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Pseudoperonospora humuli is an obligate biotrophic oomycete that causes downy
mildew (DM), one of the most destructive diseases of cultivated hop that can lead to
100% crop loss in susceptible cultivars. We used the published genome of P. humuli
to predict the secretome and effectorome and analyze the transcriptome variation
among diverse isolates and during infection of hop leaves. Mining the predicted
coding genes of the sequenced isolate OR502AA of P. humuli revealed a secretome
of 1,250 genes. We identified 296 RXLR and RXLR-like effector-encoding genes in
the secretome. Among the predicted RXLRs, there were several WY-motif-containing
effectors that lacked canonical RXLR domains. Transcriptome analysis of sporangia
from 12 different isolates collected from various hop cultivars revealed 754 secreted
proteins and 201 RXLR effectors that showed transcript evidence across all isolates with
reads per kilobase million (RPKM) values > 0. RNA-seq analysis of OR502AA-infected
hop leaf samples at different time points after infection revealed highly expressed
effectors that may play a relevant role in pathogenicity. Quantitative RT-PCR analysis
confirmed the differential expression of selected effectors. We identified a set of P. humuli
core effectors that showed transcript evidence in all tested isolates and elevated
expression during infection. These effectors are ideal candidates for functional analysis
and effector-assisted breeding to develop DM resistant hop cultivars.

Keywords: downy mildew, Pseudoperonospora, secretome, effectors, RXLR

INTRODUCTION

Downy mildew (DM) pathogens are a group of obligate biotrophic oomycetes that belong to the
Peronosporales lineage oomycetes and have caused epidemics in many agriculturally important
plants including grapes (Gessler et al., 2011), spinach (Correll et al., 2011), cucumber (Holmes
et al., 2015), and lettuce (Parra et al., 2016), to name a few. Despite their economic importance,
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DM pathogens have been relatively under-examined because
they cannot be cultured on artificial media and are difficult
to transform. Most DM research has been conducted on the
Arabidopsis DM pathogen Hyaloperonospora arabidopsidis due
to the wealth of genetic information available on the model
plant, Arabidopsis (Kamoun, 2006). Advancements in genome
sequencing have facilitated development of genomic resources
for several economically important DM pathogens in the past
decade. These include Pseudoperonospora cubensis (cucurbit
DM) (Savory et al., 2012a,b), Peronospora tabacina (tobacco
DM) (Derevnina et al., 2015), Plasmopara halstedii (sunflower
DM) (Sharma et al., 2015), Plasmopara viticola (grape DM)
(Dussert et al., 2016, 2019), Bremia lactucae (lettuce DM)
(Fletcher et al., 2019), and Pseudoperonospora humuli (hop DM)
(Rahman et al., 2019).

During infection on host plants, oomycetes secrete
molecules called effectors that alter host cell machinery
to allow colonization (Bozkurt et al., 2012). In resistant
hosts, effectors can be directly or indirectly recognized by
R proteins, in which case an effector acts as an avirulence
factor that activates effector-triggered immunity (ETI) in
host plants (Jones and Dangl, 2006). This avirulence function
of effectors can be used in plant improvement programs
to search for genotypes that contain R genes against core
in planta expressed pathogen effectors (Jones et al., 2014;
Vleeshouwers and Oliver, 2014).

Based on host cell localization, oomycete effectors are
classified into apoplastic and cytoplasmic effectors, those
localizing to the plant apoplast and those translocated into
the host cell, respectively (Schornack et al., 2009). Apoplastic
effectors are enzymes and enzyme inhibitors that bind to
host-secreted defense molecules (Sperschneider et al., 2017).
Oomycete cytoplasmic effectors are modular proteins that are
distinguished by conserved domains. The most well-studied
class of cytoplasmic effectors are the RXLRs, which possess an
Arg-X-Leu-Arg (RXLR) amino acid motif positioned within 40
amino acids downstream of the secretion signal followed by
a Glu-Glu-Arg (EER) motif (Bozkurt et al., 2012). The RXLR
motif bears a striking similarity to the Plasmodium falciparum
PEXEL proteins that contain a characteristic RXLXE/D/Q
motif (Hiller et al., 2012) and the Toxoplasma gondii TEXEL
motif (RRLXX) (Coffey et al., 2015). RXLR effector proteins
are enriched in the Peronosporales clade, which contains
Phytophthora and the DM pathogens (Thines and Kamoun,
2010; Thines, 2014). Several evolutionary scenarios such as
gene duplication, recombination events and point mutation
scenarios that can promote diversification of RXLR effectors
within Peronosporales have been described (Jiang et al., 2008;
Goss et al., 2013). A level of degeneracy can occur in the RXLR
motif as evidenced by the RVRN motif in H. arabidopsidis (Bailey
et al., 2011), QXLRs in P. cubensis (Tian et al., 2011), GKLR
in B. lactucae (Stassen et al., 2013), and RXLKs in P. halstedii
(Sharma et al., 2015).

The function of the RXLR motif is highly debated (Ellis and
Dodds, 2011). This motif is thought to enable host cell targeting
in a mechanism yet to be described. The role of the RXLR motif in
host cell translocation was proposed in the Phytophthora infestans

effector Avr3a (Whisson et al., 2007) whereas in the Phytophthora
sojae effector AVR1b, the RXLR motif was shown to mediate
binding to phosphatidylinositol phosphates for host cell uptake
(Kale et al., 2010). However, recent research suggests that the
RXLR motif is cleaved before secretion in Avr3a and is involved
in secretion from the pathogen rather than translocation into the
host cell (Wawra et al., 2017).

