extinction and true rates in the simulation model.

Model processes slope a r2 PE b

Exponential change (exp2) 2 0.76 0.59 1.27

Diversity-dependent (DD2) 2 0.81 0.16 1.85

Diversity-dependent (DD3) 3 0.75 0.11 1.68

Diversity-dependent (DD4) 4 0.81 0.13 1.67

Diversity-dependent (DD5) 5 0.82 0.10 1.66

aSlope and r2 denote the estimated slope and variance explained by the
relationship between true and estimated extinction rates for 500 trees
simulated under each model.
bPE is the mean proportional error across all simulations under a given model.
doi:10.1371/journal.pone.0089543.t001
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To compute the proposal probability q(Mk | Mk+1), let dk+1

represent the probability of making a move that deletes one of k
+1 transitions on the tree, and let bk represent the probability of

adding a transition when there are currently k transitions on the

tree. The probabilities dk and bk are typically equal to 0.5, since

addition and deletion moves are equiprobable for most values of k.

However, when the tree includes just a single process and no

transitions (k = 0), the relative probability of adding a transition is

equal to 1.0, as the root process cannot be deleted. In this case,

d1 = 0 and b1 = 1, because only additions of transitions (and not

deletions) can be proposed. This leads to an asymmetrical proposal

ratios for adding transitions (when k = 0) and for deleting

transitions (when k = 1). When k = 0, the ratio d2/b1 is equal to

0.5. When there are two processes on the tree (k = 1), the proposal

ratio is asymmetrical and bk-1/dk is equal to 2.0. This compensates

for the excess of gain proposals that occur when there is just a

single process on the tree. Otherwise, q(Mk+1 | Mk) = q(Mk |

Mk+1) = 1.

Because elements of v are sampled from prior distributions for j,

l0, z, and m, the prior on y in the numerator of equation 3 is equal

to the density q(n) in the denominator, as in [30]. The acceptance

probability for the addition of a transition is thus a function of the

likelihood ratio, the prior ratio for models Mk+1 and Mk, and the

proposal ratio for the models, or

min 1,L
LTdkz1

kz1ð Þbk

� �
ð6Þ

where L is the likelihood ratio of current and proposed states.

The acceptance probability for a move that deletes one of k

transitions from the tree involves inverting the ratio term from

equation (6) and modifying subscripts to reflect the fact that we are

proposing a move to a state with k–1 transitions. The proposal

ratio becomes bk-1/dk, leading to an overall acceptance probability

of

min 1,L
kbk{1

LTdk

� �
ð7Þ

The positions of transitions were updated using global and local

moves. A global move entailed sampling a new map location j
from tree and allowed transitions to shift to any point on the tree

with uniform probability. A local move involved shifting the

position of a transition by a small random quantity that was

sampled from a uniform distribution. I fixed the ratio of

global:local proposals at 1:10 for all analyses described here.

The acceptance probability for a move that changes the position of

a transition is equal to min(1, L).

To update any of the zero-bounded rate parameters in the

model (L, li, mi), I used a proportional shrinking-expanding

proposal [42], such that

r0~reg U{0:5ð Þ ð8Þ

where r is the current value of the rate parameter, U is a random

variable sampled from a uniform (0, 1) distribution, and g is a

tuning parameter. The acceptance probability of a move that

updates such a rate parameter is

min 1,Leg U{0:5ð Þ
� �

ð9Þ

Finally, I used a sliding window proposal to update the value of the

rate change parameter zi. Here, a random variable is sampled

from a uniform (2d, d) distribution and added to the current value

of the parameter; d is a tuning parameter that can be modified to

increase the efficiency of the MCMC sampling. The proposal ratio

for the sliding window proposal is 1.0, and the acceptance

probability is min(1, L).

Figure 7. Frequency distribution of evolutionary rate regimes
estimated using MEDUSA, compared with true number of
processes. Phylogenies were simulated under 5 distinct evolutionary
scenarios. For each simulation, the number of distinct rate partitions
was estimated using the stepwise AICc algorithm as implemented in
MEDUSA. Black bars denote true number of processes in generating
model. MEDUSA consistently underestimates the true number of
processes in simulated datasets when rates of speciation vary through
time. Comparable results for BAMM using the same set of simulated
datasets are shown in Figure 4. A total of 500 simulated datasets were
analyzed per diversification scenario.
doi:10.1371/journal.pone.0089543.g007
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I placed a uniform (0, T) prior density on the location of

transitions, assuming simply that all positions on the tree are

equiprobable. Thus, during the addition of a new transition, we

sample a new map location at random from (0, T). I placed

relatively flat exponential priors on l and m and a normal

(mean = 0; variance = 0.05) prior on z; the latter choice was

motivated by the fact that z = 0 corresponds to a constant-

speciation diversification process (equation 1). I placed an

exponential prior on L, the parameter of the Poisson distribution

that serves as a prior on the number of transitions on the tree.

