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Abstract

Background: Visceral leishmaniasis (VL) is a neglected tropical disease of public health relevance in Brazil. To
prioritize disease control measures, the Secretaria de Vigilância em Saúde of Brazil’s Ministry of Health (SVS/MH) uses
retrospective human case counts from VL surveillance data to inform a municipality-based risk classification. In this
study, we compared the underlying VL risk, using a spatiotemporal explicit Bayesian hierarchical model (BHM), with
the risk classification currently in use by the Brazil’s Ministry of Health. We aim to assess how well the current risk
classes capture the underlying VL risk as modelled by the BHM.

Methods: Annual counts of human VL cases and the population at risk for all Brazil’s 5564 municipalities between 2004
and 2014 were used to fit a relative risk BHM. We then computed the predicted counts and exceedence risk for each
municipality and classified them into four categories to allow comparison with the four risk categories by the SVS/MH.

Results: Municipalities identified as high-risk by the model partially agreed with the current risk classification by the
SVS/MH. Our results suggest that counts of VL cases may suffice as general indicators of the underlying risk, but can
underestimate risks, especially in areas with intense transmission.

Conclusion: According to our BHM the SVS/MH risk classification underestimated the risk in several municipalities with
moderate to intense VL transmission. Newly identified high-risk areas should be further evaluated to identify potential
risk factors and assess the needs for additional surveillance and mitigation efforts.
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Background
Visceral leishmaniasis (VL) in the Americas is a vector-
borne neglected zoonosis caused by the intracellular proto-
zoan Leishmania infantum [1, 2]. If left untreated, VL is
fatal in more than 90% of cases, within two years of the
onset of the disease [3].
Every year approximately 200,000–400,000 new cases of

VL are registered worldwide [4]. In 2015, 88.8% of VL
cases were reported from six countries: Brazil, Ethiopia,
India, Somalia, South Sudan and Sudan [4], Brazil was
ranked second, reporting 3289 new cases, 14% of the total

reported worldwide, surpassed only by India [5]. In the
Americas, Brazil represents 95% of total occurrences [6].
In Latin America transmission is mediated by the vec-

tor Lutzomyia longipalpis and Lutzomyia cruzi [7–9], a
synanthropic sandfly with a wide geographic distribution
in Brazil [10], and the domestic dogs as its the main ani-
mal reservoir in urban and rural areas. Control measures
applied against the vector and the reservoir have shown
limited success [11].
The Secretaria de Vigilância em Saúde of Brazil’s Ministry

of Health (SVS/MH) is responsible for the planning, imple-
mentation and evaluation of VL surveillance in Brazil. VL
surveillance data is used by the SVS/MH for the classifica-
tion of municipalities in four VL risk categories. This risk
classification is the main pillar for the management of the
VL control in the country, and is currently based on the
average number of reported cases per municipality in pe-
riods of 3-years, without considering human population at
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risk. Such simple classification and ranking approach does
not account for uncertainties around the average number
of cases and variability around risk metrics, and may be
unable to fully recognize and address spatial and spatiotem-
poral dependencies in the data [12].
In this study, we evaluate the spatiotemporal pattern of

VL risk in Brazil and generate alternative risk categories to
compare with the current SVS/MH risk-classification. We
aim to provide additional insights in the epidemiology
of VL in Brazil, and inform how accurately the current
risk categories reflect the underlying VL risk at the
municipality level.

Methods
Data source and collection
The study area comprised all 5564 municipalities in Brazil
as listed by the Instituto Brasileiro de Geografia e Estatística
(IBGE) database (IBGE general information http://www.ib-
ge.gov.br/english/). Municipality-specific annual counts of
VL cases for the period 2004–2014, and the official risk
classification status for the period 2008–2014 were
provided by the SVS/MH.