To add another level of complexity to the RXLR effector
domain features, the C-termini of some RXLRs have
combinations of the hydrophobic amino acids W, Y, and L
forming a WY domain (Jiang et al., 2008; Haas et al., 2009).
This domain forms a conserved structural feature and may
also be present in tandem repeats joined by linker sequences
(Boutemy et al., 2011; Chou et al., 2011). The WY domain
is thought to mediate the “effector” function of RXLRs and
suppress host immune signaling by various mechanisms, like
suppression of cell death in the P. sojae effector Avr1b (Dou
et al., 2008), interaction with the E3 ligase CMPG1 in the P.
infestans effectors Avr3a (Bos et al., 2010), and interaction
with MAPKKK in the P. infestans PexRD2 (King et al., 2014).
Mutations in the WY domain abolish the interaction of the
Avr3a (Bos et al., 2010) and PexRD2 (King et al., 2014) effectors
with their targets. A recent report shows the role of the WY
domain in effector dimerization and subsequent virulence
activity (Guo et al., 2019).

Recently, genome and effectorome analyses of DM pathogens
revealed the presence of WY domain-containing effectors that
lacked a canonical RXLR motif in P. tabacina (Derevnina et al.,
2015), P. halstedii (Sharma et al., 2015; Pecrix et al., 2019),
P. viticola (Combier et al., 2019; Dussert et al., 2019), and B.
lactucae (Fletcher et al., 2019). Similar effectors also are present
in some Phytophthora species (Wood et al., 2019). Intriguingly,
recent reports suggest that DM effectors lacking canonical RXLR
motif but possessing EER and WY motifs (henceforth referred
to as WY-EERs herein) display virulence and avirulence activities
during host interaction (Combier et al., 2019; Wood et al., 2019).

It has been suggested that RXLRs from haustoria-forming
Peronosporaceae species may be an adaptation to facilitate
biotrophy because their expression is induced during pre-
infection and biotrophic phases of infection (Whisson et al.,
2007; Thines, 2014; Fawke et al., 2015). Therefore, follow up
studies that can facilitate the identification of in planta expressed
effector genes during interaction with the host are essential. To
date, there are only two reported studies of gene expression
profiling during pathogen-host interactions of haustoria-forming
Peronosporaceae species, Pseudoperonospora cubensis infecting
cucumber (Savory et al., 2012a) and H. arabidopsidis infecting
Arabidopsis (Asai et al., 2014).

Pseudoperonospora humuli is an oomycete pathogen that
causes DM on hop (Humulus lupulus). Symptoms including
arrest in shoot development, abortion of developing cones, and
defoliation, result in reduced yield, decrease in bittering acids,
and even plant death in some cultivars (Ojiambo et al., 2015;
Purayannur et al., 2020). DM is perhaps the most important
and destructive disease that threatens cone yield and quality in
certain production regions (Gent et al., 2009). Management of
hop DM is mainly achieved through cultural practices and regular
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application of fungicides (Gent et al., 2010, 2012). Nonetheless,
the pathogen can develop resistance to fungicides and cultivars
with resistance to P. humuli are rare (Gent et al., 2008, 2020; Gent
and Ocamb, 2009). Host resistance is the ideal control method for
plant diseases, however, breeding in perennial crops such as hop
is a long-term effort (Natsume et al., 2014) and a complicated
one because of the narrow genetic base of resistant germplasm.
Identification and utilization of effectors to identify germplasm
containing R genes can accelerate breeding for resistance to DM
(Vleeshouwers and Oliver, 2014). Recently, the genome sequence
of P. humuli was published thus expanding the resources in this
pathogen (Rahman et al., 2019). In this study we describe the
effector repertoire of P. humuli with emphasis on the RXLR
family. The presence of effector transcripts across different
isolates and the expression of core effectors during infection
are also presented.

MATERIALS AND METHODS

Pathogen and Plant Material
Pseudoperonospora humuli isolate OR502AA, originally isolated
from hop in Oregon, was used in this study. For RNA-
Seq experiments, the susceptible hop cultivar, Pacific Gem
was used. Hop leaves were placed inside square petri dishes
(245 mm × 245 mm × 26 mm, Corning, Cat No. 06-
443-22) and over wet sterile paper towels. Leaves were
drop inoculated using 10 µl of a zoospores solution and
incubated at 25◦C with a 12 h light/dark cycle in a precision
plant growth chamber (Thermo Fisher Scientific, Cat No.
PR505755L). Twenty leaf disks were collected with a sterile
core borer size 4 (Humboldt Mfg., Co., H9664, Cat No.
S50166D) at 2, 3, and 4 days post inoculation (DPI). Leaf
samples were ground in liquid nitrogen with a mortar
and pestle to a fine powder and stored at −80◦C for
later RNA extraction.

RNA Extraction, Library Preparation, and
Sequencing of Pseudoperonospora
humuli
RNA was extracted from a fresh pellet of collected sporangia
and from frozen fine leaf powder samples using the Qiagen
RNeasy Plant Mini Kit (Qiagen, Cat No. 74904) and submitted
to The Genomic Sciences Laboratory at North Carolina State
University for library preparation and sequencing in an Illumina
NextSeq 500 platform (Illumina, Inc). cDNA libraries of
350 bp insert size were prepared and sequenced as described
in Withers et al. (2016). All data generated in this study is
available at the Sequence Read Archive (SRA) database under
accession PRJNA354153: SRX2363032 (2 DPI), SRX2363027 (3
DPI), SRX2363031 (4 DPI). The predicted coding genes from
P. cubensis isolate MSU1 (study number SRP011018) reported by
Savory et al. (2012b) were used for comparative sequence analysis
with P. humuli OR502AA. The nuclear genome assembly and
annotation of P. humuli OR502AA (Rahman et al., 2019) can
be found under GenBank accession PRJNA354153, and figshare

https://figshare.com/s/5cfeda89bd3d29f3d259 and https:
//figshare.com/s/35951fc4569554efdc34, respectively.

