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Abstract
Recent advances in probabilistic pragmatics have achieved considerable success in model-

ing speakers’ and listeners’ pragmatic reasoning as probabilistic inference. However, these

models are usually applied to population-level data, and so implicitly suggest a homoge-

neous population without individual differences. Here we investigate potential individual dif-

ferences in Theory-of-Mind related depth of pragmatic reasoning in so-called reference
games that require drawing ad hoc Quantity implicatures of varying complexity. We show by

Bayesian model comparison that a model that assumes a heterogenous population is a bet-

ter predictor of our data, especially for comprehension. We discuss the implications for the

treatment of individual differences in probabilistic models of language use.

Introduction
When Jones complains “I hurt my finger” we are inclined to believe that he is not referring to
his thumb, at least much more than when Smith complains “I hurt my toe” we are inclined to
believe that he is not referring to his big toe [1, 2]. That a particular mention of “finger” is
understood as “a finger other than a thumb” is not a matter of semantic meaning, because
most humans have ten fingers and no additional thumbs. Instead, the pragmatic inference that
Jones is is not referring to his thumb arises, according to standard pragmatic theory, because
the word thumb is a short and salient alternative expression that Jones would likely have used
if indeed he meant to refer to his thumb, because that would have been an easy and natural way
to increase the information content of his utterance. In contrast, the expression big toe is not
equally readily at hand for Smith, and so the pragmatic inference that Smith has not hurt his
big toe is hampered, if it goes through at all.

The influential approach of philosopher Paul Grice [3] tries to explain pragmatic reasoning
patterns like the above as the concomitant of regularities of language use, which in turn he
described in terms of certain rules of conduct for cooperative speakers, the so-called Maxims of
Conversation. One of these is the Maxim of Quantity, which requires, roughly put, that speak-
ers be maximally (but not redundantly) informative given the current purpose of conversation.
Pragmatic inferences, amongst them so-called Quantity implicatures like the inference from
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“finger” to “not thumb,” can be explained by the assumption that listeners believe that speakers
(by and large) behave in accordance with Grice’s speaker rules. Modern linguists and psycholo-
gists like to preserve Grice’s main ideas, while acknowledging that pragmatics is an uncertain,
non-deterministic affair: computing a speaker’s intended meaning requires integrating multi-
ple contextual cues in a limited amount of time, with possibly a substantial amount of uncer-
tainty about relevant contextual parameters like the speaker’s knowledge state or her
preferences over and awareness of linguistic alternatives [4]. The resulting picture is that infer-
ence patterns like Quantity implicatures are typically observed in the population as relatively
robust, but probabilistic trends [5–12].

Probabilistic pragmatics is a recent attempt to combine the Gricean approach with the desire
to explain complex and contextually-variable empirical data [4]. Probabilistic models have
been given for a variety of phenomena, including reasoning about referring expressions [10,
12–15], knowledge implicatures [7], non-literal interpretation [16, 17], vague gradable adjec-
tives [18, 19], syllogistic reasoning [20], or the use of quantifiers [21]. Though different in
detail, these models share key ideas. For one, most models include probabilistic versions of Gri-
cean speakers and Gricean listeners. For another, model predictions are usually assessed based
on population-level data from suitable experimental tasks. That is, the data to be explained by a
given model are obtained by averaging over the answers of all participants.

Here, we would like to extend probabilistic modeling of pragmatic language use to acknowl-
edge potential individual-level differences. One general reason for doing so is that it is well
known that what best describes a population’s average behavior need not necessarily be a good
description of the behavior of the individuals that comprise the population [22–24]. Another
reason specific to pragmatics is that there is evidence in the psycholinguistic literature that lis-
teners track speaker-specific (i.e., individual-level) features of their interlocutors, including
pragmatic features like the propensity towards over- or under-informativeness [25, 26]. In
order to bring probabilistic pragmatics closer towards modeling real speaker/listener behavior,
this type of evidence suggests that it is vital to incorporate the possibility of individual differ-
ences. Moreover, experimental results indicate restrictions on the depth of Theory-of-Mind
(ToM) reasoning capacities in strategic situations (reasoning about the beliefs of agent i about
the beliefs of agent j. . .) [27–29]. Probabilistic pragmatics models typically assume that Gricean
speakers are level-1 ToM-reasoners, in the sense that speaker models consider listeners to be
literal interpreters who do not themselves reason about the speaker’s behavior, beliefs or
desires. Similarly, Gricean listeners are assumed to be level-2 ToM-reasoners, in the sense that
they consider speakers to be the aforementioned level-1 ToM-reasoners. But since like-minded
game-theoretic models also consider other possible reasoning types [30–33], it becomes an
empirical question which of these types are credible in the light of experimental data, and a
technical challenge how to design a formal model of probabilistic pragmatic reasoning that can
accommodate potential individual-level differences.

In order to address these issues, we take a data-oriented approach that infers (probabilisti-
cally) a language user’s likely reasoning depth from their empirically observed behavior. We
formulate models of different complexity: one that assumes a homogeneous population of Gri-
cean speakers and listeners, and one that assumes a heterogeneous population with varying
proportions of pragmatic reasoning types inspired by game-theoretic approaches. We assess
these models, using Bayesian model comparison [34–36], based on experimental data.

The motivation for this Bayesian approach is that it naturally weighs a model’s complexity
in determining its quality. This is particularly important for our case, since we are comparing a
simpler model (homogeneous population) to a more complex one (heterogeneous population)
with equal numbers of free parameters (see below). The complex heterogeneous model can
accommodate every potential data point at least as well as the simple homogeneous model,
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because the latter is a special case of the former. To compare models, we therefore need to look
at predictive adequacy, i.e., a model’s ability to predict the actually observed data before having
seen it. This way, the complex heterogeneous model is only favored over the simpler homoge-
neous model if individual differences attested in the data are sufficiently surprising under the
simple model from a predictive point of view, where what counts as sufficient surprise is a
function of relative model complexity.

Data come from repeated measures reference games (to be introduced presently). These
tasks have inspired the probabilistic pragmatics model [10] that most recent work builds on.
Conclusions based on data from reference games do not necessarily generalize to other areas of
language use; rather our study provides the necessary starting point for extended probabilistic
modeling of individual differences in more complex and perhaps more natural situations.

Reference games & pragmatic reasoning types
Reference games are an experimental tool for studying the nature and depth of pragmatic rea-
soning in a controlled laboratory setting [9–15, 37]. Relevant examples are in Fig 1. There are
three referents and four possible messages, which are assumed to be common ground between
speaker and listener. The speaker’s task is to describe the trigger referent (marked by an aster-
isk) with one of themessage options from setM = {mt,mc,md1,md2}. The listener’s task is to
guess the speaker’s intended referent from the set of possible referents from set T = {tt, tc, td},
after receiving the trigger message (marked by an asterisk). Indices on referents and messages
stand for target, competitor and distractor choices for reasons that will become clear presently.