Larger values for the rate parameter of this exponential

distribution imply a greater number of transitions on the tree. I

denote this exponential prior on the number of transitions by c.

Likelihoods were computed on branches using a discretization

of the constant-rate birth death model that enabled us to

approximate time-dependent and diversity-dependent rate varia-

tion. Following the notation from Maddison et al. [23], let D(t)

represent the probability that some lineage at time t evolves into a

clade identical to the observed descendant clade, and let E(t)

represent the probability that the lineage goes extinct before the

present. Following [43], let tN be the initial time for such an

interval, in units of time before the present, and let t be some

earlier time (closer to the root), such that t.tN .0. It is

straightforward to write down the change in D and E as a function

of time, such that

dD

dt
~{ lzmð ÞD tð Þ{2lD tð ÞE tð Þ ð10Þ

and

dE

dt
~m{ lzmð ÞE tð ÞzlE tð Þ2 ð11Þ

Let E0 and D0 denote the initial values of the speciation and

extinction probability for a given interval Dt over which E(t) and

D(t) must be computed. The analytical solution to equation (11),

given E0, is

E tð Þ~1{
1{E0ð Þ l{mð Þ

1{E0ð Þl{e{ l{mð Þt m{lE0ð Þ ð12Þ

which is identical to equation (12a) from FitzJohn et al. (2009)

under the substitution E0 = 1–f, where f is the sampling fraction of

the phylogeny. FitzJohn et al. [43] demonstrated how the birth-

death model could be extended to account for incomplete taxon

sampling (via the sampling fraction f), but their results allow the

calculation of probabilities along any segment of a branch of a

phylogenetic tree, provided that E0 and D0 are available for the

Figure 8. Precision and bias of MEDUSA in the estimation of branch-specific rates of speciation. For each simulated phylogeny, MEDUSA
was used to estimate the number, location, and parameters of diversification rate shifts. The resulting branch-specific rates of speciation were
compared with the true branch rates from the generating model. Results are based on the same simulated datasets analyzed with BAMM and can be
directly compared to those shown in Figure 6. Branch-specific speciation rates estimated with MEDUSA show little correspondence with true rates
when rates vary through time, at least in comparison to rates estimated with BAMM.
doi:10.1371/journal.pone.0089543.g008
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beginning of the interval over which the probabilities are to be

computed. Equation (12) can be substituted into equation (10), and

the resulting expression simplifies to

D tð Þ~ e m{lð ÞDtD0 l{mð Þ2

l{lE0ze m{lð ÞDt E0l{mð Þ½ �2
ð13Þ

where Dt is the duration of the focal interval, between time tN and

time t. As we begin with known conditions D0 and E0 at the

beginning of the focal segment, we can set tN = 0 for the purposes

of our calculations. This immediately simplifies equation (13) from

[43] and leads to equation (13) above. As demonstrated by

FitzJohn et al. [43], these calculations reduce to the speciation-

extinction model for phylogenetic trees developed earlier [12].

To discretize the rate calculations, I broke each branch of the

phylogenetic tree into segments and computed the mean

speciation rate under the exponential change model (equation 1)

for the corresponding process. I then assumed constant rate

diversification within each branch segment. For each branch

segment, the initial speciation and extinction rates D0 and E0 are

equal to the terminal values for the preceding segment. I made this

design choice to facilitate rapid likelihood calculations on large

phylogenetic trees and, as demonstrated below, this discretization

performs well across a range of simulated datasets. I used a step

size of 1.0 time units for all calculations. If a branch was

particularly short, such that this step size exceeded the length of

the branch, the entire branch was assumed to have a single rate

equal to the mean rate along its length.