Phylogenetic Analysis of Nuclear Genes
A phylogenetic analysis was conducted with a concatenated set
of 362 Core Eukaryotic Genes (CEGs) obtained by CEGMA
version 2.5 (Parra et al., 2007) following methods by Sharma
et al. (2015) with modifications. The 362 single-copy CEG genes
from P. humuli OR502AA were used to extract homologs shared
among 11 oomycete species The oomycete species included:
P. cubensis MSU1 (Savory et al., 2012b), P. tabacina 968-J2
(Derevnina et al., 2015), P. halstedii BLA4 (Sharma et al., 2015),
H. arabidopsidis EMOY2 (Baxter et al., 2010), P. infestans T30-
4 (Haas et al., 2009), Phytophthora ramorum PR102a (Tyler
et al., 2006), P. sojae P6497 (Tyler et al., 2006), Pythium
ultimum BR144 (Levesque et al., 2010), Albugo laibachii NC14
(Kemen et al., 2011), and Saprolegnia parasitica CBS223.65 (Jiang
et al., 2013). All genomes, except for P. tabacina, are available
at the Fungi and Oomycete Genomics Resources Database1

and Ensembl2. The P. tabacina genome data was obtained
by courtesy of R. Michelmore. Multiple sequence alignments
were performed using MUSCLE version 3.8.31 (Edgar, 2004)
and subsequently concatenated using custom scripts. Maximum
likelihood phylogenetic analysis was done with RAxML version
8.2.4 (Stamatakis et al., 2005), with 1000 bootstrap replicates.

Identification of the Secretome
The 18,656 predicted proteins of P. humuli from published
genome assembly by Rahman et al., 2019 were evaluated for the
presence of signal peptides using SignalP version 2.0 (Nielsen
et al., 1997) and for the absence of transmembrane domains with
TMHMM version 2.0 (Krogh et al., 2001). Secreted proteins with
a SignalP HMM score >0.9, NN cleavage site within 10 and
40 amino acids (aa), and no transmembrane domains found at
>40 amino acids away from the starting amino acid methionine,
were selected. The gene calls originally inferred from genome
assembly for P. cubensis MSU1 reported by Savory et al. (2012b)
were revised in this study using a BLASTN search against the
NCBI nucleotide database with a cutoff sequence coverage of 90%
and a percentage of identity of 90% to remove contaminating
sequences. The remaining filtered gene calls of P. cubensis MSU1
were then analyzed for potential secreted proteins as described
above for P. humuli. Apoplastic effectors were predicted using
ApoplastP (Sperschneider et al., 2017). CAZymes were predicted
using the dbCAN2 metaserver (Zhang et al., 2018). Effectors
were functionally annotated using Blast2GO and BlastP searches
against NCBI nr databases using an e-value of 1e-0.5.

RXLR Effector Annotation
The presence of RXLR motifs on secreted proteins was
determined with custom scripts as described by Win et al. (2007)
with some modifications. RXLR effectors were annotated as such
when: the RXLR motif was present within 25 and 110 amino
acids, the RXLR position was higher than the NN cleavage

1https://fungidb.org/fungidb/
2http://protists.ensembl.org/index.html
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site, and the signal peptide length was 10–40 amino acids.
We also used the WY domain hidden markov model (HMM)
model described by Boutemy et al. (2011) to predict proteins
carrying this motif downstream of the RXLR, RXLR-like motif,
EER, and EER-like motifs. Proteins were permuted using the
script published by Ai et al. (2020) and each script was run
separately on the permuted proteins and the total number of
motifs predicted was averaged. Proteins were clustered using
OrthoFinder version 2.3.3 (Emms and Kelly, 2019). Sub-cellular
localization of RXLRs was predicted using DeepLoc version 1.0
(Almagro Armenteros et al., 2017).

RNA-Seq Analysis
To predict transcript evidence in different isolates of P. humuli,
Illumina RNA-Seq read data obtained from sporangia for
OR502AA and 11 other isolates used by Rahman et al. (2019)
were aligned to the coding genes of P. humuli OR502AA using
TopHat2 version 2.0.9 (Trapnell et al., 2009) with 200 bp as
the insertion length parameter. Alignments in SAM format were
obtained from TopHat2 for gene expression analysis. Absolute
read counts were calculated for each gene by using the htseq-
count script part of the HTSeq python module (Anders et al.,
2014). The reads per kilobase million (RPKM) values were then
estimated according to a published method (Mortazavi et al.,
2008). To analyze expression data of P. humuli isolate OR502AA
infecting hop leaf samples at 2, 3, and 4 DPI, SAM alignments
from TopHat2 and RPKM values from HTSeq were obtained as
described above. To estimate the expression in planta, RPKM
absolute values were transformed into log2 fold values by dividing
the RPKM data from infected leaf tissue by the RPKM values
from sporangia of OR502AA (Wagner et al., 2012). The log2
values were used to generate heatmaps using the R package
pheatmap. Upset plots were generated using the R package
UpsetR (Conway et al., 2017).

Quantitative RT-PCR
Quantitative RT-PCR was performed using gene-specific
oligonucleotides. Tissue was collected and RNA was extracted
as described in Sections “Pathogen and Plant Material” and
“ RNA Extraction, Library Preparation, and Sequencing of
Pseudoperonospora humuli.” PCR was performed in a CFX96
TouchTM Real-time system (Bio-Rad Laboratories, Inc.) using a
PowerUpTM SYBRTM Green Master Mix (Applied Biosystems).
Gene-specific primers (Supplementary Table S1) were
generated using Primer3 (Untergasser et al., 2012). P. humuli
actin (Phum_OR502AA_v1_g_08820), Glycerol-3-phosphate
dehydrogenase (Phum_OR502AA_v1_g_18083), and ubiquitin-
conjugating enzyme E2 (Phum_OR502AA_v1_g_00443) were
used as reference genes and the values were averaged for
calculation. 11Ct values were calculated for each time-
point using the expression in sporangia as a control by the
method published by Livak and Schmittgen (2001) with the
slight modification of the initial 1Ct being calculated as
1CT = CT(reference gene)-CT(target gene) in order to obtain
positive values. RT-qPCR was performed three times with
independent biological replicates. P-values were calculated by a
paired t-test using the GraphPad Prism 8.00 software for Mac.

