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Introduction 

Climate change and carbon neutrality have become key 
topics in extensive livestock industries in recent years as man-
kind attempts to meet its commitments to restricting global 
warming (United Nations, 2015). Initial impressions are that 
extensive livestock systems involving low cattle stocking rates 
over large rangeland areas are inefficient and produce more 
greenhouse gases (GHG) per harvested animal compared with 
intensive systems. Extensive livestock enterprises are often lo-
cated in dry geographical areas with increasingly inconsistent 

rainfall, making them vulnerable to the impacts of climate 
change (Huang et al., 2017). Changing and more variable cli-
mates require producers to adapt their management practices 
to remain sustainable and increase enterprise resilience (Rust, 
2019). In these environments, understanding the relationship 
between nutrient availability and animal performance is vital.

Key constraints to mitigating the effects of climate change 
in extensive livestock enterprises are the sheer scale of oper-
ations, their low input management strategies, and the logis-
tical inability to collect production and environmental data 
on a regular basis. However, the advent of the precision tech-
nology revolution has provided a wide range of opportunities 
to capture high-value data in these extensive livestock enter-
prises. This is being realized in intensive livestock systems 
(González et al., 2018) and cropping enterprises (Shafi et al., 
2019; Oliveira et al., 2020) but is yet to reach its full potential in 
the extensive livestock sector.

Advances in the genetic potential of beef cattle, and the in-
corporation of Bos indicus breeds, have extended the reach of 
beef enterprises into more marginal agricultural regions. The 
question now remains how we can utilize these cattle to gen-
erate profits for producers from these highly variable rangelands 
through precision livestock management (PLM) while at the 
same time conserving this fragile ecosystem. Subtropical and 
tropical grasslands account for a substantial portion of the 
world’s available arable land. Humankind must continue to im-
prove sustainable food production systems to feed the world’s 
projected 9.8 billion people by 2050. Our objective is to identify 
the major advances in PLM technologies that allow mankind 
to achieve this outcome.

The scope of PLM
PLM is not a new concept. It has allowed the beef producer 

to progress from being paid dollars per head, to dollars per 
kilogram carcass weight, and from locating cattle via the sound 
from a cowbell to the use of Global Positioning System (GPS). 
Although PLM has developed over time and greatly increased 
productivity in intensive livestock systems, the next gener-
ation of PLM technologies, such as on-animal sensors (i.e., 
“smart-tags”), off-animal sensors (i.e., walk-over-weigh), and 

Implications

•	 Precision livestock management (PLM) technologies 
will allow producers to learn more about the limits to 
production efficiency on their enterprise. 

•	 From this information, producers will be able to make 
more assertive decisions to improve enterprise efficien-
cies and reduce greenhouse gas emissions.

•	 PLM technologies will allow producers to access new 
markets and incentive programs which will increase en-
terprise revenue.

•	 Leveraging PLM technologies will increase the envir-
onmental sustainability of enterprises, ensuring produ-
cers retain social license to operate.

•	 Future software will need to be capable of integrating 
the multiple data streams being produced to maintain 
on-property financial and environmental resilience.
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remote sensors (i.e., satellite imagery), will provide opportun-
ities for extensive livestock industries to significantly increase 
the granularity of data and allow management decisions to be 
based on a greater diversity of more informative descriptors 
of production efficiency. Reductions in labor requirements also 
cannot be discounted. PLM technologies provide livestock en-
terprises with high-resolution and high-frequency data streams 
which are currently difficult or unrealistic to obtain in exten-
sive systems. PLM technologies also exist for the physical man-
agement of cattle in extensive systems. Commercially available 
management options include automated drafting, virtual fen-
cing, and drone mustering. These technologies are also likely to 
be beneficial through labor reductions. However, in this article, 
we focus on technologies that increase the granularity of pro-
duction system information to inform management decisions.

Berckmans (2017) suggested that PLM technologies will 
deliver increased efficiency and sustainability in livestock pro-
duction while also improving welfare outcomes and enabling 
traceability of product along the supply chain. Despite slow pro-
gress over the last decade, demand-led innovation has seen the 
formation of numerous AgriTech businesses that supply PLM 
products into the extensive livestock marketplace, suggesting a 
potential period of industry emergence and maturation.

A developing market exists for PLM technologies in miti-
gating the impacts of climate change in extensive livestock 
enterprises. Government organizations and industry bodies 
are increasingly developing policy that moves toward carbon 
neutrality (Alves et al., 2017; Slade, 2018; Red Meat Advisory 
Council, 2020). These policies either incentivize carbon reduc-
tion or penalize GHG emissions. PLM technologies can lead 
the way under both incentive and penalty scenarios through 
improving production efficiencies, automating access to carbon 
abatement schemes, or increasing market access through 
validating climate positive livestock products.