Gricean reasoning
How would idealized Gricean language users behave in reference games? Gricean speakers
would choose the most informative description, while Gricean listeners would infer the intended
referent by assuming that the speaker is Gricean. Consider the case from Fig 1a. The trigger refer-
ent is t�c , the green monster with a red hat. To describe this referent, there are two true descrip-
tions: the target messagemt “green monster” and the competitor messagemc “red hat.” The

Fig 1. Example contexts that require pragmatic reasoning of varying complexity.

doi:10.1371/journal.pone.0154854.g001

Reasoning in Reference Games

PLOSONE | DOI:10.1371/journal.pone.0154854 May 5, 2016 3 / 25



other messages are distractor messages that are not true of the trigger referent. A Gricean speaker
should choose the target messagemt, because it is more informative than the competitor message
mc: there is only one green monster in the context, while there are two objects with red hats.
Turning to comprehension, there are two referents of which the trigger messagem�

c (“red hat”) is
true: the target referent tt (robot with red hat) and the competitor referent tc (green monster with
red hat). A Gricean speaker would describe the latter as “green monster,” but there is no true
message other than the trigger message to describe the target referent. Hence, a Gricean listener
would choose the target referent tt as the interpretation of the trigger messagem�

c .
The complexity of reasoning necessary to rationalize the choice of a target referent or target

message can vary. In some cases, Gricean reasoning may not be enough, in other cases it may
be that simpler reasoning patterns do the trick as well. To see this, and to define other plausible
reasoning types with a clear measure of ToM-reasoning complexity, it helps to construe refer-
ence games as signaling games.

Reference games as signaling games
A reference game is an instantiation of a signaling game [38], albeit one in which signals already
have a conventionally recognized meaning [39–41]. Making this connection is important
because it allows us to relate the recent literature on reference games with a rich tradition on
pragmatic reasoning in signaling games [32, 33, 42–48].

A signaling game is a game between two players, often called sender and receiver. The sender
is our speaker; the receiver our listener. A signaling game consists of a set of states T, drawn
from a prior distribution Pr 2 Δ(T). The sender knows the actual state, but the receiver does
not. The sender can choose a message from a commonly known setM. We assume that mes-
sages have conventional meanings, so that〚m〛� T is the denotation (a subset of states/refer-
ents) of messagem 2M. The receiver observes this signal and chooses an act from set A. Often,
the signaling game is conceived as an interpretation game in which the receiver’s acts are identi-
fied with the states: A = T. If the actual state is t and the receiver’s chosen interpretation is t0,
then the utility for both sender and receiver is U(t, t0) = 1 if t = t0 and 0 otherwise.

Reasoning types
Pragmatic reasoning in signaling games can be formalized in several ways. One approach rele-
vant for our purposes is iterated best response reasoning [30–33] that is essentially an applica-
tion of like-minded approaches from behavioral economics to linguistics [27, 49–52]. There
are several versions of iterated best response reasoning (see [53] for overview and comparison),
but a central idea is that there is a hierarchy of reasoning types: starting with literal language
users, each higher-level type behaves rationally in response to lower-level types. Concretely,
assume that at level 0 we have speakers and listeners who just speak and interpret literally. A
level-0 sender (S0) uses only true signals, and every true signal is equally likely to be chosen. A
level-0 receiver (R0) interprets every signal literally, and every state in which the signal is true is
considered an equally likely interpretation. Level-(n + 1) language users choose optimal signals
or interpretations based on the belief that the other player is a level-n player.

A level-1 sender (S1) is a Gricean speaker, a maximizer of relevant information: on the
assumption that the listener selects every true interpretation with equal probability, an S1 speaker
prefers an utterance ofm over that ofm0 to express state t ifm is true in t and〚m〛�〚m0〛. A
level-2 receiver (R2) is then a Gricean listener who assumes that the speaker is a Gricean S1. But
other player types are plausible as well. For instance, the interpretation behavior of a level-1
receiver (R1) closely aligns with the predictions of exhaustive interpretation (see [32]), which is a
certain formalization of pragmatic inference that is popular in theoretical linguistics (e.g., [54–
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58]). A level-2 sender (S2) is a hyper-pragmatic speaker who chooses the most informative true
utterance based on the assumption that the listener is an exhaustive R1 listener.

Given the richness of reasoning types considered in the theoretical literature, the empirical
question arises which of these reasoning types are good predictors of participants’ behavior in
reference games. The simple and complex reference games from Fig 1 help address this issue,
because different reasoning types are predicted to make different choices in these games. (See
S1 Text for a derivation of these predictions.) Table 1 summarizes the reasoning types that we
consider here, their level of Theory-of-Mind reasoning and the choices these idealized types
would make in the simple and complex games from Fig 1.

Probabilistic reasoning types
Our goal is to infer, based on empirical data, which pragmatic reasoning types are plausible. In
order to allow for slack, errors and mistakes when we fit a reasoning type model to potentially
noisy empirical data, we formulate probabilistic variants of the idealized types from Table 1.
We then compare a homogeneous “null-model” that contains only the Gricean types to a “satu-
rated model” that contains all of the archetypes from Table 1.

Homogeneous model
The homogeneous “null-model” is a version of the influential Rational Speech Act (RSA) model
[10]. The RSA model defines parameterized probabilistic versions of a level-1 Gricean speaker
and a level-2 Gricean listener. Concretely, the RSA model implements a Gricean speaker with a
probabilistic tendency to prefer more informative true descriptions over less informative ones
(where the strength of that tendency is a model parameter); and a Gricean listener who inter-
prets expressions by forming a posterior belief, by Bayes’ rule, on the assumption that the
speaker behaves in the aforementioned fashion, while also factoring in the salience of objects in
a given context (measured empirically; see S4 Text).

The behavior of a hypothetical literal listener R0 is given by an unbiased choice of a referent
of which the received message is true. With U the uniform distribution over T:

R0ðt j mÞ ¼ Uðt j t0 j m is true of t0f gÞ :

RSA’s production rule is a probabilistic approximation to a rational choice of expression, given
the belief that the listener interprets literally (as defined by R0). More concretely, if the intended
referent is t, the speaker’s utility of sendingm is log(R0(tjm)), which measures the negative
(Kullback-Leibler) distance between R0’s belief after hearingm and the speaker’s degenerate
probabilistic belief about the intended referent (i.e., the speaker knows who she wants to refer
to). When the speaker has a degenerate belief PS(tk) = 1 for tk the intended referent, then if the
listener has belief PL 2 Δ(T), utility in terms of negative Kullback-Leibler divergence reduces

to: USðPS; PLÞ ¼ �KLðPS j PLÞ ¼ �P
iPSðtiÞ log PSðtiÞ

PLðtiÞ ¼ � log 1
PLðtkÞ ¼ logPLðtkÞ.

Table 1. Idealized pragmatic reasoning types and choices in the simple and complex reference games from Fig 1.

type choice

level speaker listener simple complex

0 literal literal target or competitor target or competitor

1 Gricean exhaustive target target or competitor

2 hyper-pragmatic Gricean target target

doi:10.1371/journal.pone.0154854.t001
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The RSA model assumes that the speaker chooses messages with a probability that is propor-
tional to its expected success. This is implemented with a parameterized soft-max choice rule
(e.g., [59–61]). The speaker’s expected choice probabilities are:

S1ðm j t; l; �Þ / S01ðm j t; lÞ þ �; where

S01ðm j t; lÞ / expðl � ðlogR0ðt j mÞÞÞ:

The parameter λ> 0 measures, roughly put, the speaker’s rationality. As λ!1, the speaker
would only make rational decisions, choosing the option that maximizes his expected utility.
As λ! 0, the speaker chooses any true description with equal probability. The parameter �
allows a small positive probability for descriptions that are not true of the trigger referent. This,
or something like it, is needed in an experimental approach like ours that allows the choice
options of participants to deviate from semantic meaning.

