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Abstract: Investigating dietary polyphenolic compounds as antitumor agents are rising due to
the growing evidence of the close association between immunity and cancer. Cancer cells elude
immune surveillance for enhancing their progression and metastasis utilizing various mechanisms.
These mechanisms include the upregulation of programmed death-ligand 1 (PD-L1) expression and
Epithelial-to-Mesenchymal Transition (EMT) cell phenotype activation. In addition to its role in
stimulating normal embryonic development, EMT has been identified as a critical driver in various
aspects of cancer pathology, including carcinogenesis, metastasis, and drug resistance. Furthermore,
EMT conversion to another phenotype, Mesenchymal-to-Epithelial Transition (MET), is crucial in
developing cancer metastasis. A central mechanism in the upregulation of PD-L1 expression in
various cancer types is EMT signaling activation. In breast cancer (BC) cells, the upregulated level
of PD-L1 has become a critical target in cancer therapy. Various signal transduction pathways are
involved in EMT-mediated PD-L1 checkpoint overexpression. Three main groups are considered
potential targets in EMT development; the effectors (E-cadherin and Vimentin), the regulators (Zeb,
Twist, and Snail), and the inducers that include members of the transforming growth factor-beta
(TGF-β). Meanwhile, the correlation between consuming flavonoid-rich food and the lower risk of
cancers has been demonstrated. In BC, polyphenols were found to downregulate PD-L1 expression.
This review highlights the effects of polyphenols on the EMT process by inhibiting mesenchymal
proteins and upregulating the epithelial phenotype. This multifunctional mechanism could hold
promises in the prevention and treating breast cancer.

Keywords: programmed death-ligand 1; Epithelial-to-Mesenchymal Transition; polyphenols; triple-
negative breast cancer; breast cancer

1. Introduction

The association between metastasis and immunity is considered a hallmark of can-
cer [1]. Cancer cell metastasis and invasion of vital organs are implicated in poor prognosis
and cancer-related deaths [2]. As the first line of defense, the anticancer immune system
can distinguish and remove these cancer cells in patients with malignancy. This mech-
anism initiates T-cell activation, controlled by T-cell receptor (TCR) mediated-signaling
pathways, and maintains the immune system homeostasis [3]. However, it has become
evident that tumor cells elude immune surveillance for enhancing their progression and
metastasis. Tumor utilizes various molecular mechanisms; one of them is the typical
immune-suppressive tumor microenvironments that weaken the immune response, al-
lowing an uncontrollable proliferation of cancer cells. More importantly, cancer cells
acquire mesenchymal phenotypes that can induce immunosuppression via Epithelial-to-
Mesenchymal Transition (EMT).

For epithelial cells, the process of EMT is essential for driving various progressive
aspects such as embryonic development and wound healing. However, EMT is also playing
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a crucial role in immunosuppression and the development of tissue fibrosis, carcinogenesis,
metastasis, and drug resistance [4,5]. EMT enhances the migration of epithelial cells to new
locations by promoting new organized characters under normal conditions. In contrast,
the activated EMT cells in cancer undergo Mesenchymal-to-Epithelial Transition (MET),
the crucial phenotype in developing cancer metastasis [6]. In the stage of EMT, the tumor
utilizes various molecular mechanisms to escape the immune surveillance; one of them is
the upregulation of programmed death-ligand 1 (PD-L1) expression [7]. In various types
of cancer, the activation of EMT signaling seems to be a central oncogenic mechanism that
upregulates PD-L1 expression [8]. A recent study has cited the close association between
EMT and PD-L1, suggesting a bidirectional regulation between EMT status and PD-L1
expression, which leads to tumor immune escape [9,10]. During this process, the cells lose
essential epithelial proteins (such as E-cadherin, claudins, cytokeratin, occludins, mucin-1,
desmoplakin, and γ-catenin) while express mesenchymal phenotype characteristics with
Vimentin, N-cadherin, fibronectin, fibroblast-specific protein 1 (FSP-1), Vitronectin, and
smooth-muscle actin which cause immunosuppression and enhance tumor dissemination
and migration [11]. Based on that, Pasquier and others have classified the potential
therapeutic targets in EMT development into three main groups; the effectors (such as E-
cadherin and vimentin), the regulators (such as Zeb, Twist, and Snail transcription factors),
and the third group is the inducers that include members of the transforming growth
factor-beta (TGF-β) [12].

Immunotherapy has become a novel approach for cancer therapy [13,14]. In ad-
vanced cancer, various immune checkpoint inhibitors, including programmed cell death 1
(PD-1), its ligand PD-L1, and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), have
achieved promising oncological improvements [15–18]. The ligand PD-L1 (also known as
B7-H1/CD274) is a transmembrane glycoprotein encoded by the CD274 gene [19]. PD-L1
has limited expression on a wide variety of normal cells, including B cells, vascular endothe-
lial cells, epithelial cells, macrophages, and myeloid dendritic cells [7,20,21]. However,
cancer cells may possess elevated levels of PD-L1, which indicates the significance of
inhibiting this ligand. In a previous study, it was noted that BC cells arising from epithelial
carcinoma expressed low levels of PD-L1. The opposite was found in its counterpart,
which arises from mesenchymal carcinoma cell models that demonstrating high levels of
PD-L1 [22].

It was also known from previous studies using BC cell lines that polyphenols have
the potential to impair BC metastasis through numerous mechanisms such as activating
the tissue inhibitors of metalloproteinases (TIMPs) expression while inhibiting the matrix
metalloproteinase (MMPs) expression [23–25], interfering with various signaling pathways,
including phosphoinositide 3-kinases/protein kinase B/mammalian target of rapamycin
(PI3Ks/AKT/mTOR) [26,27], mitogen-activated protein kinase (MAPK) [28,29], Vascular
endothelial growth factor (VEGF) [30], nuclear factor kappa light chain enhancer of acti-
vated B cells (NF-κB) [31–33] pathways, and modulating EMT process. Extensive studies
have shown the impact of different polyphenols on EMT signaling pathways [34,35]. How-
ever, meager studies have examined polyphenols’ role in inhibiting PD-L1 to modulate
breast cancer (BC) cells’ dissemination and metastasis. Therefore, in this review, we empha-
sized the polyphenol ability to inhibit EMT and PD-L1 activation to identify new options
targeting BC metastasis.