Data analysis
In order to account for the population at risk, we com-
puted the municipality-specific standardized incidence ra-
tios (SIR), SIRit ¼ yit

eit
, where, for municipality i and year t,

yit is the count of VL cases and eit the expected number of
cases calculated by multiplying the population in munici-
pality i for the t year (based on 2010 national census data)
by the incidence of VL in the country.
At the first level of the BHM, the observed number of

human VL cases in municipality i and year t (yit) was
assumed to follow a Poisson distribution yit ~ Poisson
(eit, θit), where eit is defined above and θit is the unknown
municipality-specific annual relative risk.
The log of θit was then decomposed additively into

spatial and temporal effects and a space-time interaction
term, so that

Log ðθitÞ ¼ αþ υi þ νi þ γt þ δit

where α is the intercept, representing the population
average risk, υi and νi describe respectively the spatially
structured and unstructured variation in VL risk, γt rep-
resents the structured temporal effect, and δit is a space-
time interaction term where given by the Kronecker
product γt⨂ υi. Given the large number of municipalities
with zero case counts we explored other parameteriza-
tions, specifically a zero inflated Poisson likelihood. We
computed the Deviance Information Criterion (DIC) to
compare the fit of our models [13].
A non-informative normal distribution with mean 0

and variance σ2ν was used as prior distribution for the

spatially unstructured random effect νi, while the spatially
structured effect υi was assigned a conditional autoregres-
sive structure as previously described [14]. Briefly, υi was
assumed to follow a normal distribution with mean condi-
tional to the neighboring municipalities υj, where neigh-
borhood is defined in terms of geographical adjacency,
and variance σ2υ dependent on the number of neighboring
municipalities ni,

υi j υ; j neighbor of i � N
1
ni

γ
Xni

j¼1
υ j;

σ2
υ

ni

� �

Finally, γt was assigned a random walk type 1 (RW1)
γt∼Nðγt−1; σ−1γ Þ . Exponential priors (3, 0.01) were

assigned to all the standard deviations of the random
effects [15]. In addition, we investigated also the sensitivity
of our results to other less informative priors with
larger ranges. Model posterior parameters were esti-
mated using Integrated Nested Laplace Approxima-
tion (INLA), and fitted using the R-INLA package [16]
conducted in R [17]. Results were visualized using ArcGIS
10.4 (ESRI ArcMap, 2016).

Risk classification
The actual MH risk classification is based upon the most
recent three-year moving average of the number of VL
human cases registered in each municipality. This classi-
fication is updated every June. Municipalities are classi-
fied as no transmission (class 0, no cases reported),
sporadic transmission (class 1, moving average < 2.4),
moderate transmission (class 2, moving average in the
interval [2.4–4.4), and intense transmission (class 3,
moving average ≥ 4.4 cases) [18, 19].
In order to compare the current risk classification SVS/

MH with the results of the BHM, we computed the pos-
terior estimates of the ‘exceedence’ probability of risk
Prob (θit > 1) ∣ y [20–22] further categorized into 4 cat-
egories (0, 1, 2, 3) if Prob(θit > 1) assumed < 0.5, 0.5–0.75,
0.75–0.95 and > 0.95, respectively. Exceedence categories
were compared with the four SVS/MH risk classes
via the weighted Kappa correlation test. Finally, the
correspondent three-year moving average of the an-
nual number of cases per municipality predicted by
the model BHM ( byit ) was used to create a third risk
classification in which municipalities were classified
as no transmission (class 0, no cases predicted); sporadic
transmission (class 1, byit predicted moving average < 2.4);
moderate transmission (class 2, byit predicted moving
average in the interval 2.4–4.4) and intense transmis-
sion (class 3, byit predicted moving average ≥ 4.4) to
compare with the SVS/MH classification based on ob-
served cases (yit). The agreement between this classification
and that of the SVS/MH was also compared via the
weighted Kappa correlation test.
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Results
Descriptive results
From January 2004 to December 2014, a total of 37,405
VL cases were registered by the SINAN/SVS/MH Brazil.
The annual average case count by municipality is shown
in Fig. 1. The annual case count of VL during the
study period (2004–2014), for the entire country,
ranged between 2947 and 3713 cases (Fig. 2).
Five municipalities (0.09%) accounted for almost 20%

of the total number of cases reported during the period
of study: Fortaleza (state of Ceará) 1865 (4.98%),
Campo Grande (state of Mato Grosso do Sul) 1520
(4.06%), Araguaína (state of Tocantins) 1294 (3.45%),
Belo Horizonte (state of Minas Gerais) 1176 (3.14%),
and Teresina (state of Piauí) 961 (2.57%).