To compute the likelihood of the full tree under a given set

of parameters, we perform the calculations described above on

each terminal branch of the phylogeny. Initial values of D0 and

E0 at the tips of the tree were set to 1.0 and 0.0 respectively. It

is straightforward to modify these values to account for

incomplete taxon sampling if only a fraction f of the total

species in a clade have been included in a phylogenetic tree.

Figure 9. Dynamics of cetacean diversification through time as revealed by BAMM analysis. (A) Phylogeny of cetaceans [51], with branch
lengths drawn proportional to their marginal speciation rate as estimated using BAMM. A large increase in the rate of speciation (.6-fold) occurred in
one of the ancestral branches leading to the Delphinidae (including or excluding the killer whale, Orcinus orca). Despite this increase, the overall trend
is towards decelerating rates through time. (B) Cetacean phylogeny with branch lengths scaled by the posterior probability that they contain a rate
shift. Numbers above branches denote branch-specific shift probabilities. The probability that a rate shift occurred on at least one of these three
branches was 0.975. No other branches had shift probabilities exceeding 0.02. (C) Posterior distribution of the number of distinct processes (including
the root process) on the cetacean phylogeny. A two-process model vastly outperforms a one-process model. (D) Speciation rates through time during
the extant cetacean radiation; distinct shaded regions denote (from bottom) 0.05, 0.25, 0.50, 0.75, and 0.95 quantiles on the posterior distribution of
rates at a given point in time. Massive spike in mean speciation rates at 7.5 Ma corresponds to the early radiation of the Delphinidae clade. (E)
Corresponding extinction through time curve.
doi:10.1371/journal.pone.0089543.g009
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When f .0, we can set D0 = f and E0 = 1–f for the initial

calculations at the tips of the tree [43]. This correction assumes

that species are missing at random from the phylogeny, which

may not be valid for many datasets [44,45,46,47]. As in the

BiSSE calculations [23], these calculations flow ‘‘rootwards’’

from these terminal branches towards the root. When terminal

probabilities have been computed for both descendant branches

from a given internal node, the left (DL) and right (DR) branch

probabilities were combined as l DR(t)DL(t), where l is the

speciation rate at the focal node [23]. The calculations then

continue down the branch subtending this node. The likelihood

of the full tree is the value of D after combining these

probabilities at the root node. Likelihoods were conditioned on

the occurrence of a root node and on the survival of both

descendent branches from the root speciation event [12,23].

I implemented the compound Poisson process model of rate

variation described above in a C++ program, which I refer to as

BAMM. BAMM (Bayesian Analysis of Macroevolutionary Mix-

tures) can estimate the number of distinct evolutionary regimes

across phylogenetic trees and estimates marginal distributions of

speciation and extinction rates for each branch in a phylogenetic

tree. The model allows extinction rates to exceed speciation rates.

BAMM and associated documentation is available from the

BAMM project website (www.bamm-project.org). The program

operates on fully bifurcating phylogenetic trees of extant species.

The implementation allows users to analytically account for

incomplete taxon sampling under the assumption of random taxon

sampling [43].

Analysis of Simulated Datasets
To evaluate performance of the compound Poisson process

model of diversification rate variation, I simulated phylogenetic

trees under six general diversification models. I first considered a

simple constant-rate birth death process (model CR; 1 process), to

evaluate parameter bias and the frequency of overfitting when the

generating model does not include a heterogeneous mixture of

processes. Given the widespread interest in identifying well-

supported rate shifts and key innovations on phylogenetic trees, we

are particularly interested in the frequency with which the model

described here will incorrectly identify a multi-process model as

Figure 10. Sensitivity of marginal rate estimates to prior on Poisson rate parameter. Each panel shows a pairwise plot comparing branch-
specific (marginal) diversification rate estimates for two values of c for the Cetacean dataset, with results for speciation and extinction separated by
the diagonal. Speciation rate estimates for the cetaceans are remarkably robust to choice of prior: even c= 10 and c= 0.1 yield strikingly similar
marginal distributions for branch-specific speciation rates. This is generally not true for extinction, where mean marginal rates for each branch were
more sensitive to prior formulation. However, extinction was nonetheless estimated to be low overall regardless of the prior c.
doi:10.1371/journal.pone.0089543.g010
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having the maximum a posteriori probability, when the true

generating model is a single process model. To assess whether my

results were sensitive to choice of prior on the Poisson rate

parameter L, I analyzed constant-rate phylogenies under three

different prior parameterizations, corresponding to c= 1, c= 5,

and c= 10. All other analyses used a prior of c= 1.0, which is

conservative in the context of these analyses (see results).