2. PD-1/PD-L1 Checkpoint in Cancer

Cancer cells have direct mechanisms to suppress anticancer immune signaling. How-
ever, another indirect mechanism was also protecting the tumor from immune cell-lined
death [3]. This mechanism is orchestrated by the CD28 family of receptors that include
the PD-1 receptor, in addition to CD28, cytotoxic T-lymphocyte–associated antigen 4
(CTLA-4), inducible co-stimulator (ICOS), and B- and T-lymphocyte attenuator (BTLA)
receptors [36–39]. Normally, the surface protein PD-1 is expressed on various cells, includ-
ing monocytes, T cells, B cells, dendritic cells (DCs), and natural killer (NK) cells, and its
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persistent expression is speculated to maintain the functional silence of T cells through
delivering inhibitory signals [40]. The bond between PD-1 and its two ligands PD-L1
and PD-L2 generates either a co-stimulatory immunological synapse or inhibitory signals
that inhibit T cell response [41]. Although PD-L2 possesses a higher affinity to PD-1 than
its counterpart PD-L1, its relatively low expression leads to non-significant interaction
with PD-1, which assigning PD-L1 as the primary contributor of PD-1’ suppressive func-
tion [17,19,42]. Hence, PD-1/PD-L1 binding is the crucial mechanism in sustaining the
immune-suppressive cancer microenvironment. Although these two proteins can also be
expressed under normal physiologic conditions, PD-1 and PD-L1 are considered markers
of a compromised immune stimulation as their expression is an indicator of T cell dysfunc-
tion [43]. Thus, as the main function, their interaction inhibits cytokine production and T
cell activation to retain a consistent immune response [19,44].

In cancer cells, the transcription upregulation of PD-L1 is influenced by various
elements. Some of them are summarized in Figure 1. Many cytokines were found to induce
PD-L1 expression; however, interferon-gamma (IFN-γ) is the main stimulator along with
its IFN-γ and toll-like receptor (TLR) ligands [45,46], which also impair the immunity of
effector tumor cells [47]. The cytokine IFN-γ is secreted by various types of cells such as
activated lymphocytes [48], T cells [49], B cells [50], macrophages [51], monocytes [52], and
dendritic cells [53]. As an immunomodulatory agent, IFN-γ acts as a critical coordinator of
the immune response with an anticancer effect [54]. A previous study suggested the close
association between the loss of IFN-γ pathway genes—Janus kinases (JAK)1 and JAK2—
and the increased resistance to PD-1 blockade immunotherapy [55]. Also, it was shown
that the prolonged signaling of IFN-γ coordinates the resistance to immune checkpoint
blockade, both PD-L1-dependent and independent [56].
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phosphoinositide 3-kinase, PI3K; protein kinase B, AKT; mammalian target of rapamycin, mTOR; 
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Figure 1. Tumor-intrinsic PD-L1 signaling in cancer initiation and development. The diagram
highlights downstream signaling of PD-L1 activation in cancer. Hypoxia-inducible factors, HIF;
interferon regulatory factor1, IRF1; MYC proto-oncogene, bHLH transcription factor, Myc; Janus
kinase, JAK; signal transducer and activator of transcription (STAT)1/3; nuclear factor-kappa B,
NF-κB; bromodomain-containing protein 4, BRD4; interferon-gamma, IFN-γ; IFN-γ receptor 1/2,
IFNGR1/2; phosphoinositide 3-kinase, PI3K; protein kinase B, AKT; mammalian target of rapamycin,
mTOR; extracellular-signal-regulated kinase, ERK; mitogen-activated protein kinase, MEK; B-Raf
Serine/Threonine-Protein, BRAF; rat sarcoma, Ras; epidermal growth factor, EGF; hepatocyte growth
factor HGF; programmed death-ligand 1, PD-L1.
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3. Oncogenic Signaling Pathways Regulating PD-L1 Expression
3.1. MAPK Pathway

The signaling pathway MAPK—also known as extracellular signal-regulated kinases
(ERK) and includes rat sarcoma (Ras), rapidly accelerated fibrosarcoma (Raf), mitogen-
activated protein kinase kinase (MEK)-MAPK proteins—is a crucial regulator for vital
cellular functions such as cell survival, proliferation, and apoptosis [57]. However, aberrant
activation of this pathway is detected in about 50% of cancer patients and was associated
with cancer initiation and progression [58]. Also, in triple-negative breast cancer (TNBC)
patients, MAPK pathway activation endorses immune evasion, leading to chemother-
apeutic drug resistance and poor survival rate [59,60]. The MAPK pathway has been
demonstrated to control PD-L1 expression in many cancer cells [61]. Remarkably, in TNBC
cells, inhibition of this signaling pathway was found to upregulate IFN-γ–induced PD-L1
expression, both in vivo and in vitro studies, whereas inhibiting MAPK and PD-1/PD-L1
was found to synergize the immune checkpoint inhibitors [62]. On the contrary, in BC
cells, the interaction of PD-L1/PD-1 stimulates phosphorylation of MAPK, leading to
the activation of MAPK pathways and increases the expression of multidrug resistance
protein 1 (MDR1) (also known as permeability glycoprotein, P-gp) [63]. Indeed, the MDRI
protein is a member of the adenosine triphosphate (ATP)-binding cassette transporter
protein superfamily encoded by the ATP binding cassette subfamily B member 1 (ABCB1)
gene [64]. In normal tissues, MDRI is usually disseminated to protect the susceptible organs
from toxic substances. However, in multidrug-resistant cancer cells, MDRI is upregulated
as a challenging mechanism to decrease these drugs’ intracellular concentration. PD-L1
upregulation is closely associated with MDR1 expression in BC cells, and it is mediated by
the activation of PI3K/AKT and MAPK signaling pathways [65].