Bayesian hierarchical model
The BHM with Poisson likelihood had the lowest DIC
value (Table 1), and included spatial (structured and un-
structured), temporal random effects, and interaction
term. Models were robust to different choices of priors.
The posterior estimates of the spatially structured ran-

dom effect ui were higher for municipalities located in the
central and eastern part of Brazil, while the non-spatially
structured were scattered throughout the country (Fig. 3).
The average standard deviation was calculated for all mu-
nicipalities and υi shown to be 2.5 times larger than that
of νi (6.96 versus 2.76), suggesting that a higher proportion
of the unexplained risk of VL (not attributable to the size
of the population at risk) was partially explained by
factors with a spatial structure (Fig. 3). Finally, the

Fig. 1 Spatial distribution of the annual average case count of visceral leishmaniasis by municipality, 2004–2014
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proportion of the marginal variances were calculated
for each parameter in the final model: the major con-
tributors were the spatial effects ν (32.8%), υ (57.8%),
with less variance explained by the temporal γ (1%)
and spatial temporal interaction δ (9.3%).

Comparisons of the risk classifications
The proportion of municipalities that were classified in
the same category by both the BHM via computation of
the exceedence probabilities and the SVS/MH classifica-
tion was 79.84%, very similar to the results obtained when
the SVS/MH classification was compared with results
using the predicted cases [78.05%, see Additional file 1:
Figure S1 and Additional file 2: Figure S2]. This com-
parison (Table 2) revealed that the classifications
based on the BHM (via exceedence probabilities or

predicted cases) allocated a higher proportion of mu-
nicipalities to categories two and three (moderate and
intense transmission). Specifically, the classification
based on the exceedence probabilities categorized be-
tween two and four times more municipalities as cat-
egory three than the SVS/MH risk classification.
Conversely, the current SVS/MH risk classification
identified almost four times more municipalities as
class one than the classification based on the posterior
estimates of the exceedence probabilities. The average
agreement between both classifications over the seven
years was considered good (weighted Kappa = 0.69)
[further information on yearly agreement is provided
in Additional file 3: Table S1]. A good agreement
(weighted Kappa = 0.63) on average was also obtained
when the SVS/MH classification was compared with
the one based on the predicted number of cases ( byit )
[see Additional file 4: Table S2 for yearly agreement].
However, if the lower risk category (0) was excluded from
the comparison the agreement was much lower (0.17 and
0.12 when the SVS/MH classification was compared to
the exceedence probabilities and predicted cases from the
BHM, respectively), revealing most of the discordant re-
sults were obtained in municipalities with some risk as
determined by both proposed classification [Table 2 and
Additional file 1: Figure S1 to Additional file 2: Figure S2].
We have explored the spatial distribution for the compari-

son among all classifications, we demonstrate the scenario
for the 2014 pattern, where SVS/MH, BHM-exceedence and
BHM-predictions for intense transmission (class 3) are
mapped in Fig. 4 [see Additional file 5: Figure S3,
Additional file 6: Figure S4, Additional file 7: Figure S5,
Additional file 8: Figure S6, Additional file 9: Figure S7,
Additional file 10: Figure S8 for the 2008 to 2013

Fig. 2 Number of cases of visceral leishmaniasis reported in Brazil over 11 years (2004 to 2014)

Table 1 Composition of eight different models, description of
likelihood and for model diagnostics DIC is reported

Model components Likelihooda DIC (pD)

Log(θit) = α + υi + νi + γt Poisson 59,537.50 (2709.0)

Zero-inflated negative
binomial

74,771.96 (946.49)

Negative Binomial 75,834.50 (1,8235.2)

Zero inflated Poisson 78,936.66 (1058.7)

Log (θit) = α + υi + νi + γt + δit Poisson 49,770.9 (6802.5)

Zero-inflated negative
binomial

75,837.0 (2756.1)

Negative Binomial 83,372.3 (1,7720.3)

Zero inflated Poisson 72,654.0 (3166.4)
aAdditional information about the used likelihood options can be find
elsewhere (http://www.r-inla.org/models/latent-models)
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maps], showing that discordant municipalities were
located throughout the country.