I also considered a model where a pure-birth diversification

process shifts to an exponential change process at some point in

time (model exp2; 2 processes). Finally, I considered four variants

of diversity-dependent multi-process models. In each case, I

assumed that a pure-birth process at the root of the tree underwent

multiple (1, 2, 3, or 4) shifts to independent and decoupled

diversity-dependent speciation-extinction processes (models DD2,

DD3, DD4, DD5). I conducted 500 simulations per scenario.

Each multiprocess simulation was conducted by first simulating

a pure-birth phylogeny for 100 time units with l= 0.032. I then

randomly chose a time Ts on the interval (40, 95) for the

occurrence of a rate shift. A shift was then assigned randomly to

one of the lineages that existed at time Ts. I then sampled

parameters for the new process (see below). The tree was then

broken at the shift point, and a new subtree was simulated forward

in time from the shift point under the new process parameters. For

trees with more than two processes, this procedure was repeated

until the target number of processes had been added. For the exp2

model, this consisted of sampling l, z, and m for the shift process

uniformly on the following intervals: l, (0.05, 0.50); z, (20.10,

0.05); m, (0.0, 0.45). Thus, the addition of an exponential change

process could have resulted in either an increase in rates through

time (if z .0) or a decrease (if z ,0). For all simulations, I required

that subtrees contained at least 25 and fewer than 1000 terminal

taxa; any simulations failing to meet this criterion were automat-

ically rejected.

For the diversity-dependent models, diversification dynamics

followed a linear diversity-dependent model [48]. The rate of

speciation was thus a function of the number of coeval lineages in

the subclade, or

l nð Þ~l0 1{nt=K
� 	

ð14Þ

where K is the clade-specific carrying capacity, and nt is the

number of lineages in the subclade at time t. Note that the

occurrence of a shift event results in a decoupling of dynamics

from the parent process. To parameterize the diversity-dependent

processes, I sampled l0 from a uniform (0.05, 0.40) distribution, K
from a uniform (25, 250) distribution, and m from a uniform (0,

0.05) distribution. For the constant-rate birth-death simulations, I

sampled l from a uniform (0, 0.1) distribution and chose a

corresponding relative extinction rate (m/l) from a uniform (0,

0.99) distribution.

Each of the 500 simulations for each of 6 simulation scenarios

was thus conducted under a potentially unique speciation-

extinction parameterization. The number of taxa in each

simulated tree also varied among datasets. I recorded the mean

rate of speciation and extinction across each branch in each

simulated tree. All simulations were conducted in C++; simulated

trees are available through the Dryad data repository

(doi:10.5061/dryad.hn1vn).

I analyzed each of the 3000 simulated datasets using BAMM

with 3 million generations of MCMC sampling. I discarded the

first half of samples from each simulation of the posterior as ‘‘burn-

in’’ and estimated the overall ‘‘best model’’ as the model that was

sampled most frequently by the Markov chain. I computed the

mean of the posterior distribution of speciation and extinction

rates on each branch for each tree. I then used OLS regression to

assess the relationship between branch-specific rate estimates

obtained using BAMM versus the true underlying evolutionary

rates. As an additional estimate of bias, I computed the

proportional error [37] in the estimated rates as a function of

the true rates. This metric is computed as the weighted average of

proportional rate differences across all N branches in the

phylogeny, or

PE~ exp
1

N

X
log rESTð Þ{ log rTRUEð Þ½ �

� �
ð15Þ

where rEST and rTRUE are the estimated and true values of rates

along a particular branch. A value of 2 would imply that estimated

rates are, on average, equal to twice the true rate in the generating

model.

Comparison with MEDUSA
I compared the performance of BAMM to that of MEDUSA

[20], a maximum likelihood method for modeling among-lineage

heterogeneity in speciation-extinction dynamics. Beginning with a

constant rate birth-death process, MEDUSA uses a stepwise AIC

algorithm to incrementally add rate shifts to phylogenetic trees

until the addition of new partitions fails to improve the fit of the

model to the data. Thus, MEDUSA is similar to the method

described here in that it is explicitly designed to discover the

number and location of distinct processes of speciation and

extinction on phylogenetic trees. However, MEDUSA, as imple-

mented and typically used, makes the assumption that rates of

species diversification are constant in time within rate classes. This

assumption has been rejected by studies across a range of

taxonomic scales, from species-level phylogenies [16,17,18,26] to

tree-of-life scale compilations of clade age and species richness

[49]. However, the consequences of violating this assumption for

MEDUSA analyses have not been investigated.