3.2. PI3K/PTEN/Akt/mTOR Pathway

Various signaling pathways are involved in IFN-γ-mediated PD-L1 induction [66–70].
However, the process is mainly controlled by the loss of phosphatase and tensin ho-
molog (PTEN) tumor suppressor protein and the consequential oncogenic activation of
PI3Ks/AKT/mTOR) pathway [71,72]. The fact that interpreted the decrease in PD-L1 ex-
pression after using the AKT inhibitors [73]. In BC, abnormalities in the PI3K/AKT/mTOR
pathway are the most frequent genomic defects that affect immune surveillance through the
regulation of PD-L1. In TNBC, PTEN loss is associated with estrogen receptor
(ER)/progesterone receptor (PR)–negative BC cells [74] and explains the increase of PD-L1
in their MDA-MB-157 cell line model. Also, in the MDA-MB-231 cell line, PTEN knock-
down resulted in more significant upregulation in PD-L1 expression than the addition of
IFN-γ, the common inducer of PD-L1 expression.

4. Transcriptional Control of PD-L1 Expression
4.1. The JAK/STAT Pathway

In TNBC, the activation of the signaling pathway JAK/STAT is proportional to the
phosphorylated signal transducer and activator of transcription 1/3 (pSTAT1/3), the key
transcription factors that significantly regulate cancer cell survival, proliferation, invasive-
ness, metastasis, and immunosurveillance [75–80]. Notably, STATs modify the immune
response through various mechanisms, including regulation of PD-L1 expression [18]—
when binding to PD-L1 promoter—as indicated by the abolished PD-L1 expression upon
their silencing [81]. Moreover, sole inhibition of STAT1 or STAT3 induces a partial down-
regulation in PD-L1 expression, while a complete downregulation was achieved upon
combined inhibition of these transcription factors [82]. Thus, inhibition of JAK/STAT
signaling could be a promising therapeutic target in TNBC [83,84].

4.2. Hypoxia-Inducible Factor 1α (HIF-1α)

The hypoxic feature is well known in BC and other types of cancer as an adaptive
mechanism in the reduced oxygen microenvironment. In response to hypoxia, the activated
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HIF-1α and HIF-2α [85–87] lead to poor prognosis and antiestrogen resistance in BC [88].
Once binding to its hypoxia response elements (HRE) promoter, HIF-1α stimulates the
transcription of PD-L1 [89]. Indeed, previous studies revealed the co-existence of upregu-
lated HIF-1α, increased PD-L1 expression, and the attenuation of T-cell function [90–92]. In
TNBC in-vivo model, the PD-L1 expression level was serving as a biomarker in detecting
the level of hypoxia [93]. This finding has advocated inhibitors of HIF-1α/PD-1/PD-L1 as a
potential therapeutic target to combat the immune suppression behavior of tumors [94–97].

4.3. NF-κB Pathway

The transcriptional factor NF-κB has been previously shown to promote and mediate
inflammation-cancer pathways, inhibit apoptosis, and enhance tumorigenesis and cancer
immune evasion [98,99]. Also, NF-κB has the potential to induce PD-L1, either directly
through binding to PD-L1 promotor or indirectly, by enhancing the stability of its protein
that supports the tumor immune evasion [100]. Notably, the involvement of NF-κB in
IFN-γ-induced PD-L1 expression has been evidenced by PD-L1 repression in the presence
of NF-κB inhibitors [98]. Another mechanism that has been previously found to prevent PD-
L1 degradation is TNF-α-mediated NF-κB activation through enhancing the fifth element
of the constitutive photomorphogenesis 9 (COP9) signalosome5 (CSN5) protein [101].
Furthermore, a study on BC demonstrated the ability of natural compounds to induce PD-
L1 expression through histone deacetylase 3 (HDAC3)/p300)-mediated NF-κB signaling
pathway [102]. NF-κB-mediated PD-L1 induction is also impacted by aberrant expression
of some oncogenes such as B cell lymphoma 3 (Bcl3) [103] and Mucin1 (MUC1) [99] that
integrate a variety of signaling pathways. Indeed, Bcl3 promotes IFN-γ-stimulated PD-L1
expression through NF-κB p65 acetylation [104]. In TNBC cells, PD-L1 upregulation was
revealed to be MUC1-dependent [40]; meanwhile, MUC1 drives PD-L1 overexpression
involves MYC proto-oncogene, bHLH transcription factor (Myc), and NF-κB-dependent
mechanisms [99].

In immune and cancer cells, the Toll-like receptor (TLR)-mediated signaling pathway is
a well-known mechanism that upregulates PD-L1 [67] through increasing NF-κB activation,
which in turn leads to PD-L1 upregulation [105]. Meanwhile, IFNs have been demonstrated
to regulate PD-L1 expression on both tumor and non-tumor cells; IFN-γ stands out as
the most inducer [45,69]. Also, IFN-γ stimulates nuclear translocation of NF-κB signaling
pathway, thus upregulating PD-L1’s promoter activity [106].

5. PD-L1 Expression in Breast Cancer

It has become evident that overexpression of PD-L1 protects malignant cells from
immune detection in various types of cancers, including BC, an event that leads to the
increase of tumor aggressiveness and poor disease prognosis [107–114]. In the highly
metastatic TNBC subtype, PD-L1 expression is strongly linked to various adverse aspects
of aggressiveness, such as advanced cancer grade, lack of ER, and increased infiltration
with T-regulatory cells [73,114]. Notably, the significant overexpression of PD-L1 in MDA-
MB-231, the typical TNBC cell model [73], leads to tumor escape from the immune system
and the worse outcome [9,10]. PD-L1 expression is induced upon EMT activation, and it
is closely associated with the mesenchymal features, as clearly manifested in the claudin-
low BC, the subtype that is highly associated with poor prognosis and enriched in EMT
features [10,115]. More investigations demonstrated the mechanism underlying EMT-
mediated PD-L1 upregulation and attributed this aggressive mechanism to the surface
markers as shown by PD-L1 concomitant parallel association with CD44 upregulation
and CD24 downregulation [10]. In TNBC cells, the PTEN/PI3K pathway is significant
in regulating PD-L1 expression. As mentioned earlier, PTEN loss is a mechanism that
promotes PD-L1 expression through the PI3K/AKT/mTOR pathway, and it is correlated
with ER/PR–negative tumor [74,116]. Moreover, glycosylation inhibitors were significantly
linked to the repressed PD-L1 expression in BC cells [117] and momentous purge of TNBC
cells [118]. For example, in TNBC cells, the upregulation of PD-L1 expression and the
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activation of NF-κB is transmembrane glycoprotein MUC1-dependent [99]. MUC1 is
overexpressed in various types of cancer and implicated in multiple signaling pathways
that enhancing cancer growth and maintenance [119]. The enforced TGF-β1 upregulation
was found to induce PD-L1 expression in normal breast cells. However, the mechanism
was mainly driven by the induced EMT, not TGF-β1 itself [10]. Overall, these findings
support the rationale for applying therapeutic approaches targeting the PD-1/PD-L1 via
PI3K pathway in TNBC metastatic subtype [73].