Gricean listener behavior is given by Bayes’ rule, based on the salience priors S, which are
empirically measured (see S4 Text), and the behavior of a Gricean speaker S1:

R2ðt j m; l; �Þ / SðtÞ � S1ðm j t; l; �Þ :

Heterogeneous model
Taken at face value, the above formulation of a single speaker and a single listener rule, in con-
junction with the motivation that this is what a traditional Gricean approach would predict,
seems to suggest that all speakers and listeners also individually conform to the predictions
made by S1 and R2. We want to explore the hypothesis that speaker and listener populations
are a mix of reasoning types that includes probabilistic variants of all the idealized reasoning
types summarized in Table 1. In line with the RSA model we look at the following probabilistic
type rules (see S2 Text for motivation and formal details):

S0ðm j t; lÞ / expðl � Uðm j fm0 j m0 is true of tgÞÞ
R0ðt j m; lÞ / expðl � Uðt j ft0 j m is true of t0gÞÞ

Snþ1ðm j t; l; �Þ / S0nþ1ðm j t; lÞ þ �

with S0nþ1ðm j t; lÞ / expðl � logRnðm j t; l ! 1ÞÞ
R1ðt j m; lÞ / expðl UR1

ðt;mÞÞ
withUR1

ðt;mÞ / UðtÞ � S0ðm j t; l ! 1Þ
R2ðt j m; l; �Þ / SðtÞ � S1ðm j t; l; �Þ

We will assume for modeling convenience that all reasoning types share a λ and an � (see also
the General discussion section).

Nested modeling
The homogeneous model assumes that the population consists exclusively of Gricean types,
while the heterogenous model is compatible with any population distribution over the three
relevant speaker and listener types S0, S1, S2, R0, R1 and R2. Consequently, the homogeneous
model can be conceived of as a special case of the heterogeneous model, in the sense that the
former fixes the population distribution to a single value (like a null-hypothesis would; in this
case to S1 and R2). Since the simpler model is a special case of the complex model, the latter will
be able to accommodate every data observation at least as well as the former. On top of that,
there are observations that the complex model could accommodate much better than the
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simpler model. For example, some patterns of behavior in simple or complex reference games,
as introduced previously, would seem incompatible with the simpler model, but unproblematic
for the complex model (see Table 1). One such pattern would be the observation of exclusively
target choices in simple and complex conditions for production (suggesting that all subjects are
individually level-2 reasoners), but an equal number of target and competitor choices for com-
prehension (suggesting level-0 behavior). In order to test whether the more complex, heteroge-
neous model is necessary or whether the null-model is sufficient, we therefore turn to
experimental data from tasks that require the comprehension and production of referential
expressions, including drawing Quantity inferences of varying complexity.

Experiments
Experiment 1 tests the comprehension of referential expressions in reference games like the
ones introduced in Fig 1. Experiment 2 tests the production of referential expressions in the
same games. Experiment 3 (see S4 Text) elicits salience priors over objects required for model-
ing the R2 listener. Links to all experiments are provided in S3 Text.

Experiment 1: comprehension
Experiment 1 tested participants’ behavior in a comprehension task that used instantiations of
the “monsters and robots” reference games from Fig 1.

Participants. 60 participants were recruited via Amazon’s Web Service Mechanical Turk.
Participants’ IP address was limited to US addresses only. Only participants with a past work
approval rate of at least 95% were accepted.

Ethics statement. This study was conducted with the approval of the Stanford University
research subjects review board. All participants gave written consent and received $1.00 for
their participation (hourly rate of $10.00) according to the policies set forth by the Stanford
University research subjects review board.

Procedure. Participants engaged in a referential comprehension task. On each trial they
saw three objects on a display. Each object differed systematically along two dimensions: its
ontological kind (robot, green monster, purple monster) and accessory (scarf, blue hat, red
hat). In addition to these three objects, participants saw a pictorial message that they were told
was sent to them by a previous participant whose goal was to get them to pick out one of these
three objects. They were told that the previous participant was allowed to send a message
expressing only one feature of a given object, and that the messages the participant could send
were furthermore restricted to monsters and hats (i.e., there were no messages for referring to
the robot or scarf feature; we refer to these features as inexpressible features). The four express-
ible features were visible to participants at the bottom of the display on every trial and are
shown on the right side of Fig 1.

Participants initially completed four speaker trials. They saw three objects, one of which was
highlighted with a yellow rectangle. Participants were asked to click on one of four pictorial
messages to send to another Mechanical Turk worker to get them to pick out the highlighted
object. They were told that the other worker did not know which object was highlighted but
knew which messages could be sent. The four speaker trials contained three unambiguous and
one ambiguous trial which could function as fillers in the main experiment.

Materials. Participants saw 66 experimental trials, which were composed of 24 critical and
42 filler trials. Of the 24 critical trials, 12 constituted a simple implicature situation and 12 a
complex one (as shown in Section 1). Stimuli were created by randomly sampling a message
and then generating a grid of three objects—a target, a competitor, and a distractor— following
different constraints in different conditions.
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On simple implicature trials, the target was generated by combining the feature denoted by
the sampled message with the inexpressible feature along the other feature dimension. For
example, if the sampled message was one of “red hat” or “blue hat”, the target was a robot with
the respective hat. If instead the sampled message was “purple monster” or “green monster”,
the target was the respective monster with a scarf. The competitor was generated by combining
the feature denoted by the sampled message with a randomly sampled expressible feature
along the other feature dimension. For example, if the sampled message was “red hat”, the
competitor could be a green monster with a red hat or a purple monster with a red hat. The dis-
tractor was generated by combining two features that were randomly sampled from the set of
features that did not contain those features already present in target and competitor. For exam-
ple, if the target was a robot with a red hat and the competitor was a green monster with a red
hat, the distractor could be a purple monster with either a scarf or a blue hat.

On complex implicature trials, the target was generated by combining the feature denoted by
the sampled message with an expressible feature along the other feature dimension. For exam-
ple, if the sampled message was “green monster” the target could be a green monster with a red
hat. The competitor was generated by combining the feature denoted by the sampled message
with the remaining expressible feature along the other feature dimension. Continuing our
example, the competitor would then be a green monster with a blue hat. The distractor was
generated by combining the target feature that was not denoted by the sampled message (red
hat) with the inexpressible feature along the other feature dimension (robot).