Discussion
VL is endemic in Brazil, and has been historically distrib-
uted across multiple states, especially in the North and
Northeast regions of the country. However, recent reports
indicate that the disease is expanding within Brazil and is
reaching neighboring countries like Argentina and Uruguay
[23–25]. Recently affected areas in Brazil include states lo-
cated in the South (such as Rio Grande do Sul) and in the
Midwest region [10]. For the study period, municipalities

that presented higher number of cases were mostly located
in the states of Tocantins, Minas Gerais, Mato Grosso do
Sul, Ceará and Piauí (Fig. 1), supporting the results ob-
served in previous studies that had also identified the above
states as high-risk areas [26–30]. For the 11 years studied
here less than 10% of the municipalities reported at least
one case of VL in any given year (mean of municipalities
with one or more VL cases during 2004–2014 = 437,
min = 380, max = 492). However, VL incidence varied
largely in those affected municipalities.
The inclusion of both spatially structured and unstruc-

tured random effects in the model allowed a better

Fig. 3 Spatial distribution of the exponentiated spatially structured υi (left) and non − structured νi (right) random effects

Table 2 Comparison of the number of municipalities allocated to the different risk levels depending on the classification followed
(BHM or SVS/MH classification)

Year Risk class 0 Risk class 1 Risk class 2 Risk class 3
aexceedence bSVS/MH byit exceedence bSVS/MH byit exceedence bSVS/MH byit exceedence bSVS/MH byit

2008 4691 4307 5032 244 1040 16 233 88 242 396 129 272

2009 4659 4329 5033 259 1006 17 243 99 227 403 130 285

2010 4626 4312 5012 266 1016 21 252 98 230 420 138 299

2011 4614 4289 5003 266 1003 15 259 129 230 425 143 309

2012 4619 4259 4994 265 1060 22 252 146 240 426 99 301

2013 4604 4275 4985 263 1034 21 234 105 232 463 150 321

2014 4527 4273 4949 272 1026 12 271 119 247 494 146 354
aNumber of municipalities classified as 0, 1, 2, and 3 based on the posterior estimates of exceedence probabilities (0: < 0.5, 1: 0.5–0.75, 2: 0.75–0.95 and 3: > 0.95).
bNumber of municipalities classified as 0- zero case reported; 1-sliding average lower than 2.4; 2-sliding average was between [2.4 to 4.4); and 3– sliding average
above or equal to 4.4 cases by the MH according to the current national regulations
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understanding of how the risk was directly explained by
the population at risk across the country. The exponen-
tiated posterior estimates for the spatially structured
random effect term were above one in multiple regions

including Central-Western, Northeast and especially
north of Roraima state (Fig. 3-left). High values of ui in-
dicate a positive association between the spatially struc-
tured effects and VL in Brazil, signaling the presence of

Fig. 4 Geographic patterns of the municipalities classified as high-risk (class 3) by the SVS/MH, BHM- exceedence and BHM-predicted predicted
number of cases (byit ) by the BHM
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additional risk factors that are not directly related with
VL occurrence and that have a spatial component. This
spatially-dependent risk may be in part related with the
local density of infected reservoirs (dogs), in line with
previous studies that described a positive spatial de-
pendency between the occurrence of human and canine
VL cases [31]. Therefore, larger concentrations of in-
fected dogs per inhabitants in certain municipalities
could lead to increased risk, since dogs are considered
the main reservoir of the disease in Latin America and
in Brazil in particular [27, 32, 33].
Increased risk may be also explained by other factors.

For example, in some areas with high VL incidence like
Teresina (Northeastern Brazil) a correlation between VL
incidence and more limited urban infrastructures and
poorer living conditions has been previously described
[26, 34, 35]. Future analysis can expand on our models
by incorporating covariates explaining local development
as one example. Changes in the environment, such as
deforestation due to expansion of the road networks,
have been also shown to have a major effect on the risk
of VL and other vector-borne diseases [36]. Indeed, the
expanding habitat of the vector may be associated to
some extent with the increase in VL incidence in areas
traditionally considered non-endemic in Brazil, especially
in the South and Midwest regions, a situation that may
become more concerning in the future [25].
The nearly 80% agreement between the SVS/MH and