6. Epithelial-to-Mesenchymal Transition (EMT) Markers Mediating PD-L1 Induction
in Breast Cancer

It is well known that the pro-metastatic phase within the tumor microenvironment is
linked to inflammation. Indeed, the host’s tumor-infiltrating immune cells secrete various
types of cytokines and chemokines such as TGF-β in an endeavor to fight cancer [120]. Un-
fortunately, this mechanism provokes the EMT process and promotes cancer cell invasion
and migration [121,122]. Contrary to the common belief, many studies using in vivo and
in vitro BC models have evidenced upregulated expression of PD-L1 along with normal
PTEN and the lack of the INF-γ [10]. Hence, the existence of another mechanism underly-
ing the regulation of PD-L1 in BC was suggested [10]. Indeed, in some types of cancer, a
poor prognosis was found in PD-L1(+)/EMT (+) compared with the PDL1(+)/EMT (−)
one, which indicates the importance of targeting EMT to limit cancer migration and prog-
nosis [123]. A recent study has summarized the involvement of different molecules such as
MUC1, TGF-β, and NF-κB [10,99] in EMT-mediated PD-L1 upregulation in BC [115]. Other
oncological studies cited the opposite, and they revealed the importance of PD-L1 signaling
in maintaining EMT status [10,124–126] (Figure 2). Nevertheless, both mechanisms will
eventually lead to tumor immune escape [10,115]. Thus, EMT status was considered a
co-biomarker with PD-L1 to speculate the prognosis and the likelihood of response to
PD-1/PD-L1 checkpoint blockade [115].
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Figure 2. PD-L1-mediated EMT stimulation. The diagram highlights the downstream signaling
of EMT in cancer. Interferon-gamma, IFN-γ; IFN-γ receptor 1/2, IFNGR1/2; epidermal growth
factor, EGF; hepatocyte growth factor HGF; Janus kinase, JAK; signal transducer and activator of
tran-scription3, STAT3; nuclear factor-kappa B, NF-κB; phosphoinositide 3-kinase, PI3K; protein
kinase B, AKT; mammalian target of rapamycin, mTOR; zinc finger E-box binding homeobox 1/2,
Zeb1/2; Snail family transcriptional repressor 1, Snail 1; extracellular-signal-regulated kinase, ERK;
mitogen-activated protein kinase, MEK; B-Raf Serine/Threonine-Protein, BRAF; rat sarcoma, Ras;
programmed death-ligand 1, PD-L1; transforming growth factor-beta, TGF-β; mothers against
decapentaplegic, Smad; epithelial-mesenchymal transition, EMT.
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Meanwhile, PD-L1 can be stimulated directly; another profound indirect mecha-
nism underlying EMT-mediated PD-L1 expression was demonstrated [10]. A significantly
upregulated level of PD-L1 was attributed to the tumor cell surface markers as men-
tioned above [10]. Indeed, EMT -mediated PD-L1 expression is highly suggested in the
claudin-low subtype of TNBC, characterized with high EMT features [10], while decisively
downregulated PD-L1 reversed EMT process, which strongly suggests the important role
for PD-L1 targeted therapy in this subset of the disease [10]. Also, TGF-β cytokine was the
primary inducer of EMT [120], which augments the expression of PD-L1 in BC cells [10].
Interestingly, the upregulation of PD-L1 in BC was attributed to EMT activation but not
TGF-β itself [10].

The role of EMT transcription factor (EMT-TFs) in controlling PD-L1 expression was
also revealed. It was previously suggested that EMT-TFs, including Zeb, Twist, and SNAIL
family proteins, mediate EMT regulation and tumor progression [4,127] and bridge the link
between inflammation and cancer [127,128]. Moreover, higher expression of Zeb1, Snail,
N-cadherin, and Vimentin and low expression of E-cadherin were closely correlated with
the upregulated level of PD-L1 [115,129]. In TNBC cells, various transduction signaling
pathways were involved in EMT-mediated PD-L1 expression, with the MAPK pathway the
most crucial one [130,131]. Various examples also were reported for proteins involved in
the EMT process. The overexpression of the insulin-like growth factor 1 receptor (IGF1R)
and focal adhesion kinase (FAK) signaling was crucial for EMT and metastasis [130]. These
signaling pathways caused an enhancement of the mesenchymal markers’ expression, Zeb1,
Snail1, and Vimentin, while a reduction of the epithelial markers claudin-1, E-cadherin,
and Zonula occludens-1 (ZO-1) was found. Similarly, adapter molecule Crk (Crk) protein
is implicated in various signaling pathways regulating EMT and EMT-stimulate PD-L1.
The Crk mechanism for enhancing cancer metastasis was achieved by upregulating the
expression of Zeb1 and N-cadherin and repressing E-cadherin levels [129,132,133]. Indeed,
targeting signaling pathways and cytokine-induced EMT could hold promises in inhibiting
BC cell dissemination and metastasis [134–140].

On the other hand, a growing body of literature has suggested the implication of
upregulated EMT in increasing drug resistance and cancer progression. This resistance
behavior was exhibited in patients diagnosed with solid cancers, including BC, presenting
a considerable challenge [15,141]. Indeed, EMT was associated with the upregulated
expression of many (ATP)—binding cassette (ABC) transporters that ultimately lead to
multidrug resistance [120,142,143]. Hence, combining therapeutic agents against EMT-TFs
was a promising approach to overcoming these tumors’ resistance mechanisms [144].