Of the 42 filler trials, 24 used the displays from the implicature conditions but the target was
a) the competitor from the simple condition (six trials), b) the distractor from the simple con-
dition (six trials), or c) the competitor from the complex condition (12 trials), as identified
unambiguously by the trigger message. This was also intended to prevent learning associations
of display type with the target. On the other 18 filler trials, the target was either entirely unam-
biguous or entirely ambiguous given the message. That is, there was either only one object with
the feature denoted by the trigger message, or there were two identical objects that were equally
viable target candidates. Unambiguous and ambiguous fillers were included as baselines to
compare behavior on implicature trials to. Ambiguous fillers establish how often the target
could be chosen by chance, while unambiguous fillers establish the upper bound on target
choices. We did not include filler items where the target was the distractor from the complex
condition, because this would have required participants to draw a one-step inference to iden-
tify the target. Trial order as well as target, competitor, and distractor order were randomized.

Results and discussion. Those 15% of participants with the highest error rate (distractor
responses) on trials that were not ambiguous were excluded from the analysis. This was done
to avoid artificially inflating the noise parameter � (see section on Bayesian model comparison
below for further explanation). The 15% cutoff corresponded to a minimum error rate of 5%
and included one participant who was not a self-reported native speaker of English. The data
from the 51 remaining participants entered the analysis.

We were interested in participants’ ability to draw simple and complex ad hoc Quantity
implicatures. If participants always drew the implicature, their performance on critical trials
should pattern with their performance on unambiguous filler trials. If instead they interpreted
messages literally, their performance on critical trials should pattern with performance on
ambiguous trials.

Proportions of choice types are displayed in the left panel of Fig 2. As expected, participants
were close to ceiling in choosing the target on unambiguous filler trials (99% target choices
vs..04% competitor choices) but at chance on ambiguous ones (46% target choices vs. 51%
competitor choices). This confirms that participants understood the task. On critical implica-
ture trials, participants’ performance was intermediate between ambiguous and unambiguous
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filler trials. On simple implicature trials, participants chose the target 77% of the time and the
competitor 23% of the time. On complex implicature trials, the target was chosen less often
(57% target choices vs. 42% competitor choices).

A logistic mixed-effects regression was conducted to assess whether the observed differences
in target choices between the ambiguous and complex, and the complex and simple condition,
were significantly different. Unambiguous trials were not included in the analysis because tar-
get choices in this condition were at ceiling, i.e. there was not enough variance in participants’
responses to allow the model to converge. Trials on which the distractor was selected were
excluded to allow for a binary outcome variable (target vs. competitor choice). This led to an
exclusion of 1% of the data.

The model predicted the log odds of choosing a target over a competitor from a Helmert-
coded CONDITION predictor. Two Helmert contrasts over the three relevant critical and filler
conditions were included in the model, one comparing the simple implicature condition with
the other two conditions (CONDITION (HARDER VS. SIMPLE)), and one comparing the complex
implicature to the ambiguous filler condition (CONDITION (AMBIGUOUS VS. COMPLEX). This allowed
us to capture whether the differences in choice distributions for neighboring conditions sug-
gested by Fig 2 were significant.

We were also interested in whether participants displayed learning effects, i.e., whether they
(maybe differentially) improved in the implicature conditions over the course of the experi-
ment. To test this, the model also included a centered trial number predictor and the interac-
tion of trial number and each of the Helmert contrasts. The model also included further
control predictors for message type (accessory vs. species, centered) and target position
(dummy-coded with left position as reference level). Finally, following [62], the model included
the maximal random effect structure that allowed it to converge, which consisted in by-partici-
pant intercepts as well as by-participant slopes for message type and trial number.

A model summary is shown in Table 2. As suggested by Fig 2, participants made more target
choices in simple than in complex implicature situations (β = 1.28, SE = .12, p< .0001), and
they made more target choices in complex implicature situations than on ambiguous filler trials
(β = .44, SE = .13, p< .001). This suggests that what we are calling simple implicatures are
indeed simpler than what we are calling complex implicatures. Second, it suggests that, while
participants performed similarly on complex and ambiguous trials, they nevertheless per-
formed significantly above chance on complex trials. That is, at least some participants com-
puted the more complex two-step implicatures at least sometimes. However, as shown in the

Fig 2. Left: proportions of target, competitor, and distractor choices in Experiment 1. Error bars indicate 95% bootstrapped confidence
intervals. Right: proportion of target choices in simple and complex conditions by participant. Dot size indicates number of participants.

doi:10.1371/journal.pone.0154854.g002
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right panel of Fig 2, the aggregate 77% (simple) and 57% (complex) target choice pattern was
not mirrored on the individual participant level. That is, there was a lot of individual variability
in participants’ choice behavior. Some individuals succeeded more often on complex trials
than others, and success on complex trials also made it more likely that that individual had a
higher success rate on simple trials. This strongly suggests that participants in this experiment
were a mixture of R1 exhaustifiers and R2 Gricean listeners.

Neither the main effect of trial number nor its interactions with the two Helmert contrasts
reached significance, suggesting that there were no learning effects in this study, i.e. partici-
pants’ behavior on both implicature and filler trials remained constant throughout. This is
important for our subsequent model comparison, which assumes that participants are of a
fixed reasoning type.

Finally, both target position effects reached significance: participants were more likely to
choose the target if it was in the center (β = 1.28, SE = .14, p< .0001) or right (β = .71, SE = .13,
p< .0001) compared to the left position in the display. There was no multicollinearity between
fixed effects to speak of (all variance inflation factors< 1.33).

This experiment constitutes a replication of Experiment 1 of [9]. The data from all four con-
ditions will be used in model comparison on the homogeneous and heterogeneous model. Of
interest is whether the individual participant variability suggested by Fig 2 is substantial
enough to warrant the additional complexity introduced by allowing for heterogeneous types.
But first we report the results of the complementary production study.

Experiment 2: production
Experiment 2 tested participants’ behavior in a production task within the same reference
game setting as Experiment 1.

Participants. 60 participants were recruited via Amazon’s Web Service Mechanical Turk.
Participants’ IP address was limited to US addresses only. Only participants with a past work
approval rate of at least 95% were accepted.

Ethics statement. This study was conducted with the approval of the Stanford University
research subjects review board. All participants gave written consent and received $1.00 for
their participation (hourly rate of $10.00) according to the policies set forth by the Stanford
University research subjects review board.

Table 2. Summary of coefficients, standard errors, and p-values for the comprehension (Experiment 1, left) and production (Experiment 2, right)
models. Significant p-values are shown in boldface. Predictors coding experimental conditions of interest, predictors coding learning effects, and other con-
trol predictors are separated from each other by horizontal lines.

Comprehension (Exp. 1) Production (Exp. 2)

Coef β SE(β) p Coef β SE(β) p

Intercept −.15 .11 <.18 .55 .13 <.0001

CONDITION (HARDER VS. SIMPLE) 1.28 .12 <.0001 1.63 .13 <.0001

CONDITION (AMBIGUOUS VS. COMPLEX .44 .13 <.001 .20 .11 <.08

TRIAL .00 .00 <.3 −.01 .00 <.05

HARDER.VS.SIMPLE: TRIAL .00 .01 <.9 −.01 .01 <.45

AMBIGUOUS.VS.COMPLEX: TRIAL .01 .01 <.33 .00 .01 <.49

TARGET POSITION (MIDDLE VS. LEFT) 1.28 .14 <.0001

TARGET POSITION (RIGHT VS. LEFT) .74 .13 <.0001

TARGET POSITION .03 .05

MESSAGETYPE −.02 .12 <.85 .41 .10 <.0001

doi:10.1371/journal.pone.0154854.t002
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Procedure and Materials. The procedure was identical to that on speaker trials in Experi-
ment 1.