RESULTS

Phylogenetic Relationship of
Pseudoperonospora humuli With Other
Oomycetes
The genome of P. humuli showed a 97.8% complete and 98.8%
partial completeness based on the coverage of eukaryotic genes
(Rahman et al., 2019) described in the CEGMA pipeline (Parra
et al., 2007). We generated a nuclear phylogenetic tree of P.
humuli with the 10 other oomycete species listed in Section
“Phylogenetic Analysis of Nuclear Genes” using 362 of the core
eukaryotic housekeeping genes described by Parra et al. (2007),
P. humuli and its sister species P. cubensis were clustered in a
group with maximum bootstrap support confirming their close
relationship (Figure 1). Other DM pathogens such as P. tabacina,
and the Arabidopsis DM H. arabidopsidis formed sister groups
and separated themselves from the sunflower DM pathogen
P. halstedii and Phytophthora species.

Pseudoperonospora humuli Secretome
and Apoplastic Effectors
For in silico prediction of the P. humuli secretome, we used
the 18,656 predicted proteins published by Rahman et al.
(2019). SignalP v2 was used for the prediction of proteins
containing signal peptides since it was noted to be more
sensitive for oomycete effectors in comparison to newer versions
(Sperschneider et al., 2015b). Using the presence of signal peptide
and the absence of a transmembrane domain as criteria, 1,250
secreted proteins were predicted in P. humuli (Supplementary
Table S2). Since apoplastic effectors do not have distinguishing
motifs, the machine learning tool ApoplastP (Sperschneider
et al., 2017) was used to predict apoplastic effector candidates
in the P. humuli secretome. Among the predicted secreted
proteins, 321 proteins were predicted as apoplastic proteins
(Supplementary Table S3).

FIGURE 1 | Pseudoperonospora humuli and Pseudoperonospora cubensis
phylogenetic clade generated from conserved nuclear genes. Phylogenetic
tree constructed with 362 nuclear core eukaryotic genes (CEGs) sharing
homology among 11 oomycetes. CEG genes were aligned with Muscle
(Edgar, 2004) and the maximum likelihood tree was generated with RAxML
program (Stamatakis et al., 2005), with 1,000 bootstrap replicates.
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The predicted apoplastome was classified into known classes
of effectors (Figure 2A). CAZymes formed the largest class of
apoplastic effectors in P. humuli (Figure 2A and Supplementary
Table S3). Of the five known classes of CAZymes: carbohydrate
esterases (CE), glycoside hydrolases (GH), glycosyltransferases
(GT), polysaccharide lyases (PL), and auxiliary activity (AA)
(Levasseur et al., 2013), P. humuli had only CEs, GHs, and AAs
(Supplementary Table S3). The P. humuli apoplastic effector
suite also consisted of 32 enzyme inhibitors of which five
were protease inhibitors (Figure 2A). All the identified protease
inhibitors in P. humuli belonged to the Kazal-like serine protease
inhibitor family. Four of the predicted protease inhibitors in P.
humuli had a single Kazal-like domain (Supplementary Figures
S1A,B). The remaining protease inhibitor had five Kazal-like
domains (Supplementary Figure S1B). Glucanase inhibitors
formed the other abundant class of enzyme inhibitors of which
there were 27 proteins in P. humuli. The P. humuli glucanase
inhibitors had degenerate amino acids at the catalytic triad
positions H57, D102, and S195 (Supplementary Table S3).

The P. humuli apoplastic effector suite had 24 necrosis
and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs).
However, the NLPs in P. humuli had highly degenerate
heptapeptide “GHRHDWE” motifs (Supplementary Figure S2).
Other predicted P. humuli apoplastic effector classes were elicitin
proteins, sperm coat protein (SCP)-like extracellular proteins,
and a myriad of proteins of unknown function (Figure 2A and
Supplementary Table S3).

Since P. cubensis and P. humuli are sister species, the
secretome of P. cubensis was also analyzed. The published
proteome of P. cubensis (Savory et al., 2012b) was revised
using a BLASTN search to remove genes of contaminating
microorganisms. Bacterial genes with similarity to common
prokaryotes found in the phyllosphere such as Xanthomonadales,
Burkholderiales, and Pseudomonadales were found in the
P. cubensis secretome and were removed. Other eukaryotic
metazoan contaminants (Laurence et al., 2014) were also
removed. Overall, we removed 5,849 gene contaminants out of
23,522 (Supplementary Table S4) coding genes predicted for
P. cubensis, leaving the final P. cubensis protein count as 17,673.
Of these, 941 genes were predicted to be secreted proteins using
the same pipeline that was employed for P. humuli secretome
prediction (Supplementary Table S5). ApoplastP predicted
216 proteins as putative apoplastic effectors (Supplementary
Table S6). The numbers of the apoplastic effector classes were
reduced in P. cubensis as compared to P. humuli (Table 1).
Cluster analysis of apoplastic effectors of the two species
showed that there were 122 clusters common to P. humuli and
P. cubensis. P. humuli had more singletons than P. cubensis
(Supplementary Figure S3A).

Cytoplasmic Effectors in
Pseudoperonospora humuli
Rahman et al. (2019) predicted a total of 189 putative RXLR-like
effector candidates and 49 CRinkling and Necrosis (CRN)-like
candidates (with or without signal peptides) from P. humuli. We
re-examined the genome of P. humuli using a comprehensive

in silico string search and similarity analysis to expand the P.
humuli cytoplasmic effector repertoire. Our analysis revealed
a total of 296 RXLR-EER and RXLR-EER-like cytoplasmic
effector candidates in the P. humuli secretome, including those
proteins that contained non-canonical RXLR and/or EER motifs
(Figure 2B and Supplementary Table S7). Among the predicted
RXLR-like effector candidates, a large number of these effectors
contained RXLR and EER motifs (Figure 2B). Several of these
effectors contained non-canonical EER motifs (Supplementary
Table S7). There were 35 QXLR motif-containing effectors in
P. humuli including some that contained only a QXLR motif
and lacked an EER (Figure 2B). Degeneracy in the RXLR
motif was observed in some effectors, with changes in the
first and the second arginine residues. Proline (P) and lysine
(K) were common substitutes for R in the first position while
glutamine (G) and K were common in the second position
(Supplementary Table S7).