I analyzed each of the simulated datasets described above (500

datasets under each of 6 distinct models of diversification) using

MEDUSA, using the implementation of MEDUSA available in

the Geiger v1.99-3 package [50] for the R programming and

statistical environment. Model selection used the default AICc

criterion. I summarized the results of MEDUSA analyses in two

ways. First, for each simulation scenario, I tabulated the

distribution of ‘‘best fit’’ models, to assess the fraction of

simulations for which MEDUSA was able to correctly estimate

the number of processes in the generating model. Second, I used

the same summary statistics described above for BAMM (e.g.,

proportional error) to compare branch-specific estimates of

speciation rates under MEDUSA to the true rates under the

generating model.

Empirical Example: Cetacean Radiation
Steeman et al. [51] provided a time-calibrated phylogenetic tree

for 87 of 89 extant species of whales and dolphins (Mammalia:

Cetacea). They found support for increased rates of species

diversification within a major dolphin clade, the Delphinidae.

They also found evidence for an increased rate of species

diversification at approximately 7.5 million years before present

(Ma). I used the BAMM implementation of the compound Poisson

process model of diversification rate variation to investigate the

tempo and mode of cetacean diversification through time. I

conducted 5 million generations of MCMC sampling, with

multiple independent runs to assess convergence. Finally, I
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assessed the sensitivity of the cetacean analyses to the choice of

prior c on the number of processes in the phylogeny.

Results

Analysis of Simulated Datasets
Figure 2 shows a representative BAMM analysis for a tree

simulated under the DD3 model (see also Figure 1). BAMM results

are generally robust to choice of prior on the expected number of

processes (c) in the phylogeny under the compound Poisson

process model of rate variation (Figure 3). With increasing values

of c, the model with maximum a posteriori probability (MAP) was

biased in favor of M1, a model with two processes. However, this

represents a weak tendency towards model overfitting, because the

true model (M0) was generally characterized by a posterior

probability much greater than 0.05 (Figure 3E, F). This suggests

that results are robust to choice of c: even with the trend towards

overfitting (Figure 3C), the method is unlikely to yield strong

support for models that are more complex than the generating

model (Figure 3F). The simulation results presented below are

based on c= 1.

For the five simulation scenarios with rate heterogeneity, the

number of distinct processes estimated using BAMM was generally

equal to the number of processes in the generating model

(Figure 4). Power to infer the true number of processes decreased

for the most complex models (DD3, DD4, DD5), but model

overfitting was not a problem. The MAP model was no more

complex than the generating model in the overwhelming majority

of simulations (.95%) for all five simulation scenarios.

Estimates of speciation and extinction rates under the constant-

rate model were highly correlated with rates in the generating

model (Figure 5), although both rates were biased upwards for low

rates. For multiprocess simulation models, branch-specific esti-

mates of speciation rates were highly correlated with rates in the

generating model (Figure 6, left). The estimated slope of the

relationship between the true rates and estimated rates ap-

proached equality. However, a small percentage of simulations

had estimated slopes that suggested a lack of relationship between

true and estimated rates. These simulations were those where the

most frequently sampled model had only a single process and thus

reflect a lack of power, rather than consistent bias. In other words,

branch specific estimates of rates for a multiprocess model may be

poor if model underfitting has occurred. In the extreme case, a tree

that is estimated to have only a single process may have very

similar rate estimates on each branch; the correlation between

these rates and the true rates will necessarily be low if the true

model includes multiple processes and considerable rate hetero-

geneity across the tree.

A large fraction of the total variation in the underlying

speciation rates is also explained by the estimated rates under

the compound Poisson process model of diversification rate

variation (Figure 6, middle). This fraction is higher for the two-

process models (exp2, DD2) but remains stable across the

remaining diversity-dependent scenarios (DD3, DD4, DD5).

Finally, analysis of proportional error suggests that, on average,

rates are not consistently over- or underestimated using BAMM;

the mean proportional error between simulated and estimated

rates is near 1.0 for all simulation scenarios.