Each participant saw 66 experimental trials. The distribution of trial types was the same as
in Experiment 1: 24 critical trials (12 simple, 12 complex, see Fig 1) and 42 filler trials. Each of
the four messages received a trial by trial status as target, competitor, distractor 1, or distractor
2. Stimuli were created by randomly sampling a message and then generating a grid of three
objects following different constraints in different conditions. The sampled message was the
target.

On simple implicature trials, the trigger object was generated by combining the feature
denoted by the sampled message with an expressible feature along the other feature dimension.
The message denoting this other feature was the competitor message. For example, if the sam-
pled message was “green monster”, the trigger object might be a green monster with a red hat.
The target message was then “green monster”, the competitor message “red hat”. A second
object was generated by combining the feature denoted by the competitor message with the
inexpressible feature along the other feature dimension. In our example, the second object
would be a robot with a red hat. A third object was generated by combining the two remaining
expressible features. The messages denoting these features were randomly deemed distractor 1
or distractor 2.

On complex implicature trials, the trigger object was generated by combining the feature
denoted by the sampled message with an expressible feature along the other feature dimension.
The message denoting this other feature was the competitor message. For example, if the sam-
pled message was “green monster”, the trigger object might be a green monster with a red hat.
The target message was then “green monster”, the competitor message “red hat”. A second
object was generated by combining the feature denoted by the competitor message with the
inexpressible feature along the other feature dimension. In our example, the second object
would be a robot with a red hat. A third object was generated by combining the feature denoted
by the sampled message with the remaining expressible feature along the other feature dimen-
sion. In our example: a green monster with a blue hat. The remaining messages were randomly
deemed distractor 1 or distractor 2.

Of the 42 filler trials, 24 used the displays from the implicature conditions but the
highlighted trigger object was a) the competitor from the simple condition (six trials), b) the
distractor from the simple condition (six trials), or c) the distractor from the complex condi-
tion (12 trials). We did not include filler items where the trigger was the competitor from the
complex condition, because this would have required participants to draw a one-step inference
to select the target message. On the remaining 18 filler trials, the target message to refer to the
highlighted object was either entirely unambiguous (because the other feature was one of the
inexpressible robot or scarf features) or entirely ambiguous (because no other object in the dis-
play had the trigger object features but each trigger object feature was an equally good message
choice). Unambiguous and ambiguous fillers were included as baselines to compare behavior
on implicature trials to. On unambiguous trials, the trigger object had one expressible and one
inexpressible feature, such that the target message denoted the expressible feature. No other
objects in the display shared that feature. On ambiguous trials, the trigger object had two
expressible features that no other object in the display shared. Ambiguous fillers establish how
often the target message would be chosen by chance, while unambiguous fillers establish the
upper bound on target message choices. Trial order, position of the trigger object in the grid,
and order of target, competitor, and distractor messages were randomized.

Results. Again, the 15% of participants with the highest error rate on trials that were not
ambiguous were excluded. This corresponded to a minimum error rate of 10%, which is
slightly higher than in Exp. 1 and reflects increased difficulty associated with the production
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task. For example, participants were asked to choose between four, rather than three, alterna-
tives. The exclusion included two participants who were not self-reported native speakers of
English. The data from the 50 remaining participants entered the analysis.

Proportions of choice types are displayed in Fig 3 on the left. We collapse the two distractor
types into one distractor category, since the difference is of no theoretical interest and there
were no differences in the choice distributions between the two categories. As expected, partici-
pants were close to ceiling in choosing the target on unambiguous filler trials (96% target
choices vs. 1% competitor choices) but at chance on ambiguous ones (48% target choices vs.
48% competitor choices). On critical implicature trials, participants’ performance was interme-
diate between ambiguous and unambiguous filler trials. On simple implicature trials, partici-
pants chose the target 82% of the time and the competitor 16% of the time. On complex
implicature trials, the target was chosen less often (53% target choices vs. 45% competitor
choices).

The mixed effects logistic regression analysis was conducted as in Experiment 1 and pre-
dicted target over competitor message choices. The only differences were that a) the random
effects structure consisted only of random by-participant intercepts (because more complex
random effects structures did not allow the model to converge) and b) target position was
coded as a centered numeric position (1 to 4).

A model summary is shown in Table 2. As suggested by Fig 3, participants made more target
choices in simple than in complex implicature situations (β = 1.63, SE = .13, p<.0001). In con-
trast to the comprehension study, participants only made marginally more target choices in
complex implicature situations than on ambiguous filler trials (β = .2, SE = .11, p<.08), suggest-
ing that complex inferences are more difficult to draw in production than in comprehension.

In addition to the theoretical effects of interest, there was a main effect of trial number, such
that participants became overall slightly less likely to choose targets as the experiment pro-
gressed (β = -.01, SE = .003, p<.05). However, this effect was so small compared to the other
significant fixed effects that it is not of interest. Neither interaction of trial number with the
two Helmert contrasts reached significance, suggesting that participants’ behavior did not
change differentially for the different conditions.

Finally, of the additional control predictors only that of message type reached significance:
participants were more likely to choose the target message if the message denoted a species

Fig 3. Left: proportions of target, competitor, and distractor choices in Experiment 2. Error bars indicate 95% bootstrapped confidence
intervals. Right: proportion of target choices in simple and complex conditions by participant. Dot size indicates number of participants.

doi:10.1371/journal.pone.0154854.g003
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rather than an accessory. There was no multicollinearity between fixed effects to speak of (all
variance inflation factors< 1.16).

This experiment constitutes a replication of Experiment 2 of [9], with some caveats: the
rank order of target choice proportions is as in [9]. However, here we find that target choices
are slightly above chance in the complex condition and target choices are not at ceiling in the
simple condition. These differences may be due to the size of the sample used in this experi-
ment, which was larger and thus made it possible to detect smaller effects. The data from all
four conditions will be used in the model comparison of the homogeneous and heterogeneous
model. As was the case for the comprehension data reported previously, the individual target
choice distributions shown in Fig 3 on the right suggest that in production, too, rather than
mirroring the aggregate 82% (simple) and 53% (complex) target choice proportions, individual
participants displayed systematic differences in response behavior.

Model fits and model comparison
The main goal of this section is to assess whether it is plausible to maintain the “null hypothe-
sis” that all participants in our experiments can be construed as Gricean, i.e., as S1 and R2

respectively. The “alternative hypothesis” is that our data are better captured by assuming that
the population of participants is a heterogeneous mix of various reasoning types.

Our conclusion will be that, despite the added complexity of the heterogeneous model, the
individual-level comprehension data strongly favor the more complex model. The individual-
level production data, on the other hand, suggest that most (though not all) speakers were Gri-
cean in our experiment. For production, there is a large majority of likely Gricean S1 speakers,
but for comprehension there is no majority of Gricean R2 listeners. What the remainder of this
section adds to this is a careful model comparison that weighs predictive accuracy against
model complexity. Such model comparison is needed because mere inspection of the choice
data alone or inspection of posteriors over reasoning types (see below), will not allow precise
assessments: e.g., is it enough evidence to favor the complex model over the simpler model that
four participants from our pool are most likely literal speakers?; could the simpler model still
be plausibly maintained, given its elegant parsimony, despite the fact that only a minority of
subjects are most likely Gricean listeners of level-2? Normatively compelling answers to these
questions hinge on the relative complexity of models and on the relative success of explaining
the observed data. The Bayesian model comparison of this section offers exactly that.