We used the previously published HMM model (Boutemy
et al., 2011) to search for WY domains in the identified RXLRs
in P. humuli. 154 out of the identified 296 RXLRs had one or
more WY domains. An interesting observation was the high
number of WY-EERs in P. humuli (Figure 2B). Of the 154
WY domain-containing effectors, 74 were WY-EERs (Figure 2B
and Supplementary Table S7). It has been proposed previously
(Wood et al., 2019) that an HMM search for WY domains
in the whole secretome is an important step in oomycete
effector prediction to identify additional effectors that are not
revealed in RXLR-EER string searches. However, an HMM search
of the P. humuli secretome failed to reveal additional WY
effector candidates.

The sub-cellular localization of the 296 RXLR candidates was
predicted using Deeploc v1 (Almagro Armenteros et al., 2017).
There were 140 proteins that were predicted to be localized
to the cytoplasm and 98 that were predicted to localize to the
nucleus. There were a few proteins that had predicted localization
to mitochondria, plastid, and peroxisome (Supplementary
Table S8). In contrast to P. humuli, the secretome of the sister
species P. cubensis had only 72 RXLR and RXLR-like proteins
(Supplementary Table S9). There was a considerable reduction
in number of RXLR effectors in P. cubensis as compared to P.
humuli (Table 1). Gene orthology analysis of identified effector
candidates in P. humuli and P. cubensis revealed 20 clusters that
were common to both species (Supplementary Figure S3B).

A permutation test was performed to estimate the false
discovery rate (FDR) of scripts used for analysis. The first
150 residues of the P. humuli and P. cubensis secretomes
were permuted 150 times and the average number of motifs
predicted was calculated. The FDRs for N-terminal single-
motif scripts were higher than those for double-motif scripts
as expected. FDRs were higher in P. cubensis than P. humuli
with the scripts for QXLR motifs showing a higher FDR
(Supplementary Table S10).

To identify members of the CRN (CRinkling and Necrosis)
family of effectors in P. humuli, an HMM search was performed
using a previously published HMM model (Haas et al., 2009).
The P. humuli secretome had a single candidate that possessed
an LFLAK-like (LYLARK) and an HVLVXXP-like motif. On the
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FIGURE 2 | Effectors in Pseudoperonospora humuli. (A) Classes of apoplastic effectors. Effectors were identified from the secretome by ApoplastP (Sperschneider
et al., 2017) and annotated using Blast2Go and BlastP searches. Carbohydrate active enzymes (CAZymes) were identified using the dbCAN2 metaserver (Zhang
et al., 2018). [SCP, sperm coat protein; NLPs, necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins]. (B) Classes of cytoplasmic effectors. RXLRs were
identified using the method described by Win et al. (2007) and WY motifs were predicted by a hidden markov model (HMM) search in HMMER 3.1 (hmmer.org) using
a published HMM model (Boutemy et al., 2011).
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TABLE 1 | Comparison of secretome and effector families in Pseudoperonospora
humuli and Pseudoperonospora cubensis.

Description Pseudoperonospora
humuli (OR502AAa)

Pseudoperonospora
cubensis (MSU1b)

Predicted proteins 18,656 17,673

Secreted 1,250 941

CAZymes 61 39

Glucanase inhibitors 27 5

Protease inhibitors 5 3

NLPs 24 14

Total RXLR and RXLR-like 296 72

EER/EER (like)+WY 74 12

CRN total (secreted) 53 (1) 15 (0)

aPublished annotation of P. humuli (Rahman et al., 2019) was used to predict
the secretome and effectors. bPublished annotation of P. cubensis (Savory
et al., 2012b) was filtered to remove contaminants and was used to predict the
secretome and effectors (this study). NLPs, necrosis and ethylene-inducing peptide
1 (Nep1)-like proteins.

other hand, an HMM search on the 941 P. cubensis secreted
proteins produced no hits. Since the low number of CRN effectors
was surprising, an HMM search was performed on all 18,656
predicted P. humuli proteins, which resulted in 62 hits of which
nine had no LFLAK or HVLVXXP motifs. Among the remaining
53 CRNs, 20 had both LFLAK-like and HVLVXXP-like motifs
(Table 1 and Supplementary Table S11). Apart from these, there
were 24 proteins with only an LFLAK-like domain and nine with
only an HVLVXXP-like motif. However, only one of them had a
SignalP HMM probability >0.9. P. cubensis, on the other hand
had only 15 CRNs with an LFLAK-like and/or or an HVLVXXP-
like motif but none had a predicted signal peptide (Table 1 and
Supplementary Table S12).

Sporangial Expression of Effectors in
Different Pseudoperonospora humuli
Isolates
Core effectors that are expressed across different isolates may be
good candidates for effector-assisted breeding. For this reason,
we looked for RXLRs that have conserved transcript evidence in
different P. humuli isolates. RNA-Seq performed on sporangia of
the P. humuli isolate OR502AA and eight others used by Withers
et al. (2016) were used to study the presence of transcripts of the
predicted effector-encoding genes. In addition, we also used the
three isolates NY507570BC, NC18668CAS, and NC18668GAL
used by Rahman et al. (2019). Of the total 18,656 predicted
genes in P. humuli, we found transcript evidence with an
RPKM value > 0 for 10,536 genes in all the sequenced isolates
(Supplementary Figure S4A and Supplementary Table S13).
Of the 1,250 predicted secreted proteins, 754 showed transcript
evidence (Supplementary Figure S4B), out of which, 171 were
apoplastic effectors (Supplementary Figure S5). Two hundred
one out of the predicted 296 RXLR genes exhibited transcript
evidence in all the tested isolates (Figure 3). The expression level
of the 201 common effectors was analyzed across the isolates
(Supplementary Figure S6). Drastic differences in sporangial
expression were not observed across the isolates tested. We

investigated differences in transcript presence/absence based on
the geographical location from which sporangia were collected.
There were 85 genes that did not show transcript evidence in
the two isolates collected from North Carolina (Supplementary
Figure S4A). Out of these, two were genes coding for secreted
apoplastic effectors (Supplementary Figures S4A, S5). Apart
from this, we did not observe any notable similarities or
differences in isolates collected from different cultivars or
geographical locations.