7. Breast Cancer Treatment

For decades, cytotoxic chemotherapeutic drugs were the standard medical treatment
for BC patients [145]. Various target—directed approaches have evolved to treat and man-
age the heterogenous BC characterized by diverse molecular subtypes and stages [145].
Chemotherapeutics drugs with cytotoxic effects—doxorubicin and paclitaxel—are typi-
cally applied for patients with metastasized BC. Other treatments, including gemcitabine,
cisplatin derivatives, 5-fluorouracil, or vinorelbine, are also used. On the other hand,
combined treatments with chemotherapy drugs are considered a promising approach for
enhancing BC therapy outcomes [146]. For instance, the estrogen antagonists—tamoxifen
or fulvestrant—combined with the aromatase inhibitors—anastrozole, letrozole, and
exemestane—are used in the hormone-dependent (ER+/PR+) BC cells [147]. Also, be-
vacizumab, a monoclonal antibody therapeutic, targets vascular endothelial growth factor
receptor (VEGFR), hindering the angiogenesis pathway [148–150]. Another monoclonal
antibody, trastuzumab, could be used in patients overexpressing the HER-2 receptor, com-
bined with therapeutic hormonal drugs such as the selective HER-2 pathway inhibitors
lapatinib [147,149,150]. Moreover, various emerging drugs have shown the potential
to overcome hormonal therapy resistance when combined with hormonal drugs [145].
These included the cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitors such as abe-
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maciclib, palbociclib, and ribociclib [151]—which impact cell cycle progression—and in-
hibitors of PI3K/AKT/mTOR pathway such as buparlisib, pictilisib, pilaralisib, and voxtal-
isib [152,153]. On the contrary, TNBC—the most aggressive cells with abolished biomarkers
expression—the classical chemotherapeutic drugs, such as taxanes, anthracyclines, and plat-
inum agents, remained the exclusive therapeutic option [148–150], and they are currently
used with/without the monoclonal antibody against VEGF bevacizumab [154]. Recently,
new targeted drugs were introduced and still undergo clinical trials for optimizing BC ther-
apeutic outcome, including poly adenosine diphosphate (ADP)-ribose polymerase (PARP)
inhibitors—olaparib, talazoparib, veliparib, niraparib, and rucaparib—for those with mu-
tated breast cancer type 1/2 susceptibility protein (BRCA1/2) [155–157], the antibody-drug
conjugate Glembatumumab vedotin, the androgen receptor inhibitor bicalutamide, and
the anti-PD-1 monoclonal antibody pembrolizumab.

8. Current Breast Cancer Immunotherapeutic Strategies

While the treatment regimens of BC have greatly improved in recent years, the dis-
ease’s emerging subtypes raised a significant challenge that classified BC as the most
frequent cancer type affecting women [158]. TNBC cells—a BC subtype lacking the expres-
sion of ER, PR, and the overexpression of the humane epidermal receptor (HER)—were
further classified into basal-like and claudin-low subtypes [159–161]. The lack of hormonal
receptors in TNBC urged the need for developing new therapeutic approaches targeting
these subtypes [10,162]. Hence, cancer immunotherapy is considered a narrative approach
in different types of cancer [13,163]. Various immune checkpoint blockade, mainly PD-1
and its ligand, PD-L1—the most prognostic biomarker—and CTLA-4 inhibitors, have been
established in the clinics [164,165]. Fortunately, PD-1 and PD-L1 inhibitors have been
promising in treating various kinds of cancer, including BC [166]. From 2011-2017 exhibited
the emergence of valuable drugs that inhibit PD-1 (Pembrolizumab and Nivolumab) and
PD-L1 (Atezolizumab, Avelumab, and Durvalumab), as well as the monoclonal antibody
Ipilimumab that targeting CTLA4 [167,168].

Although the PD-1 and PD-L1 blockade immunotherapy has achieved an incredible
clinical outcome in some subsets of BC patients [169], so far, PD-1 blockade works only
in PD-1(+)/PD-L(+) but not in PD-1(−) patients [8,18,170]. Meanwhile, not all PD-L1-
expressing cancer patients responded to PD-1/PDL1 inhibitors; PD-L1(−) tumors may
respond to these agents [171]. Most importantly, using the immunotherapeutic candi-
dates —targeting PD-L1/PD-1 pathway—was found to enhance other antitumor treatment
approaches [172]. For instance, in BC tumor, a solely administered doxorubicin, the con-
ventional chemotherapy drug, attenuated PD-L1’s cell surface expression and exhibited
apoptotic effect; however, it increased PD-L1 nuclear expression [172]. Furthermore, the
co-existence of doxorubicin and PI3K/AKT pathway inhibitor abolished the doxorubicin-
induced nuclear up-regulation of PD-L1, suggesting the significant role of the PI3K/AKT
pathway in the nuclear upregulation of PD-L1 in BC cells [172,173].

9. Polyphenols and Cancer

Recently, special attention has been directed to the polyphenols found in a wide variety
of edible plants, including vegetables, fruits, soy products, in addition to cereal, wine,
and tea [174,175]. Myriads of epidemiological studies have cited the uses of polyphenol
in treating a diversity of health issues, including infection [176,177], inflammation [178],
oxidative stress [179], bone diseases [180], cardiovascular disease [181], and cancer [182].
In cancer research, extensive literature has correlated the consumption of polyphenol-rich
food and the lower risk of cancers [183–190]. It has been suggested that polyphenols may
inhibit tumors at various stages, including initiation, relapse, progression, and metastasis
to other organs [191–193]. The well-known antioxidant activities of the polyphenols were
found to induce a chemopreventive effect [192], together with their anticancer effect that
conveys antioxidant-independent mechanisms [192,194].
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Polyphenols have demonstrated a vital role in modulating various signaling pathways
and modifying proteins-mediating cancer progression [34,35,195]. Indeed, polyphenols
exhibited anti-oncogenic effects in the NF-κB transcription factors, Wnt/β-catenin, perox-
isome proliferator activator receptor-gamma (PPAR-γ), STAT3, nuclear factor erythroid
2 (Nrf2), sonic hedgehog (Shh), activator protein-1 (AP-1), growth factors receptors (epi-
dermal growth factor receptor, EGFR; Erb-B2 receptor tyrosine kinase 2, ErbB2, VEGFR;
insulin like growth factor1 receptor, IGF1-R). Polyphenols also have been shown prospec-
tively to reverse EMT-underlying tumor metastasis by modifying miRNA’s expression [6].
Moreover, these compounds revealed anti-inflammatory effects through modulating the
pro-inflammatory mediators, tumor necrosis factor-α (TNF-α), interleukins (ILs), Cyclooxy-
genase (COX)-2, 5-Lipoxygenases (LOX), and various protein Kinases (PI3K, mTOR, AMPK,
Bcr-abl, and Ras/Raf) [34,35,195,196].