Gricean types match the population-level data
Before looking at individual-level data, it is worth noting that, like in previous studies on refer-
ence games, the Gricean types alone seem to capture the population-level data reasonably well.
Abstracting away from salience priors and stochasticity in the choice rules, Gricean speakers S1
should be able to solve the simple, but not the complex condition, while Gricean listeners R2

should be able to solve both. The population-level average data, plotted in Figs 2 and 3 on the
left, show this only in tendency. But if we add salience and noise, the observed choice frequen-
cies can be approximated rather well by the homogeneous model. Previous studies have looked
at point-estimates for parameters like our λ and �, obtained by minimizing the squared distance
between the observed choice frequencies and the predicted choice probabilities [7]. Best fitting
parameters in this sense are λ = 2.533 and � = 0.015 (production) and λ = 1.597 and � = 0.005
(comprehension). Resulting predictions are well-aligned with the observations, as shown in Fig
4 (correlation r = 0.997, p< 0.0001). By this standard, the Gricean RSA model appears to be a
good predictor of our data at the population-level: on average, speaker and listener behavior
appears to be classically Gricean (modulo stochasticity and salience effects).
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A hierarchical model for individual-level data
That a population average is well approximated by some mathematical function does not
imply that the individual-level data must conform to it as well [22–24]. It is therefore relevant
to look at each individual’s choice data as the to-be-explained observations. A first goal is to
infer, based on each individual’s choice data, an estimate of each individual’s likely reasoning
type. A second goal is to determine whether the simpler Gricean model is sufficient for explain-
ing the data, or whether the added complexity of the heterogeneous model is necessary. To
achieve both goals, we take a hierarchical modeling approach [63] in which the simpler Gricean
model is nested under the more complex heterogeneous type model.

The general idea behind this approach is that we specify for each participant i a latent type
τi 2 {0, 1, 2} that captures the depth of pragmatic reasoning of i. Each τi is drawn from a type
distribution Pτ that captures the probability of sampling reasoning types from the population
from which our participants were sampled. Our data will then provide information about the
likelihood that each participant is a pragmatic reasoner of level 0, 1, or 2 and about the general
population distribution of reasoning types. The homogeneous model is a special case of the
heterogeneous model in that it assumes a priori only one value for the type distribution Pτ.

More concretely, the data that we would like to explain are counts dX
ijk, one set for produc-

tion (X = S) and one for comprehension (X = R), giving the number of choices across the whole
experiment of participant i for game j (simple, complex, unambiguous, ambiguous) that fell
into category k (target, competitor, distractor 1, possibly also distractor 2 for production).
Every participant saw each game j a fixed number of times nX

j . We assume that each participant

i has a fixed type τi 2 {0, 1, 2} that is constant across the experiment. The assumption of

Fig 4. Probabilistic predictions of the RSA model under best-fitting parameter values (see main text), plotted
against the observed choice frequencies. Each dot represents one choice option in one of our four reference
games.

doi:10.1371/journal.pone.0154854.g004
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temporally consistent reasoning types is generally dubious, but necessary to keep the model
manageable. However, in our case this assumption seems warranted given the lack of relevantly
significant trial effects in our regression analyses reported above.

For production, a participant’s type fixes whether that participant is a literal S0, a Gricean S1
or a hyper-pragmatic S2 speaker. For comprehension, a participant’s type fixes whether that
participant is a literal listener R0, an exhaustifier R1 or a Gricean listener R2. The likelihood of
each dX

ijk is then given by the binomial distribution, with a probability PX
ijk that depends on the

participant’s type tXi , error rate �
X, rationality λX, and game j:

dX
ijk � BinomialðPX

ijk; n
X
j Þ PX

ijk ¼ Xti
ðk j gamej; �; lÞ;

where the latter is defined by the probabilistic choice types of the heterogeneous model that
were introduced previously.

We assume largely uninformative prior probabilities for parameter values (the structure is
the same for production and comprehension, so we omit the variable X for readability):

� � Gammaðshape ¼ :25; rate ¼ :1Þ l � Gammaðshape ¼ 2; rate ¼ :5Þ
ti � CategoricalðPtÞ Pt � Dirichletð1; 1; 1Þ

The use of these gamma distributions is motivated by the idea that we expect trembles � to be
very small, possibly even 0, but that λ would be positive, but rather small as well.

The full probabilistic model is sketched also in Fig 5, using the conventions of [64]. Rea-
soning types τi are sampled from a categorical distribution with a population-level type distri-
bution Pτ. In other words, the model assumes that there is a distribution of reasoning types
from which our sample of participants was drawn. A priori the heterogeneous modelMhet

considers any type distribution Pτ equally likely, so that we sample it from a Dirichlet distri-
bution with uniform weight 1 for all dimensions. That means thatMhom is nested underMhet

as the special case where Pτ = h0, 1, 0i for the speaker population and Pτ = h0, 0, 1i for the lis-
tener population.

Posteriors over model parameters
To learn about a posteriori credible values of parameters we used JAGS [65] to collect 10000
samples from the joint posterior distribution after a burn in of 10000 samples, from two chains
with a thinning factor of 2. This set-up ensured convergence to the stationary distribution,

with the R̂ value of all continuous variables below 1.1 [66].
Summary statistics for the estimated marginal posteriors of model parameters are given in

Table 3. Estimated marginal densities for the population priors are shown in Fig 6. The produc-
tion data suggest that most speakers are S1 Gricean maximizers of relevant information, but
also attest a small proportion of literal S0 speakers. In contrast, the data appear to give little sup-
port to hyper-pragmatic S2 speakers. These results are roughly in line with the homogeneous
model, which assumes that speakers are of type S1. In contrast, the comprehension data give
non-negligible levels of posterior credence to all three listener types. Interestingly, the Gricean
listeners R2 are less likely than exhaustive listeners R1, and possibly even less likely than literal
listeners R0. This seems to contradict the idea of R2-homogeneity in the population quite
clearly, but proper model comparison is required to factor in model complexity as well (see
below).

Fig 7 shows the posterior distributions over participants’ reasoning types τi. For production,
most speakers’ data are best explained by assuming S1 behavior. There is only one participant
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that is most likely a hyper-pragmatic S2 speaker and there are four participants identified as
most likely being literal S0 speakers. For most participants in the production experiment, our
posterior beliefs in what type they should be, given the model and the data, have little uncer-
tainty. In contrast, the comprehension data also identified most participants as almost certainly
being of a single reasoning type, but there is somewhat more uncertainty in some cases. Never-
theless, there are only three participants whose classification by model and data yields ambigu-
ous results. Interestingly, for all reasoning types, there are several participants that are clearly
identified as most likely belonging to that type.