Sustainable Production through Resilient 
Livestock Enterprises

PLM technologies allow for objective and more frequent 
observation of traditional performance measures. Using PLM 
technologies, there is potential for producers to know the lo-
cation of their livestock (Bailey et  al., 2018) or be alerted 
during dog predation events (Manning et al., 2014) using GPS. 
Producers can measure how their livestock are performing 
using walk-over-weigh or partial-weigh technologies in real 
time (Menzies et al., 2018; Cantor et al., 2020), and any disrup-
tions to performance can be investigated using accelerometers 
to assess physical activity which may be indicative of disease 
(Tobin et al., 2020), birth events (Chang et al., 2020; Fogarty 
et al., 2020), or even to monitor rumination behavior (Wolfger 
et al., 2015) and predict feed intake (Greenwood et al., 2017). 
Supplementary data streams that provide environmental infor-
mation are also available for integration (Fogarty et al., 2021). 
For example, multispectral imagery can estimate the amount 
of available forage at varying spatial resolutions (Handcock 
et al., 2016), and weather station mesh networks can provide 

information to predict pasture growth at the sub-paddock level 
and alert producers to risk periods for heat stress. Past the farm 
gate, on-animal sensors can provide information on the impact 
of extreme heat or cold events during transport and lairage 
(Rashamol et al., 2019). These technologies are a reality now, 
and commercial devices are becoming available for incorpor-
ation into extensive livestock enterprises.

The greatest value from PLM technologies will be real-
ized when combinations of data streams across a property 
and supply chain are leveraged to inform decision-making. 
Research is yet to generate models that could be incorporated 
into commercial platforms, but increasingly, authors are noting 
their potential (Tedeschi et  al., 2021). Through analysis and 
predictive modeling, integrated PLM data streams could pro-
vide producers with an information-dense online interface that 
offers real-time data pertinent to maintaining a high-efficiency 
enterprise, thus reducing GHG emissions.

PLM data streams with interpretive modeling could monitor, 
forecast, and validate livestock productivity and feed base avail-
ability at a sub-paddock level. These data would inform day-
to-day management, accurately estimating viable stocking rates 
and providing rapid alerts where interventions such as pad-
dock movements or supplementation are required to maintain 
sustainable levels of productivity. Forecasted production data 
could also alert producers when livestock are approaching exit 
weights, ensuring producers are not penalized for missing speci-
fication or maintaining livestock unnecessarily. The removal of 
individual animals not achieving production specifications from 
extensive beef production enterprises will assist with enter-
prise profitability. Using the phenotypic data captured through 
whole-of-system and supply chain monitoring, producers could 
select for highly efficient and resilient livestock within their en-
terprise. These data could also be incorporated into genetic 
evaluation platforms to progress the genetic potential of the na-
tional herd. Traits that are difficult to capture in extensive en-
terprises such as reproductive performance could become easily 
accessible, and new traits, specific to PLM technologies, such as 
grazing distribution preference would become available (Bailey 
et al., 2006). In effect, the incorporation of PLM technologies 
into extensive enterprises will provide producers with the op-
portunity to assess whole-of-system performance and use the 
captured data for benchmarking, identifying GHG emission in-
efficiencies, and increasing enterprise resilience.

Accessing New Revenue Streams and 
Retaining Social License to Operate

Carbon abatement programs
Livestock systems are responsible for approximately 15% of the 

global GHG emission (Gerssen-Gondelach et al., 2017). Abatement 
programs provide opportunities for producers to increase income 
through management and measurement of carbon emissions and 
sequestration within their enterprise. One example of this is offered 
through the Emissions Reduction Fund (ERF) in Australia (Clean 
Energy Regulator). The ERF’s beef cattle herd management project 
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incentivizes high-efficiency livestock production through regular 
monitoring of livestock growth rates and comparison to a standard 
growth rate (Department of the Environment and Energy, 2017). 
The method emphasizes the production of faster-growing livestock, 
which in turn will produce less GHG emissions during their time in 
extensive production systems (Mayberry et al., 2019). The current 
method for capturing project production data requires livestock 
to be weighed up to four times per year. Although most weighing 
events will typically coincide with other management interventions, 
there is scope to increase the frequency and ease of data capture 
with validation using PLM technologies such as walk-over-weigh or 
partial-weigh systems. Incorporating integrated PLM technologies 
into beef production systems can support decision-making to re-
duce climate impact on-farm, improve efficiency, and subsequently 
achieve levels of production that qualify for ERF incentivization. 
PLM technologies often have preexisting database infrastructure 
that would allow fast and secure transfer of performance data to 
carbon abatement schemes, giving multiple producers rapid access 
as part of their service.