Pseudoperonospora humuli Effectors
That Are Expressed During Infection
The susceptible hop variety Pacific Gem was infected with the P.
humuli isolate OR502AA and tissue was harvested at 2, 3, and 4
DPI and sequenced for expression profiling. Out of the 18,656
predicted genes, 1,381 were upregulated (log2 fold value ≥ 2)
at all time-points post inoculation (Supplementary Table S14).
There were 197 genes that were upregulated only at 2 DPI
out of which 23 were uniquely expressed (log2 value 0 at 3
DPI and 4 DPI). Likewise, out of the 168 genes upregulated
at 3 DPI, 57 were uniquely expressed and of the 190 genes
upregulated at 4 DPI, 82 were uniquely expressed. Among the
321 predicted apoplastic effectors, 64 showed upregulation at
all time-points (Supplementary Figure S7 and Supplementary
Table S14). Glucanase inhibitors as a class were notable among
the upregulated apoplastic effectors. It was also interesting to note
that seven among the 11 upregulated glucanase inhibitors showed
transcript presence in all the P. humuli isolates tested, suggesting
the importance of this class of apoplastic effectors in infection
(Supplementary Figure S7 and Supplementary Table S14).

The expression pattern of cytoplasmic effectors at different
time-points was also analyzed. The single CRN gene with a
predicted signal peptide (Phum_OR502AA_v1_g_03069) did not
show upregulation at any time-point. Out of the 296 predicted
RXLR effectors, 62 were upregulated (log2 values≥ 2) at all time-
points. It was interesting to observe that most of the expressed
effectors showed consistent levels of expression across the time-
points tested (Supplementary Figure S8). There were 6, 4 and 6
upregulated effectors each at 2 DPI, 3 DPI, and 4 DPI, respectively
(Supplementary Figure S8 and Supplementary Table S14). The
gene Phum_OR502AA_v1_g_16070 was uniquely expressed at 4
DPI (Supplementary Figure S8 and Supplementary Table S14).
Since P. humuli showed an expansion of WY-motif containing
effectors with EER or EER-like domains, we were specifically
interested in the expression profile of that class. Of the 74 EER-
like effectors with one or more WY motifs, 10 were upregulated
at all time-points (Supplementary Table S14).

There were 75 core effectors in P. humuli that were
upregulated during infection and were present in all the isolates
tested (Supplementary Table S15). This list included both
apoplastic and cytoplasmic effectors. RXLR-EERs with no WY
domains and glucanase inhibitors were the largest class in this list.

The expression patterns of selected genes were validated
by quantitative RT-PCR. Randomly selected RXLR genes and
apoplastic effector-encoding genes were analyzed for their
expression patterns. CRN genes were not selected for qPCR since
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FIGURE 3 | Upset plot showing the trend of effector transcripts in the sporangia of Pseudoperonospora humuli isolates. RNAseq reads from sequenced sporangia
of different isolates were mapped to P. humuli gene calls (Rahman et al., 2019) using TopHat version 2.0.6 (Trapnell et al., 2009). Reads were counted using the
HTSeq python module (Anders et al., 2014) and reads per kilobase million (RPKM) values were calculated. An RPKM > 0 was used to indicate the presence of a
transcript. The plot was generated using the R package UpsetR (Conway et al., 2017).

the only CRN with a predicted signal peptide did not show
elevated expression in RNA-seq data. All genes showed significant
upregulation at all time-points with patterns comparable to those
seen in the RNA-seq data (Figure 4).

DISCUSSION

Effector Content in Pseudoperonospora
humuli and Pseudoperonospora
cubensis
Our analysis predicted that 1,250 out of 18,656 (6.69%) proteins
in P. humuli were secreted as compared to 941 out of 17,673
(5.32%) in P. cubensis. Despite similar secretome sizes between
P. humuli and P. cubensis, there was an increased number of
predicted effector proteins in P. humuli. The apoplastic effector
content in P. humuli was much higher than in P. cubensis with

a notable increase in glucanase inhibitors and CAZymes. The
most astonishing increase in the number of effectors between
P. humuli and P. cubensis, however, was observed in the RXLR
class of effectors, especially in the number of WY-EERS. Also,
despite the close phylogenetic relationship between P. humuli
and P. cubensis, the number of orthologous RXLRs were few.
This lack of orthology between species of the same genus is not
surprising considering the high divergence in the RXLR family
that has previously been reported in Phytophthora spp., with P.
sojae and P. ramorum having a low number of shared orthologs
(Jiang et al., 2008). Moreover, P. cubensis has most likely arisen
due to a host jump from P. humuli and it has been suggested
that loss of effectors required for hop colonization has possibly
occurred in P. cubensis following the pathogen’s adaptation to a
new host (Runge and Thines, 2012). It is also interesting to note
that gene loss associated with host jumps may be due to the loss
of genes that do not have targets in the new host (Sharma et al.,
2014; Thines, 2019). There was a large reduction in the number
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FIGURE 4 | Comparison of RNAseq and RT-qPCR expression values of selected effector genes in different time-points of Pseudoperonospora humuli infection of
hop. RNA-seq expression levels are depicted in log2 values of reads per kilobase million (RPKM) values. RT-qPCR expression levels are represented as mean 11CT
values from three independent biological replicates. *P-value < 0.05, **P-value < 0.01, ***P-value < 0.001, ****P-value < 0.0001. P-values were calculated using a
paired t-test in the GraphPad Prism 8.00.