Table 3. 95% highest density intervals andmeans of marginal posteriors.

speaker listener

HDI min mean HDI max HDI min mean HDI max

� 9.5e-3 0.012 0.01498 1.88e-16 2.43e-4 1.11e-3

λ 2.956 3.330 3.711 5.424 5.856 6.298

τ0 0.036 0.117 0.209 0.173 0.301 0.442

τ1 0.741 0.843 0.940 0.410 0.560 0.703

τ2 8.43e-05 0.040 0.095 0.054 0.139 0.236

doi:10.1371/journal.pone.0154854.t003

Fig 5. Sketch of the full data-generating model as a probabilistic graphical model, using the
conventions of [64]. The more abstract a parameter, the higher it is in the graph. Deterministic variables have
double edges. Categorical variables have rectangular shape. Observed variables are shaded in gray. Boxes
encircle the range of indices.

doi:10.1371/journal.pone.0154854.g005
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Bayesian model comparison
When comparing models of different complexity, we need to weigh predictive accuracy against
model parsimony. A Bayesian approach to model comparison does that [35, 36, 67–69]. Given
our data D, we are interested in the ratio P(MhomjD)/P(MhetjD) of posterior plausibility in favor
of the simpler homogeneous modelMhom over the more complex heterogeneous modelMhet

given our data D. By Bayes’ rule this is the product of the ratio of the models’ evidences and the
ratio of their prior probability:

PðMhom j DÞ
PðMhet j DÞ

¼ PðD j MhomÞ
PðD j MhetÞ

� PðMhomÞ
PðMhetÞ

:

Fig 6. Marginal posterior for type priors Pτ (τi).

doi:10.1371/journal.pone.0154854.g006

Fig 7. Marginal posterior for participants' reasoning types τi.

doi:10.1371/journal.pone.0154854.g007
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Irrespective of the strength of our prior beliefs in the models, the relative change in our belief
brought about by the data is the Bayes factor P(D jMhom)/P(D jMhet), which integrates over
the predictions of the models under all its free parameter values, and thereby implements a
bias against overfitting and model complexity:

PðD j MhomÞ
PðD j MhetÞ

¼
R
Pðy j MhomÞ PðD j y;MhomÞ dy
R
Pðy j MhetÞ PðD j y;MhetÞ dy

:

Here, θ is a vector of values for all free model parameters. P(θ jMhom) and P(θ jMhom) are the
priors over these under the respective models. The vector θ is the same for both models, but, as
shown above, under the hierarchical approach taken here, the homogeneous model is nested
under the heterogeneous model as the special case where P(Pτ = h0, 1, 0i jMhom) = 1 for the
speaker population and P(Pτ = h0, 0, 1i jMhom) = 1 for the listener population.

Although the computation of Bayes factors can be difficult in general, there is an alternative,
easier method for calculating Bayes factors of nested models, the Savage-Dickey density-ratio
[34, 70]. Unfortunately, even with this method, precise calculation of Bayes factors is beyond
reach for the complex models at hand. But approximation by simulation is possible. (Details
and further explanations are provided in S5 Text.) To avoid precision problems, we look at the
less extreme “null-hypotheses”: Pt ¼ he

2
; 1� e; e

2
i for production and Pt ¼ he

2
; e
2
; 1� ei for

comprehension. The higher we choose e, the more charitable we are to the homogeneous
model (which is then no longer properly homogeneous, but still “approximately homoge-
neous”). With the fairly charitable value of 0.05, we receive Bayes factor approximations of:

PðDprod j MhomÞ
PðDprod j MhetÞ

� 3:955
PðDcomp j MhomÞ
PðDcomp j MhetÞ

� 2:8e� 11:

Bayes factors greater than 1 suggest that the data provide evidence in favor of the simpler
homogeneous model. A standard recommendation is that only Bayes factors greater than 3
count as sufficiently strong evidence in favor of a model [34]. This means that under the chari-
table alternative “null-model” that says that exactly 95% of participants are Gricean S1 speakers,
our data favor the simpler “almost only Gricean”model: its predictive success may be inferior,
but due to factoring in model complexity, the posterior odds are shifted slightly towards it.
However, if we lower our tolerance and test the assumption that exactly 99% of all participants
are Gricean S1 speakers (e = 0.01), we obtain a Bayes factor of only 0.004 in favor of the Gricean
model, i.e., very strong support for the more complex heterogeneous model (1/0.004� 250). In
sum, the data support a moderate version of the idea that a large majority of speakers are Gri-
cean, and even favors such a model over the full complexity and underspecification of the het-
erogeneous model, but our data do not support the idea that that majority is arbitrarily close to
100%.

On the other hand, even if we assume 95% Gricean R2 listeners, the odds are very clearly in
favor of the complex heterogeneous model. This is also evident from the inferred most likely
types of individual participants, shown in Fig 7: very few participants’ choice behavior can be
best explained by the homogeneous model’s comprehension rule. What the Bayes factor analy-
sis adds is the certainty that the heterogeneous model’s complexity is necessary for a decent
explanation of the comprehension data; in other words, assuming that almost everybody is a
Gricean listener is not a good explanation of the individual-level data.

Taken together, we reach the nuanced conclusion that the homogeneous Gricean model is
half-supported by our data. Under a charitable interpretation, the idea that most (though not
all) speakers are Gricean S1 speakers can be maintained, but not the idea that most listeners are
Gricean R2 listeners. Instead, the data suggest that a majority of listeners are exhaustive R1
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listeners. That is, there is variation in participants’ linguistic choices: a majority of participants
use simple informativity-based heuristics, but a non-negligible number engages in deeper
ToM-reasoning.

General discussion
Recent years have seen a surge of success for probabilistic approaches to pragmatics, which
have translated the Gricean picture of language use into a formal framework that makes quan-
titative, empirically testable predictions for speaker and listener behavior [7, 10, 12–14, 16–18,
20, 21]. In line with Grice’s original considerations, many of these approaches treat language
users as Gricean speakers (S1) and Gricean listeners (R2). The models developed in this frame-
work have provided a very good fit to aggregate population-level data across many different
pragmatic tasks, suggesting that speakers and listeners are, on average, rational Gricean agents.

In contrast, individual-level data from our experiments on reference games suggest that it
makes sense to believe that the population of participants is heterogeneous. While Gricean
speakers and Gricean listeners are attested, the majority of participants seems to apply an infor-
mation-based heuristic, corresponding to level-1 Theory-of-Mind reasoning: the majority of
speakers are Gricean (S1), but the majority of listeners are exhaustive listeners (R1). This is
despite the fact that a homogeneous Gricean population model does explain the population-
level average reasonably well.

Although these results are contingent on the particular task we presented participants with,
the obtained data, and the specific modeling choices we made, the demonstration that there
can be discrepancies between the population- and individual-level perspective has at least two
important implications for the growing field of probabilistic pragmatics, one more technical
and one more conceptual. First, for probabilistic pragmatics to ripen, it is important in general
to compare different relevant model variants stringently based on empirical data, especially
when these variants are attested in the extant theoretical literature. Secondly, that individual
differences in cognitive performance exist in many domains is beyond doubt, but the question
arises whether a computational-level probabilistic pragmatics can accommodate these and
whether it should care to do so. We will expand on these points in the following.