BHM-exceedence and predicted risk classifications when
all risk categories are considered suggests that the current
strategy for the classification of municipalities may pro-
vide an acceptable approach in a significant proportion of
the municipalities in the country. However, when results
from municipalities classified in categories 1–3 (i.e.,
‘some risk’) by the three approaches were compared,
the agreement dropped largely [Table 2, Additional file 1:
Figure S1 and Additional file 2: Figure S2], and major dis-
agreements were identified particularly regarding to the
category of higher risk (class 3) as classified by the BHM,
that were evident throughout the study period [Additional
file 3: Table S1, Additional file 4: Table S2, Fig. 4 and
Additional file 5: Figure S3, Additional file 6: Figure S4,
Additional file 7: Figure S5, Additional file 8: Figure S6,
Additional file 9: Figure S7, Additional file 10: Figure S8
for the 2008 to 2013 maps]: a considerable proportion of
these high risk municipalities (between 58% in 2012 and
82% in 2013) were identified to have lower risk according
to the SVS/MH classification. The SVS/MH classification
seemed to be more sensitive to year-to-year changes (for
example, there was a 30% drop in the number of munici-
palities classified as high risk between 2011 and 2012),
which could be due to surveillance artifacts since the risk
of VL would not be expected to change so drastically
in such a short time-span. The classification yielded by

the BHM, on the other hand, provided a more stable
risk landscape over time and space due to the smooth-
ing stemming from the inclusion of spatial effects in
the model [Fig. 4 and Additional file 5: Figure S3,
Additional file 6: Figure S4, Additional file 7: Figure S5,
Additional file 8: Figure S6, Additional file 9: Figure S7,
Additional file 10: Figure S8]. This is obvious from a
close look at the municipalities classified differently by
the two approaches, showing that these were typically
located neighboring others with a large spatially struc-
tured random effect term (υi).The implications in the
control of VL may be relevant if municipalities stop the
application of control measures without accounting for
the risk in neighboring municipalities (Fig. 4).
Both “moderate” and “intense transmission” munici-

palities according to SVS/MH (categories 2 and 3) are
subjected to the same disease control measures in terms
of resources and active surveillance activities. However,
the BHM results suggest that a substantial underestima-
tion may take place when only focusing on numerator
data, since every year an average of 131 and 288 add-
itional municipalities were classified as moderate (class
2) and intense (class 3) transmission areas, respectively,
using this approach. This highlights the importance of
incorporating information on the population at risk as
well as spatial and temporal effects most related to the
risk of infectious diseases. The comparison between the
SVS/MH classification and those based on the exceed-
ence probabilities or the predicted number of cases ( byit )
revealed that even though agreement was good
(weighted Kappa min:0.66-max:0.69) discordances were
not only found in municipalities classified as higher risk
[Additional file 3: Table S1, Additional file 4: Table S2].
Our current analyses allow the identification of muni-
cipalities with higher VL risk that could have been
previously inadequately classified according to the
methodology adopted by the SVS/MH. The new clas-
sification proposed in this study may help to identify
municipalities that, despite not presenting high morbidity,
are under a high risk of disease transmission, and should
therefore be subjected to improved surveillance.
Finally, the limitations of this study are mainly associ-

ated to the lack of information on neighboring countries
for municipalities located at the edge of the study area
(Paraguay, Argentina and Bolivia). In addition, location of
cases were based on where the notification took place,
and may not indicate where the infection actually oc-
curred. However, we suggest that the modeling the inci-
dence ratio and inclusion of spatial and temporal effects
and the smoothing technique we used helped to remove
the effects of the variation of count cases used by the
current MHS risk classification, and hence provide a
better approximation of the municipality-level risk.
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Conclusions
The comparison between the VL risk classification cur-
rently in use by the SVS/MH and that obtained through
a BHM revealed that raw case counts of VL may be suf-
ficient to indicate disease risk in a large proportion of
the municipalities in Brazil, but may underestimate the
risk in others, particularly those neighboring high risk
areas. Our results identified “hot” areas where disease
clustered, and where control and surveillance efforts
could be implemented in order to prevent further spread
of VL in the country. Resources to support increased
measures in those hot areas could come from the many
more areas classified as “1” (sporadic transmission) by
the SVS/MH compared to those identify by our models.
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