Although many dietary polyphenolic compounds have shown various pharmacologi-
cal effects, there are still challenges that should be considered for many other polyphenols
to be effective in clinical practices [197]. When taking orally—since the mouth is the most
common route of administration for small molecule drugs and nutraceuticals [198]—these
polyphenols might face many obstacles before reaching their site of action. The challenges
may include poor aqueous solubility, weak oral absorption, low bioavailability, or fast
systemic elimination [197]. To manage the pharmacokinetics profile of such perplexing
polyphenols, various formulations could be approached. Many developed formulations
have already been pharmaceutically applied to manage these barriers, such as nanogels,
nanoparticles, nanospheres, liposomes, complexation, micelles, and solid dispersions [199].
Significantly, interactions with other elements found in food and other drugs might be
highly anticipated with some polyphenols [6], even though they could be prevented by
specialized formulations, avoiding specific food intake, and managing dosage regimens.

Clinical trials in BC patients evidenced the potential of the dietary polyphenolic
compounds to increase apoptosis while decreasing various tumor biomarkers [200,201],
including steroid hormones [202,203], carcinoembryonic antigen (CEA), VEGF [204], and ra-
diation dermatitis severity score (RDS) [205], in addition to anti-inflammatory effects [206].
On the other side, none of these studies demonstrated the potential of these polyphenols to
modulate the immune response in BC patients.

Nevertheless, there is a continuous interest in investigating dietary flavonoids as
antitumor immunity agents [207,208]. Here, we summarized the most-studied compounds
and highlighted their potential to target PD-L1 in BC cells, either directly or indirectly,
through modulating EMT markers-mediating PD-L1 activation. This summary will also
provide a closer look at the polyphenols’ most specific studies that could be used combined
with the current use of PD-L1 blockade and anti-PD-1 immunotherapy to enhance their
efficacy against BC.

9.1. Curcumin

Curcumin is a natural polyphenol compound extracted from the turmeric roots and
used for a long time as a traditional medicine in the Ayurveda [209–211]. This com-
pound has demonstrated various pharmacological properties, including antioxidant [212],
anti-inflammatory [213], antimicrobial [214], immunomodulatory [215], and hepatoprotec-
tive [216] properties. Furthermore, curcumin has shown anti-metastatic effects through
targeting various intracellular signaling pathways implicated in PD-L1 upregulation [217],
including NF-κB [218], MAPK [219], Wnt/β-catenin [220], PI3K/Akt/mTOR [221], hedge-
hog [222], Notch [223], and block IκB kinase (IKK) activity that consequently inhibits NF-κB
signaling pathway [224,225] (Figure 3).
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In BC, curcumin also was a potent agent in targeting various genes mediating the EMT
process. For instance, it targets H19 long non-coding RNA. Upregulated H19 promotes EMT
through increasing vimentin expression and repressing E-cadherin expression, and more
importantly, contributes to tamoxifen-resistant tumors [226]. The highly expressed H19
also plays a crucial role in various cellular events, including proliferation, chemoresistance,
endocrine resistance, migration, invasiveness, and metastasis [227,228]. Furthermore,
recent cohort studies have evidenced the close association between the long non-coding
RNA and PD-L1 expression [229,230]. Thus, targeting this gene was considered a key in
PD-L1 inhibition [231].

Upon curcumin exposure, other target proteins associated with EMT and metastasis—
slug, β-catenin, receptor tyrosine kinase (RTK, aka; AXL), CD24, and vimentin—were
repressed in the MDA-MB-231 cells model of TNBC [222,232,233]. These proteins are
upregulated in both human and murine BC [234–236]. Moreover, curcumin was also found
to impact TGF-β and PI3K/AKT signaling pathways regulating doxorubicin-stimulated
EMT activation [237,238]. The intrinsic β-catenin is a crucial oncogenic protein in driving
cancer initiation and progression through modulating the transcription of many genes
such as slug -mediating BC metastasis. Thus, the inhibition of β-catenin, hindering the
trans-stimulation of slug and, consequently, restores E-cadherin expression of epithelial
phenotype [239,240]. The oncogene β-catenin is a well-known regulator of PD-L1–mediated
immunosuppression as revealed by the significant abolition in PD-L1 expression upon
reducing β-catenin. On the contrary, upregulated β-catenin was positively correlated
with the increased level of PDL1′s protein expression [8,241]. Also, upon inhibiting Axl
kinase, a significant decrease in tumor growth was found in the mouse models, the effect
that was further potentiated when combined with PD-1 blockade [236]. Pharmacological
repression of Axl activity was found to decrease the mRNA expressions of PD-L1, the
finding that revealed the implication of Axl in regulating PD-L1 protein expression [242].
Moreover, the cytokine TGF-β—as another mediator in EMT development—is involved
in many cellular events and upregulating the expression of PD-L1 [243]. TGF-β has
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a tumor promoter role in the advanced stages of the disease as it enhances EMT and
metastasis [244–246]. An interesting report on combining TGF-β inhibitors with PD-1/PD-
L1 immune checkpoint blockade has revealed a tumor regression [247]. Therefore, the
pharmacological modulation of β-catenin, Axl, and TGF-β are considered putative trends
in cancer therapy [248]. This information strongly suggests the pivotal role of curcumin in
inhibiting PD-L1 directly and indirectly through deactivating EMT markers in BC patients
and ultimately limiting metastasis.