I performed a similar analysis for extinction rates, with one key

difference. Each simulation scenario assumed constant extinction

rates within each process; hence, the number of unique extinction

rates in each simulation was equal to the number of processes in

the generating model. I computed the mean branch-specific

extinction rate across each subclade that was governed by a

distinct evolutionary process in the simulation model; I then

analyzed these extinction rates across all 500 trees in a given

simulation scenario together. For example, consider the phylogeny

shown in Figure 1, with k = 3 processes. I computed the mean of

the posterior distribution of all extinction estimates for branches

assigned to process A, giving a single estimated rate overall for that

process. I repeated this for processes B and C, such that I obtained

k extinction estimates for each tree with k processes. Table 1

shows summary statistics for analyzing these sets of extinction rate

estimates across all trees from a given simulation scenario. In

general, relative rate differences suggest that extinction estimates

are biased upwards. Nonetheless, the fraction of variance

explained by the model is low in each case. Proportional error

calculations were also performed as described above, although the

root rate class was ignored, as it was equal to 0 in the simulation

model. These values likewise indicate an upwards bias in

extinction rate estimates.

Comparison with MEDUSA
I analyzed all 3000 simulated datasets using MEDUSA. The

number of processes inferred for each simulation scenario are

shown in Figure 7 and can be compared to the corresponding

BAMM results shown in Figure 3. MEDUSA performed worse

than BAMM for all scenarios with time-varying rates of species

diversification. Under the DD2 model, with just two processes,

MEDUSA estimated the correct number of processes in 40.2% of

simulated datasets. In contrast, BAMM correctly identified the

true number of processes in 90% of simulated datasets (Figure 3).

For diversity-dependent scenarios with more than two processes in

total, MEDUSA consistently underestimated the true number of

processes in the generating model for the overwhelming majority

of simulated datasets. For the DD5 scenario, MEDUSA correctly

identified the generating model in fewer than 5% of simulations,

versus 38.4% with BAMM (Figure 7 vs. Figure 4).

Branch-specific estimates of speciation rates under MEDUSA

were, in general, extremely poor (Figure 8) when compared to the

corresponding estimates under BAMM (Figure 6). The estimated

slope of the relationship between the true speciation rates on each

branch and the corresponding MEDUSA estimates has a modal

value of zero for four of five simulation scenarios (Figure 8, left

column). In contrast, BAMM estimates were far closer to the

‘perfect’ value of 1.0. For all simulation scenarios but exp2, the

MEDUSA-estimated speciation rates explained little of the

variance in the true distribution of rates (Figure 8, middle).

Finally, proportional error analysis indicated that MEDUSA

generally underestimates true rates of speciation when rates are

time-dependent or diversity-dependent (Figure 8, right column).

Empirical Example: Cetacean Radiation
Analysis of the time-calibrated cetacean phylogeny found strong

support for a two-process model (Figure 9). The posterior

probability of a one-process model is p = 0.017, with a posterior

odds ratio of 44.6 in favor of a two-process model. These results

suggest a substantial increase in the rate of speciation in the

ancestral lineage leading to the Delphinidae (Figure 9A), possibly

excluding the killer whale Orcinus orca. The posterior probability

of a rate shift occurring on at least one of these branches is greater

than 0.975 (Figure 9B). However, we find little evidence for

additional processes within the cetacean phylogeny as a whole

(Figure 9 B, C).

Using output from BAMM, I computed mean rates of

speciation and extinction through time during the cetacean

radiation. This was done by drawing an imaginary grid of vertical

lines through the time-calibrated cetacean phylogeny at equally

Modeling Macroevolutionary Mixtures on Phylogenies

PLOS ONE | www.plosone.org 12 February 2014 | Volume 9 | Issue 2 | e89543



spaced points in time. Evolutionary rates were estimated as the

mean branch-specific rates for all branches that intersected the line

corresponding to a specific time point. This enabled estimation of

the posterior density of speciation and extinction for any point in

time. These results suggest an overall decline in the background

rate of whale speciation, with a large spike during the Miocene

driven by the radiation of the dolphin clade (Delphinidae).

Extinction rates are inferred to be relatively low overall, with a

mean per-branch relative extinction rate (m/l) of 0.36.