of RXLRs in P. cubensis in our analysis from the earlier predicted
271 RXLRs (Savory et al., 2012a). However, differences in the
pipelines used for genome annotation and effector prediction in
the two taxa cannot be ruled out. Moreover, oomycete effectors
are known to reside in repeat-rich regions (Raffaele and Kamoun,
2012). Due to the inherent difficulties associated with assembling
repeat-rich regions with short-read sequencing technologies like
Illumina, some effector genes may be missing from the prediction
performed in this analysis. Nevertheless, the number of effectors
predicted in P. humuli is comparable to the numbers found in
other sequenced DM pathogens (Derevnina et al., 2015; Sharma
et al., 2015; Dussert et al., 2019).

The variation in numbers between P. humuli and P. cubensis
could also be attributed to our initial filtering for contaminants
in the P. cubensis proteome. The presence of contaminants is not

surprising in next generation sequencing data from biotrophic
pathogens like P. cubensis and P. humuli (Laurence et al., 2014;
Rahman et al., 2019). The finding of bacterial sequences in the
P. cubensis proteome affirms the need for specialized laboratory
protocols that account for the phyllosphere microbiome and
stringent bioinformatics filtering in initial steps when dealing
with the genomic data of biotrophic pathogens (Klein et al.,
2019). With the range of sequencing technologies now available,
resequencing the P. cubensis genome with clean material and the
use of in silico methods to remove contaminants might result in
more accurate RXLR predictions.

The permutation test revealed a higher FDR for proteins with
positional constrained N-terminal single-motif scripts, especially
for proteins with the prediction of QXLRs motifs. It is therefore
important to validate the veracity of effector proteins containing
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degenerate RXLR motifs such as QXLR that lack a downstream
EER motif with experiments such as quantitative RT-PCR before
they are used for further functional studies.

Apoplastic Effectors of
Pseudoperonospora humuli
In this study, we predicted the putative apoplastic effectors in
the P. humuli secretome using the tool ApoplastP (Sperschneider
et al., 2017). Unlike oomycete cytoplasmic effectors such as
RXLRs and CRNs, apoplastic effectors do not have conserved
motifs that can be used for in silico prediction. Hence, apoplastic
effectors have been traditionally discovered through experimental
methods like proteomics (Delaunois et al., 2014) and microscopic
analysis (Doehlemann and Hemetsberger, 2013), which are
time consuming. ApoplastP has limitations as an in silico
prediction tool, hence, predicted apoplastic effectors need to be
experimentally verified before downstream applications.

Pseudoperonospora humuli proteins predicted to be secreted
to the host apoplast included known enhancers of necrotrophy
and elicitors of microbe associated molecular pattern (MAMP)
responses. For example, NLPs belong to a gene family that
induces cell death and their role has been indicated in the
switch from the biotrophic to necrotrophic phase in P. infestans
(Qutob et al., 2002). The presence of NLPs in a biotrophic
pathogen was surprising, however, they have been previously
predicted in other DM pathogens like H. arabidopsidis (Baxter
et al., 2010; Cabral et al., 2012), P. tabacina (Derevnina
et al., 2015), and P. halstedii (Sharma et al., 2015). Similar
to NLPs in H. arabidopsidis, the P. humuli NLPs also had
highly degenerate catalytic domains suggesting that they are
non-cytotoxic proteins (Cabral et al., 2012). Unlike NLPs
in H. arabidopsidis, which are expressed during infection
(Cabral et al., 2012), only three of the 24 P. humuli genes
(Phum_OR502AA_v1_g_00914, Phum_OR502AA_v1_g_18234,
and Phum_OR502AA_v1_g_19197) showed elevated expression
in planta. However, variation in the time-points tested could have
contributed to this discrepancy since the highest expression in H.
arabidopsidis was observed during the early stages of infection
(Cabral et al., 2012). Even though the importance of NLPs in
DM pathogens is yet to be defined, their conservation among
the different species suggests a possible role in pathogenicity. In
H. arabidopsidis, NLPs also act as MAMPs and trigger immune
response (Oome et al., 2014), which could be a possible reason
for their predicted secretion and localization to the apoplast.
Elicitins are another class of pathogen-secreted proteins that
act as MAMPs (Derevnina et al., 2015; Raaymakers and den
Ackerveken, 2016). Despite their negative role in pathogenicity,
MAMPs like elicitins are important in disease resistance as
evidenced by the successful transfer of elicitin-induced resistance
against late blight to cultivated potato (Du et al., 2015). For this
reason, we deemed it necessary to include proteins like NLPs and
elicitins in the P. humuli effectorome, keeping with the definition
of effectors as any pathogen-secreted molecules that induce or
suppress plant responses (Vleeshouwers and Oliver, 2014).

CAZymes have been observed in several species of
Phytophthora (Ospina-Giraldo et al., 2010; Brouwer et al.,
2014) and Pythium (Zerillo et al., 2013) and their role in

pathogenicity by the degradation of the cell-wall has been
discussed in oomycete (Ospina-Giraldo et al., 2010; Zerillo
et al., 2013) and fungal (Lyu et al., 2015) pathogens. The
presence of CAZymes in the genome of pathogens alone
does not implicate their role in pathogenesis since they could
also be involved in the degradation and/or modification of
the pathogen cell wall. However, the inclusion of CAZymes
in the predicted apoplastic effector repertoire of P. humuli
and the elevated expression of some members of the class
indicates their possible role in pathogenesis. It is interesting
to note that in previous studies CAZymes had shown elevated
expression in P. cubensis during different stages of infection
(Savory et al., 2012a).