9.2. Apigenin

The flavone apigenin is found in various fruits, vegetables, and herbs, such as
parsley, onions, grapefruit, oranges, and chamomile [249,250]. Apigenin was previ-
ously found to demonstrate various biological activities, including antioxidant [251], anti-
inflammatory [252], antibacterial, antiviral [253], and anticancer effects [254]. Fortunately,
apigenin is considered a safe compound for normal healthy cells [255]. As an anticancer
agent, low concentrations of apigenin were found to inhibit the proliferation, while a sig-
nificant apoptotic effect was induced at higher concentrations of the compound [255–259].
Moreover, apigenin’s anti-metastatic effect has been revealed in several cancers, including
BC [260–262]. The compound showed immunomodulatory properties by targeting the PD-
1/PD-L1 checkpoint as a promising immunotherapy candidate [17]. The ability of apigenin
to inhibit PD-L1 was also investigated in human and mouse mammary carcinoma cells.

Apigenin was found to inhibit IFN-γ-induced PD-L1 upregulation in MDA-MB-468
TNBC cells, HER2+SK-BR-3, human mammary epithelial cells, and 4T1mouse mammary
carcinoma cells. In MDA-MB-468 and 4T1 cells, the repression of PD-L1 level was as-
sociated with reduced phosphorylation of STAT1 [263] (Figure 4). Luteolin, the major
metabolite of apigenin, was also found to inhibit IFN-γ-induced PD-L1 expression in
MDA-MB-468 cells. In the MDA-MB-231 TNBC cell, apigenin did not repress PD-L1 ex-
pression, and its anti-metastatic effect was not directed to the EMT markers, Vimentin,
or N-cadherin. Instead, the compound repressed IL-6-mediated EMT signal-linked N-
cadherin expression [264]. Certainly, the positive association between IL-6 and EMT in the
tumor microenvironment has been proven in various types of cancer, including BC, leading
to cell migration and invasiveness [265–268]. It is collectively suggested that more investi-
gations are needed to characterize the effects of apigenin on EMT and PD-L1 inhibition as
a safe immunotherapeutic candidate drug for specific subsets of BC disease.

Nutrients 2021, 13, x FOR PEER REVIEW 11 of 27 
 

 

has a tumor promoter role in the advanced stages of the disease as it enhances EMT and 
metastasis [244–246]. An interesting report on combining TGF-β inhibitors with PD-1/PD-
L1 immune checkpoint blockade has revealed a tumor regression [247]. Therefore, the 
pharmacological modulation of β-catenin, Axl, and TGF-β are considered putative trends 
in cancer therapy [248]. This information strongly suggests the pivotal role of curcumin 
in inhibiting PD-L1 directly and indirectly through deactivating EMT markers in BC pa-
tients and ultimately limiting metastasis. 

9.2. Apigenin 
The flavone apigenin is found in various fruits, vegetables, and herbs, such as pars-

ley, onions, grapefruit, oranges, and chamomile [249,250]. Apigenin was previously found 
to demonstrate various biological activities, including antioxidant [251], anti-inflamma-
tory [252], antibacterial, antiviral [253], and anticancer effects [254]. Fortunately, apigenin 
is considered a safe compound for normal healthy cells [255]. As an anticancer agent, low 
concentrations of apigenin were found to inhibit the proliferation, while a significant 
apoptotic effect was induced at higher concentrations of the compound [255–259]. More-
over, apigenin’s anti-metastatic effect has been revealed in several cancers, including BC 
[260–262]. The compound showed immunomodulatory properties by targeting the PD-
1/PD-L1 checkpoint as a promising immunotherapy candidate [17]. The ability of apigenin 
to inhibit PD-L1 was also investigated in human and mouse mammary carcinoma cells.  

Apigenin was found to inhibit IFN-γ-induced PD-L1 upregulation in MDA-MB-468 
TNBC cells, HER2+SK-BR-3, human mammary epithelial cells, and 4T1mouse mammary 
carcinoma cells. In MDA-MB-468 and 4T1 cells, the repression of PD-L1 level was associ-
ated with reduced phosphorylation of STAT1 [263] (Figure 4). Luteolin, the major metab-
olite of apigenin, was also found to inhibit IFN-γ-induced PD-L1 expression in MDA-MB-
468 cells. In the MDA-MB-231 TNBC cell, apigenin did not repress PD-L1 expression, and 
its anti-metastatic effect was not directed to the EMT markers, Vimentin, or N-cadherin. 
Instead, the compound repressed IL-6-mediated EMT signal-linked N-cadherin expres-
sion [264]. Certainly, the positive association between IL-6 and EMT in the tumor micro-
environment has been proven in various types of cancer, including BC, leading to cell 
migration and invasiveness [265–268]. It is collectively suggested that more investigations 
are needed to characterize the effects of apigenin on EMT and PD-L1 inhibition as a safe 
immunotherapeutic candidate drug for specific subsets of BC disease. 

 
Figure 4. The mechanisms of Apigenin-mediated programmed death-ligand 1 (PD-L1) inhibition in
breast cancer cells. Interferon-gamma, IFN-γ; Interleukin 6, IL-6; Janus kinase, JAK; signal transducer
and activator of transcription1, STAT1; major histocompatibility complex, MHC; T-cell receptor, TCR;
programmed cell death protein 1, PD-1.



Nutrients 2021, 13, 1718 12 of 26

9.3. Hesperidin

Hesperidin is a flavonoid found in various Rutaceae family members [269] and was
used in China as traditional herbal medicine. In pharmacological studies, the compound
exhibited various anticancer effects with anti-proliferative [270], anti-inflammatory [271],
and apoptotic [269,272] properties. Previously reported research indicated the safety of
the compound against normal cells. Remarkably, the properties of hesperidin endorsed
the compound’s use as an anticancer candidate against BC and other cancer types. The
significant effect of hesperidin in inhibiting the expression of EMT markers was recently
exposed [273]. Also, one report investigating the effect of hesperidin in MDA-MB-231 cells
has cited its ability to inhibit the levels of PD-L1 at both the protein and the transcriptional
level through inhibiting PI3K/Akt and NF-κB signaling pathway [274] (Figure 5). These
previous findings support our hypothesis that this polyphenol compound has the potential
to ultimately inhibit PD-L1, directly or indirectly, through impacting EMT markers. Still,
more emphasis on hesperidin and its mechanism against EMT markers and PD-1/PD-L1
checkpoints are highly encouraged.
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9.4. Resveratrol