Finally, I assessed the sensitivity of the cetacean dataset to

choice of prior on the number of processes in the phylogeny. I

used BAMM to analyze the cetacean data under four additional

values of c (0.1, 0.5, 5, and 10). In each case, the single-process

model had low posterior probability and was marginally worth

considering (Pr (M1) = 0.127) only under the strongest prior

(c= 0.1). For c= 5 and c= 10, the posterior probability of a

model with a single process was approximately 0. The MAP model

had two processes under c= 0.5 and c= 5. For c= 10, the MAP

model had four processes, but was not substantially more probable

than models with two or three processes. The posterior odds ratio

for M4 versus M2 was merely 1.63, and for M4 versus M3 it was

only 1.26. I estimated marginal diversification rates for each

branch in the cetacean phylogeny under these prior formulations;

pairwise plots for speciation rate estimates under alternative priors

suggest that these rates are robust to choice of prior (Figure 10).

Extinction rate estimates were sensitive to choice of prior, although

estimated rates were low under all prior formulations.

Discussion

Extracting information about the tempo and mode of species

diversification remains a central methodological challenge in

macroevolutionary studies. I developed a Poisson process model of

diversification rate variation to address several limitations of

current methodological approaches for studying evolutionary

dynamics on phylogenetic trees. The approach described here

views phylogenetic trees as the outcome of a complex mixture of

potentially dynamic evolutionary processes and enables research-

ers to detect rate shifts, key innovations, time-dependent specia-

tion, and diversity-dependence within single trees. Output from

the BAMM implementation of the compound Poisson process

model includes (i) estimates of the number of distinct process and

posterior probabilities of each possible model; (ii) estimates of

locations of those processes as well as associated parameter

estimates; and (iii) estimates of branch-specific rates of speciation

and extinction, which can further be used to infer temporal trends

in evolutionary rates (Figure 9D, E).

BAMM performed well throughout the parameter space

explored here. For each of six distinct macroevolutionary

scenarios, BAMM was usually able to identify the true number

of processes in the generating model (Figure 3; Fig. 4). Branch-

specific speciation rates estimated using BAMM are fairly

accurate: relative rate differences for estimated rates are centered

on 1 (Figure 6, right). Moreover, the OLS regression slope for the

relationship between true and estimated branch-specific rates

across individual simulation trees was generally close to 1.0; the

mean of each distribution of slopes shown in Figure 6 (left column)

exceeded 0.85. Surprisingly, branch-specific estimates did not

decay with increasing complexity of the generating model:

observed slopes (Figure 6, left) for the most complex model

(DD5) were closer to 1.0 (observed mean: 0.95) and had lower

variance than any other simulation scenario, including those with

only two processes.

Extinction rate estimates from the model should be taken with

caution. Branch specific estimates of extinction are potentially

biased and, although these estimates are correlated with the true

underlying rates, confidence in those estimates is low (Table 1;

Figure 5). This is consistent with previous studies that have noted

low power in estimating extinction rates from molecular phylog-

enies [23,52]. In addition, previous studies have demonstrated that

extinction estimates from molecular phylogenies are exceedingly

sensitive to violations of model assumptions [27,53]. Because few

real-world phylogenies will conform perfectly to the assumptions of

the model described here, it is likely that estimated extinction rates

will be even less accurate than results in Table 1 would suggest.

By implementing an exponential change function for speciation,

I was able to accurately infer diversity-dependent dynamics across

a range of simulation scenarios (Figure 4; Figure 6). This is

consistent with Quental and Marshall’s [34] prediction that time-

dependent exponential processes (equation 1) should provide good

approximations to linear diversity-dependent processes. It is

possible that formal diversity-dependent models [13,48,54] would

provide increased power and/or precision of parameter estimates

over the exponential approximation used in this study. However,

fitting a full diversity-dependent model with extinction is far more

computationally demanding than the exponential approximation

used here. For multiprocess diversity-dependent models, comput-

ing a single likelihood currently requires numerically solving large

but linear systems of ordinary differential equations. The

exponential approximation implemented in BAMM results in

extremely fast likelihood calculations on even the largest phylo-

genetic trees. No attempts have yet been made to parallelize

BAMM calculations, affording additional opportunities for com-

putational speedups.

Comparison to Existing Methods
My results suggest that MEDUSA is not robust to violations of

its assumption that diversification rates are constant through time.

Whereas BAMM was often able to estimate the true number of

distinct processes in the generating model (Figure 4), MEDUSA

consistently underestimated the number of processes (Figure 7).