Model variants & model comparison
Bayesian approaches to cognition have repeatedly been criticized as appearing conceptually
under-motivated and as having insufficiently explored plausible alternatives [71–73]. Our con-
tribution here is a partial response to these points of criticism, for we have pitted different vari-
ants of probabilistic pragmatic models against each other. In general, we believe that explicit
model comparison is necessary in order to refine models and better understand what probabi-
listic pragmatics can and cannot achieve. Comparison of variants is especially relevant in cases
like ours where the extant theoretical literature offers clearcut and plausible alternative model-
ing choices. When several model variants are conceivable, it can also be the case that these vari-
ants co-exist. In that case, hierarchical mixture models suggest themselves. We have tried to
show here, by way of an example, how such hierarchical modeling could enrich the perspective
of probabilistic pragmatics.

With the possibility of individual differences on the table, at least one possibility that we
have not addressed so far is worth considering briefly. While we modeled individual differences
in reasoning type, we assumed fixed population-level error parameters λ and �. This is a simpli-
fying assumption that served practical purposes, but it is important to note that individual-
level variability in error parameters alone would not be a substitute for individual-level reason-
ing types. There is no single speaker or listener type (from the ones that we considered) that
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could capture the behavior of all other types as well, simply by choice of appropriate λs and �s.
In this sense, individual variation in terms of reasoning types is not subsumed by individual
variation in error levels. Moreover, although level-0 types can be emulated by level-(n	 1)-
types with λ close to 0, this is uninteresting as long as the research question is not whether a
particular mathematical model can account for the data, but whether a particular conceptual
idea can (e.g., literal interpretation vs. Gricean interpretation).

Individual differences in probabilistic pragmatics
Probabilistic pragmatic models of the kind considered here are usually taken to provide
computational-level analyses of pragmatic phenomena rather than algorithmic-level ones [74].
That is, the modeler specifies the problem that the agent needs to solve and provides a rational
solution strategy, while making minimal assumptions about resource limitations [75]. Why
should such a computational-level rational analysis care about individual differences?

First, if only aggregate data are considered, it is possible that the phenomenon we are trying
to explain is an artifact of averaging [76]. If half the population is risk seeking and half is risk
averse (to the same extent), then the average would indicate: the group is risk neutral. What
would it then mean to explain risk neutrality as an optimal adaptation to functional pressure
from the environment? In such an extreme case, a model that purportedly shows how the
observed average behavior is rational need not be a model of anybody actually behaving ratio-
nally. This would be an odd instance of rational analysis: we would explain how adaptive pres-
sure of the environment selected the group’s average behavior, not each individual’s behavior.
Maybe such a line of explanation is possible, but in order to avoid these philosophical difficul-
ties, inspection of individual-level data is key. If individual-level behavior aligns nicely with the
average (modulo well-behaved noise) nothing is amiss.

If it does not, there are additional advantages to incorporating individual differences into
computational-level models. One is bringing probabilistic pragmatics models closer to other
processing-oriented models in psycholinguistics. Allowing for individual differences is one way
of incorporating assumptions about varying degrees of resource limitations while remaining
agnostic about what the algorithmic-level processes are that give rise to different computa-
tional-level player types. Nevertheless, one can speculate: plausible candidates are limitations
on working memory, executive control, and other cognitive resources. In fact, there is a large
body of literature identifying a role for these kinds of factors in language processing, theory of
mind, and reasoning, which arguably constitute the intersection at which pragmatics lies. For
example, speakers’ word order preferences are affected by working memory [77], differences in
gesture production have been shown to be associated with individual differences in working
memory as well as in spatial and verbal abilities [78, 79], working memory affects the rate at
which prosody triggers contrastive inferences [80], and differences in perspective-taking have
been shown to correlate with differences in inhibitory control [81]. In the reasoning literature,
there is a large body of work showing that different cognitive biases (like the anchoring effect,
belief bias, overconfidence bias, hindsight bias, base rate neglect, outcome bias, and sunk cost
effect) are associated with differences in different types of intelligence, cognitive reflection, and
openness (e.g., [82]). In this way, acknowledging individual differences and applying rational
analysis at the individual level may help integrate computational-level probabilistic models
with processing-oriented approaches.

In particular, when it comes to modeling language use, we believe that ignoring individual
differences and focusing only on population-level data may hide that different sub-populations
employ different production and comprehension strategies. This has been shown to play a role,
for instance, in syntactic parsing, where ignoring individual differences can sometimes yield

Reasoning in Reference Games

PLOSONE | DOI:10.1371/journal.pone.0154854 May 5, 2016 20 / 25



null effects when different subpopulations apply different parsing strategies [83]. Moreover, if
the goal is to improve the predictive power of our cognitive models, what we have shown here
is that taking into account individual differences is necessary for some cases of pragmatic rea-
soning. Whether it is necessary for all cases is an empirical question that should be addressed
in future work. Relatedly, whether an individual’s inferred player type on one pragmatic task
transfers to another pragmatic task is another interesting open question.

For all the above discussed reasons, an empirically adequate theory of pragmatic language
use might ultimately like to predict individuals’ behavior, not just population-level means. A
final illustration of this point comes from taking the perspective of a speaker engaged in dialog.
Speakers tend to not speak into a vacuum, but instead interact with a particular interlocutor
about whose behavior they may have rather concrete beliefs. When speaking with a complete
stranger, speakers may start out with the assumption that their interlocutor is like the popula-
tion mean. However, speakers and listeners immediately obtain information about their inter-
locutor’s identity that they condition on. Indeed, there is an increasing body of work showing
that interlocutors rapidly adapt to each others’ phonetic [84], lexical [85], and syntactic prefer-
ences [86, 87]. One of the interlocutor’s attributes is arguably the amount of effort they can or
are willing to invest in drawing inferences, or, put differently: their player type. If I know my
interlocutor’s type, I can make more accurate predictions about their use of language, thereby
increasing the chance of communicative success. This entails that interlocutors should track
each others’ player type. Some evidence that they do comes from studies on speaker-specific
overinformativeness, showing that listeners rapidly adapt to the level of informativeness of
speakers’ use of adjectives [25, 26], but much more work is needed to investigate the extent to
which interlocutors represent player type.

Conclusion
In this paper we set out to answer a simple question: are listeners and speakers Gricean at the
individual level or only at the population level? To test this, we inferred individually variable
pragmatic reasoning types as latent parameters in a hierarchical model and used Bayesian
model comparison to draw conclusions about whether the added complexity of maintaining
the possibility of non-Gricean reasoning types is required by our data. Data came from one
production and one comprehension study in reference games that required participants to
apply pragmatic reasoning of varying complexity. While there was evidence for a substantial
number of likely Gricean speakers and Gricean listeners, the added complexity of considering
additional reasoning types was justified, especially in comprehension, where many listeners
were identified as exhaustifiers. In conclusion, given our data for this task and our model, there
are clear individual differences between participants; for the case of Quantity inferences in ref-
erential expressions, most speakers and listeners seem to apply an information-based heuristic,
corresponding to level-1 ToM-reasoning. This suggests that probabilistic pragmatics models
should take into account potential individual variation, even if designed as a computational-
level theory, and this paper demonstrates one way of doing so.
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