Meat and Livestock Australia predicts that approximately 
US$60 million will be invested by 2030 on initiatives to capture 
revenue from carbon credits alone based on their key perform-
ance indicators, with a benefit:cost ratio of 13:1 as the potential 
investment return for each dollar (Red Meat Advisory Council, 
2020). Key constraints to accessing these incentive programs 
are the difficulty for producers to register and subsequent regu-
latory on-costs. In some incentive schemes, carbon credits can 
be aggregated across multiple enterprises. Aggregation can be 
undertaken by a third party more capable of the regulatory en-
vironment, reducing the access barriers for producers.

In contrast to substituting traditional measurement tech-
niques, opportunities exist for PLM technologies to become 

the key measurement tool for carbon abatement schemes. As 
previously described, high-resolution PLM data could be used 
to inform key measures of enterprise efficiency and employed 
to estimate subsequent carbon emissions where other types of 
measurement are impractical. Key metrics such as pasture in-
take (Greenwood et al., 2017), animal activity (Chang et al., 
2020), liveweight, mortality, and reproductive performance 
(Menzies et al., 2018) could be used to calculate an individual 
animal’s carbon emissions index, with benchmarking and 
carbon abatement amounts being calculated daily. A simplified 
diagram (Figure 1) summarizes the concept of adoption of 
PLM in conjunction with GHG abatement programs.

Reducing economic barriers to trade
Livestock industries must address the issue of GHG emis-

sions or risk losing market access and social license to operate 
(Ramirez, 2018; Red Meat Advisory Council, 2020). Access 
to new markets through branded products such as paddock-
to-plate, grass-fed, organic, and high-welfare certification has 
increased product value for some producers. Climate-smart 
animal products have begun to enter the market and indica-
tions suggest that demand will increase for ethically sourced 
products (Le, 2018). The North Australian Pastoral Company 
(NAPCo) has launched a carbon neutral product, “Five-
Founders” (North Australian Pastoral Company, 2021), while 
the Brazilian Agricultural Research Corporation (EMBRAPA) 
has promoted the system-wide concept of “Brazilian Carbon 
Neutral” beef (Alves et al., 2017). In contrast, in Canada, the 
government announced a raise in tax for high emission prod-
ucts, such as beef, as a stimulus for consumers to shift their 
consumption to lower emission alternatives (Slade, 2018). 

Figure 1. Summarized approach of data from precision technologies’ integration in carbon abatements program. Abbreviation: IoT, Internet of things.
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Consumers demand high transparency along the supply chain, 
and PLM technology could act to validate certification claims 
and provide consumers with access to end-product emission es-
timates from across the supply chain, with particular focus on 
extensive livestock systems (Alfian et al., 2017).

Research and Development Focus 
Moving Forward

Despite increasing activity in the sector, the AgriTech in-
dustry has many limitations to overcome before becoming 
commonplace in extensive livestock enterprises. The two key 
constraints—hardware limitations (including connectivity) 
and tangible value to producers—continue to limit uptake and 
adoption of PLM technologies. Research in the sector has iden-
tified multiple opportunities to improve the value proposition of 
AgriTech in extensive livestock industries (Bailey et al., 2018), 
but the incorporation of findings into commercially available 
technologies has been limited. Often their incorporation into 
the extensive industry has been considered at a higher, industry-
wide level with little consideration for the end user who must ul-
timately make the decision to invest in products on offer. These 
views have resulted in poor adoption and uptake by producers. 
The PLM technologies showing greatest promise will be those 
with tangible, real-time value for producers, while providing cli-
mate positive outcomes. This value could be added through de-
vices having several applications, for example preventing stock 
theft, monitoring grazing patterns of livestock, and detecting 
adverse health or welfare events. Devices need to be quick and 
simple to apply to fit in with normal husbandry procedures and 
they must be accessible for everyone, not just those with good 
connectivity. Adoption among producers is improved when 
they have access to accurate information. Considering social 
factors is also important. Therefore, extension activities should 
be targeted at well-respected producers in specific areas (Liu 
et  al., 2018). Climate change policy will continue to develop, 
and extensive livestock operations will be impacted. Dependent 
on strategies for carbon abatement, PLM technologies will 
inform graziers on opportunities to increase system efficiency or 
allow access to additional revenue streams. To do this, research 
and development within the scientific and commercial sectors 
need to focus on opportunities for climate impact validation. 
Moving forward, research should look to integrate the multiple 
data streams being produced on-property to allow producers to 
make the right decisions to minimize climate impact on-farm. 
Whole-of-system integration will increase opportunities for 
carbon abatement. To realize these opportunities, development 
should be undertaken collaboratively between scientific and 
commercial sectors, ensuring fit-for-purpose hardware, models, 
and software attractive to the end user.
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