Furthermore, the magnitude of the underestimates became more

severe with increasing model complexity. Speciation rates

estimated under MEDUSA were especially poor (Figure 8) and

showed little overall correspondence with true rates in the

simulation model.

To be clear, the model implementation in BAMM - in contrast

to MEDUSA - was explicitly designed to account for variation in

evolutionary rates both through time and among lineages.

However, the MEDUSA method has been applied to many

empirical datasets with little attention given to the potential

consequences of violating the assumption of rate-constancy

through time. Using a posteriori simulations, Rabosky et al.

[49] found that parameter estimates from MEDUSA analyses on

higher taxonomic datasets largely fail to predict patterns of species

richness across clades. They suggested that this failure results from

MEDUSA’s strong assumption of time-invariant speciation and

extinction rates. It seems likely that many or most real datasets will

be characterized by rate variation through time as well as among

lineages. As discussed by O’Meara [55], the challenges of

modeling rate heterogeneity in phylogenetic trees are likely to

become more severe as we consider ever-larger phylogenetic trees

[56,57,58,59]: the larger the phylogeny, the greater the likelihood

that the tree is the result of a heterogeneous mixture of distinct

evolutionary processes. Describing the complex mixture of

dynamic processes that shape real phylogenetic trees was the
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primary motivation for proposing the method described in this

article.

Cetacean Macroevolutionary Dynamics
The analysis of the Cetacean phylogeny provides an important

window into the history of cetacean diversification through time

(Figure 9) that complements results obtained by several previous

studies [6,13,51]. The overall lineage accumulation curve for

cetaceans is relatively flat [13], suggesting relatively little variation

in speciation rates through time. However, I find strong support

for a multi-process diversification model consisting of two distinct

evolutionary rate regimes: a root process involving a weak

slowdown in speciation through time (Figure 9A), and an explosive

burst and subsequent slowdown in speciation associated with the

origin of the Delphinidae (Figure 9A). Slater et al. [60] also found

support for a rate shift in the crown delphinids, excluding the killer

whale, using MEDUSA. It seems likely that some of the evidence

in favor of the ‘‘ocean restructuring’’ model [51] actually reflects

the independent evolutionary dynamics of delphinid and non-

delphinid lineages. The increase in speciation from 13 million

years ago (Ma) to 4 Ma in particular seems likely to indicate the

rapid diversification of the dolphin clade. My results do not rule

out the possibility that ocean restructuring contributed to this

clade-specific burst and slowdown in speciation rates, but it

appears equally plausible that the acceleration in rates during this

interval reflects the occurrence of a key evolutionary innovation

early in the history of the dolphins.

Extensions to the Model
Many extensions are possible within the framework developed

here. The computational machinery for adding, moving, and

deleting processes from phylogenetic trees is flexible and can easily

be extended to allow alternative functional models for speciation

and/or extinction rate variation through time. Another obvious

future extension is to explicitly account for phylogenetic uncer-

tainty during simulation of the posterior. As currently implement-

ed, BAMM simulates posterior distributions of models and

parameters across a fixed topology. However, phylogenetic trees

are rarely (if ever) known without error. Credible intervals on

parameters inferred using BAMM (Figure 9 D, E) reflect only

parametric uncertainty associated with the diversification model

itself and would presumably increase if we also accounted for

uncertainty in tree topology and branch lengths. Finally, it would

be interesting to allow joint inference on paleontological and

neontological data, as there is increasing recognition that these two

datatypes are frequently in conflict [61]. This objective is

facilitated by theoretical advances that allow evolutionary rate

estimation using both fossils and molecular phylogenies [62],

although suitable datasets remain elusive.

Summary

I have described a methodological framework for inferring

mixtures of processes that have influenced the structure of

phylogenetic trees. By modeling phylogenies as collections of

dynamic processes, the method greatly extends our ability to

describe evolutionary dynamics. Most previous evolutionary

studies using transdimensional MCMC on phylogenetic trees have

assumed that dynamics within component processes are constant

in time. By relaxing the assumption of time-homogeneous

diversification, the model is better able to describe complex

mixtures of both time-constant and time-varying processes. A

number of recent studies have suggested that such complex

dynamics might dominate speciation-extinction patterns in many

empirical datasets. I suggest that the use of rjMCMC to fit time-

inhomogeneous multiprocess models to phylogenetic data may

have applications beyond those described here, including DNA

sequence evolution, phenotypic evolution, and phylogeography.
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