The plant apoplast is a barrier that the pathogen has to
overcome in order to establish infection. Host-secreted endo-
β-1,4-glucanases induce the release of glucan elicitors that are
recognized by host cell-surface receptors to activate immunity
(Rose et al., 2002). Glucanase inhibitors, which are serine
protease homologs that inhibit secretion of the plant endo-β-
1,4-glucanases, are abundant in P. infestans (Damasceno et al.,
2008) but have not been well-described in other sequenced
DMs. However, the high number of glucanase inhibitors
in P. humuli and their elevated expression during infection
implicates their role in pathogenesis. Protease inhibitors were
also identified in P. humuli. Three of the predicted protease
inhibitors in P. humuli had a single Kazal-like domain that
shared similarity to the EPI1b domain of the P. infestans
EPI1 protein (Tian et al., 2004). However, none of these
three proteins showed elevated expression during infection. The
protease inhibitor with five Kazal-like domains, on the other
hand, showed transcript evidence in all the isolates and elevated
expressions during infection. The other two protease inhibitors
showed elevated expression during infection and the expression
pattern of Phum_OR502AA_v1_g_09230 was confirmed using
quantitative RT-PCR as well.

Cytoplasmic Effectors in
Pseudoperonospora humuli
The oomycete cytoplasmic RXLR and CRN effector classes are
well-documented mainly due to their modular nature. CRNs
are an ancient class of effectors that have been identified across
phylogenetically diverse oomycete species (Schornack et al.,
2010). The CRNs are a large family of effectors in P. infestans
(Haas et al., 2009). In P. humuli, however, only a single CRN
was identified in the secretome. A search for CRNs in the total
proteome yielded more CRN candidates that contained LFLAK-
like and/or HVLVXXP motifs, however these did not contain
signal peptides. This trend has been observed in other DM
CRNs (Derevnina et al., 2015; Sharma et al., 2015; Fletcher et al.,
2018). The fewer CRN content in DM pathogens could indicate
an adaptation to biotrophy since CRNs are known to induce
necrosis, a trait that is not conducive for biotrophy. Intriguingly,
oomycetes are known to use unconventional secretion pathways
to secrete CRNs lacking a classical signal peptide (Meijer et al.,
2014), suggesting that the identified CRNs in P. humuli might
be secreted even though they lack a classical secretion signal.
Unfortunately, there are no existing reliable algorithms for the

Frontiers in Genetics | www.frontiersin.org 10 August 2020 | Volume 11 | Article 910

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00910 August 7, 2020 Time: 19:8 # 11

Purayannur et al. Pseudoperonospora humuli Effectors

prediction of unconventionally secreted proteins in fungi and
oomycetes (Sperschneider et al., 2015a).

Effectors containing the N-terminal RXLR-EER motif are the
best-understood pathogenicity factors of Phytophthora spp. and
DM pathogens. P. humuli had a total of 296 RXLR and/or
EER-domain containing proteins. This number includes proteins
containing degenerate RXLR or EER domains. A non-canonical
QXLR motif has been observed among cytoplasmic effectors
in P. cubensis (Tian et al., 2011; Savory et al., 2012a) and B.
lactucae (Wood et al., 2019). The high number of QXLRs in
P. humuli reiterates their significance in DM pathogens. Some
RXLRs are distinguished by the presence of a C-terminal α-helical
fold known as the WY domain (Jiang et al., 2008; Boutemy
et al., 2011). Traditionally, prediction of RXLR effectors had been
based on the presence of the RXLR and the EER motif. However,
recently, the presence of WY domain containing EER effectors
have been identified in DM pathogens (Derevnina et al., 2015;
Combier et al., 2019; Wood et al., 2019). The expansion of WY-
EER effectors in P. humuli further affirms the importance of this
class in DM pathogens. Intriguingly, WY-EERs form the largest
class of effectors in P. humuli outnumbering even the classical
RXLR-EERs. In the light of the overrepresentation of WY-EERs
in P. humuli, we reiterate previous recommendations to include
HMM searches for WY domains as a key criterion to identify
effectors in oomycetes and especially DM pathogens (Derevnina
et al., 2015; Wood et al., 2019).

The P. humuli RXLR-EER gene Phum_OR502AA_v1_g_06904
showed transcript evidence in all the 12 isolates and elevated
expression in RNA-seq and RT-qPCR. A BLASTp search
did not show obvious homology to any known protein
except for a weak similarity (25.8 percentage identity) to
a bacterial shikimate kinase. The lack of homology to
known RXLRs is not surprising since RXLRs are a class
of diverse proteins that show a high level of sequence
divergence outside of the conserved N-terminal RXLR and EER
motifs (Win et al., 2012). Despite the lack of an apparent
function, the core nature of Phum_OR502AA_v1_g_06904
across the P. humuli isolates and its high expression during
infection may indicate a role during the host-pathogen
interaction making it a good candidate for downstream
functional analysis.

Core Effectors of Pseudoperonospora
humuli
Natural sources of DM resistance in hop are rare and for
this reason, identifying new sources of resistance is a priority
(Woods and Gent, 2016). However, breeding for resistance to
DM is a laborious and time-consuming process, especially in
a perennial crop sensitive to inbreeding depression (Henning
et al., 2004). Pathogen effectors can be used to accelerate disease
resistance through effector-assisted breeding (Vleeshouwers and
Oliver, 2014) and loss of susceptibility breeding (Pavan et al.,
2010). However, core effectors that are conserved across different
isolates need to be validated in order to make an informed
choice on the candidate effector that is selected. Effectors that
are present in various pathogen isolates and also expressed

during infection are considered core effectors, which are key
to identifying broad spectrum and durable plant resistance
genes (Jones et al., 2014; Vleeshouwers and Oliver, 2014).
The P. humuli effectorome contained effectors that exhibited
transcript evidence in all P. humuli isolates and showed
enhanced expression during infection. We propose that these
core effectors are ideal candidates for downstream functional
analysis aiming toward the identification of robust sources of
resistance to DM in hop.
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