Resveratrol is a polyphenol component found in peanuts and grapes as well as other
plants [275]. The compound has shown significant biological activities and may hold
promises as a therapeutic agent against cancer [276]. Notably, resveratrol showed a po-
tency to inhibit various tumors’ initiation and progress [276,277]. The impact of this
polyphenol in BC is multidisciplinary as extensive studies revealed resveratrol’s ability to
utilize different mechanisms in targeting epigenetic response, cell proliferation, apoptosis,
EMT/metastasis, and most appreciably, increased sensitivity to chemotherapy [278]. In BC,
resveratrol mediates cellular aging and inhibits the EMT process by inducing the tumor
suppressor Rad9-dependent mechanism [279]. The adaptor protein Rad9 is crucial for the
DNA damage response (DDR) protein [280]. A reduction of Rad9 expression was detected
in the highly invasive MDA-MB-231 cells [279]. Most importantly, Rad9 protein has shown
a selective mechanism in controlling genes linked to EMT, such as p21 [281], Neil1 [282],
and slug [280]. Also, the compound inhibited cell migration through PI3K/Akt and Wnt/β-
catenin signaling pathways [283] (Figure 6)—the pivotal elements in regulating PD-L1
protein expression—in BC cells [284]. Remarkably, the compound demonstrated a potential
to overcome chemotherapy resistance in BC. Resveratrol sensitized the cells to tamoxifen
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through TGF-β/Smad-driven EMT [285] and promotes cell sensitization to doxorubicin by
inhibiting EMT and modulating SIRT1/β-catenin signaling pathway [285,286]. Similarly,
recent studies using MDA-MB-231 cells indicated resveratrol’s ability to inhibit cell mi-
gration by reversing TGF-β1-induced EMT [140] and inducing a significant suppression
of PD-L1 through targeting PD-L1 glycosylation enzymes [287]. Therefore, resveratrol’s
unique properties should be highlighted in the field of BC immunotherapy and drug
resistance management.
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Figure 6. The mechanisms of resveratrol-mediated programmed death-ligand 1 (PD-L1) inhibition
in breast cancer cells. Interferon-gamma, IFN-γ; IFN-γ receptor 1/2, IFNGR1/2; transforming
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9.5. Sativan

The compound (−)-sativan is a natural isoflavone found in Spatholobus suberectus.
The traditional Chinese herb Spatholobus suberectus is commonly used in China for treat-
ing many diseases, including anemia, rheumatism, and menoxenia [288]. This herb has
been found to possess antioxidant and anti-inflammatory properties [289]. Several recent
studies indicated the anticancer effects of Spatholobus suberectus in BC with the potential to
trigger apoptosis, cell cycle arrest, lactate dehydrogenase inhibition [290], and preventing
cancer cell migration through the MAPK PI3K/AKT pathway [291] (Figure 7). Further,
a recent study has demonstrated the potential of the compound sativan to induce an an-
ticancer effect in TNBC cells through inhibiting both of EMT process and PD-L1 mRNA
expression [292]. Sativan impacted various oncogenic transcription regulators mediated
EMT activation [292] and showed the ability to stimulate E-cadherin while decreasing
N-cadherin and vimentin. Moreover, Snail and slug were significantly inhibited by the
compound [292]. As with any other novel therapeutic agent, further investigations should
be considered to shed light on the possible therapeutic mechanisms that can be disclosed
for the BC immunotherapy approach.
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10. Conclusions

Cancer metastasis to vital organs is the leading cause of poor prognosis and cancer-
related death, and it is accomplished by the immune evasion strategy. Indeed, tumor
suppresses the anticancer immune signaling, either directly or indirectly. One mechanism
in inhibiting these signals is the upregulation of the CD28 family of the receptor, in particu-
lar PD-1. Indeed, the association between PD-1 and its ligand PD-L1 provokes immune
inhibitory signals. In BC cells, overexpression of PD-L1 protects malignant cells from
immune devastation, and it is strongly linked to tumor aggressiveness, poor prognosis,
and drug resistance. In tumors, the EMT defend process drives various aspects of carcino-
genesis, metastasis, immunosuppression, and drug resistance. Notably, there is a strong
association between activated EMT and PD-L1 expression.

On the other hand, polyphenols have shown a significant effect as elements of anti-
cancer immunity. Indeed, polyphenols can inhibit the PD-L1 expression directly. However,
in this review, we highlighted the indirect mechanism of polyphenol in inhibiting EMT-
mediate PD-L1 expression through inhibiting the mesenchymal protein and upregulating
the epithelial counterpart. Indeed, apigenin and its major metabolite, luteolin, were able
to inhibit IFN-γ-induced PD-L1 expression, in addition to repressing IL-6 mediated EMT
process. Also, hesperidin was found to impact EMT markers and targeting various signal-
ing pathways such as PI3K/Akt and NF-κB signaling pathway. Resveratrol also showed a
potential to inhibit the EMT process by stimulating the tumor suppressor Rad9-dependent
mechanism, reversing TGF-β1-induced EMT, as well as targeting PD-L1 glycosylation
enzymes. Furthermore, sativan has been shown to impact various oncogenic transcrip-
tion regulators mediated EMT activation through stimulating E-cadherin while inhibiting
N-cadherin, Vimentin, Snail, and Slug. In conclusion, having a direct/indirect/or both
mechanisms in targeting PD-L1 expression holds promise in limiting metastasis and treat-
ing patients suffering from BC disease. Various polyphenolic compounds have been used
in BC clinical trials. These compounds have demonstrated promising anticancer effects in
patients with various stages of BC. These effects include anti-inflammatory, pro-apoptosis
induction, and suppression of various tumor biomarkers such as CEA, VEGF, and RDS.
On the other side, few limited studies have proved the potential of these compounds to
impact EMT-underlying tumor metastasis through modifying miRNA’s expression. Hence,
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further comprehensive investigations are suggested to highlight and focus on the potential
of these dietary polyphenolics to reverse or inhibit the challenged EMT process.
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