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Abstract: Kernel discriminant analysis (KDA) is a dimension reduction and classification algorithm
based on nonlinear kernel trick, which can be novelly used to treat high-dimensional and complex
biological data before undergoing classification processes such as protein subcellular localization.
Kernel parameters make a great impact on the performance of the KDA model. Specifically, for
KDA with the popular Gaussian kernel, to select the scale parameter is still a challenging problem.
Thus, this paper introduces the KDA method and proposes a new method for Gaussian kernel
parameter selection depending on the fact that the differences between reconstruction errors of edge
normal samples and those of interior normal samples should be maximized for certain suitable kernel
parameters. Experiments with various standard data sets of protein subcellular localization show that
the overall accuracy of protein classification prediction with KDA is much higher than that without
KDA. Meanwhile, the kernel parameter of KDA has a great impact on the efficiency, and the proposed
method can produce an optimum parameter, which makes the new algorithm not only perform as
effectively as the traditional ones, but also reduce the computational time and thus improve efficiency.

Keywords: protein subcellular localization; kernel parameter selection; kernel discriminant analysis
(KDA); Gaussian kernel function; dimension reduction

1. Introduction

Some proteins can only play the role in one specific place in the cell while others can play the role
in several places in the cell [1]. Generally, a protein can function correctly only when it is localized to a
correct subcellular location [2]. Therefore, protein subcellular localization prediction is an important
research area of proteomics. It is helpful to predict protein function as well as to understand the
interaction and regulation mechanism of proteins [3]. Now, many methods have been used to predict
protein subcellular location, such as green fluorescent protein labeling [4], mass spectrometry [5],
and so on. However, these traditional experimental methods usually have many technical limitations,
resulting in high cost of time and money. Thus, prediction of protein subcellular location based on
machine learning has become a focus research in bioinformatics [6–8].

When we use the methods of machine learning to predict protein subcellular location, we must
extract features of protein sequences. We can get some vectors after feature extraction, and then
we use the classifier to process these vectors. However, these vectors are usually complex due to
their high dimensionality and nonlinear property. In order to improve the prediction accuracy of
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protein subcellular location, an appropriate nonlinear method for reducing data dimension should be
used before classification. Kernel discriminant analysis (KDA) [9] is a nonlinear reductive dimension
algorithm based on kernel trick that has been used in many fields such as facial recognition and
fingerprint identification. The KDA method not only reduces data dimensionality but also makes
use of the classification information. This paper newly introduces the KDA method to predict
protein subcellular location. The algorithm of KDA first maps sample data to a high-dimensional
feature space by a kernel function, and then executes linear discriminant analysis (LDA) in the
high-dimensional feature space [10], which indicates that kernel parameter selection will significantly
affect the algorithm performance.

There are some classical algorithms used to select the parameter of kernel function, such as genetic
algorithm, grid searching algorithm, and so on. These methods have high calculation precision but
large amounts of calculation. In an effort to reduce computational complexity, recently, Xiao et al.
proposed a method based on reconstruction errors of samples and used it to select the parameters
of Gaussian kernel principal component analysis (KPCA) for novelty detection [11]. Their methods
are applied into the toy data sets and UCI (University of CaliforniaIrvine) benchmark data sets to
demonstrate the correctness of the algorithm. However, their innovation in the KPCA method aims
at dimensional reduction rather than discriminant analysis, which leads to unsatisfied classification
prediction accuracy. Thus, it is necessary to improve the efficiency of the method in [11] especially for
some complex data such as biological data.

In this paper, an improved algorithm of selecting parameters of Gaussian kernel in KDA is
proposed to analyze complex protein data and predict subcellular location. By maximizing the
differences of reconstruction errors between edge normal samples and interior normal samples,
the proposed method not only shows the same effect as the traditional grid-searching method, but also
reduces the computational time and improves efficiency.

2. Results and Discussion

In this section, the proposed method (in Section 3.4) and the grid-searching algorithm (in
Section 4.4) are both applied to predict protein subcellular localization. We use two standard data sets
as the experimental data. The two used feature expressions are generated from PSSM (position specific
scoring matrix) [12], which are the PsePSSM (pseudo-position specific scoring matrix) [12] and the
PSSM-S (AAO + PSSM-AAO + PSSM-SAC + PSSM-SD = PSSM-S) [13]. Here AAO means consensus
sequence-based occurrence, PSSM-AAO means evolutionary-based occurrence or semi-occurrence of
PSSM, PSSM-SD is segmented distribution of PSSM and PSSM-SAC is segmented auto covariance of
PSSM. The k-nearest neighbors (KNN) is used as the classifier in which Euclidean distance is adopted
for the distance between samples. The flow of experiments is as follows.

• First, for each standard data set, we use the PsePSSM algorithm and the PSSM-S algorithm
to extract features, respectively. Then totally we obtain four sample sets, which are GN-1000
(Gram-negative with PsePSSM which contains 1000 features), GN-220 (Gram-negative with
PSSM-S which contains 220 features), GP-1000 (Gram-positive with PsePSSM which contains
1000 features) and GP-220 (Gram-positive with PsePSSM which contains 220 features).

• Second, we use the proposed method to select the optimum kernel parameter for the Gaussian
KDA model and then use KDA to reduce the dimension of sample sets. The same procedure
is also carried out for the traditional grid-searching method to form a comparison with the
proposed method.

• Finally, we use the KNN algorithm to classify the reduced dimensional sample sets and use some
criterions to evaluate the results and give the comparison results.

Some detailed information in experiments is as follows. For every sample set, we choose the
class that contains the most samples to form the training set [8]. Let S = [0.1, 0.2, 0.3, 0.4, 1, 2, 3, 4] be a
candidate set of the Gaussian kernel parameter, which is proposed at random. When we use the KDA
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algorithm to reduce dimension, the number of retained eigenvectors must be less than or equal to C− 1
(C is the number of classes). Therefore, for sample sets GN-1000 and GN-220, the number of retained
eigenvectors, which is denoted as d, can be from 1 to 7. For the sample sets GP-1000 and GP-220, d
can be 1, 2, and 3. As far as the parameter u is concerned, when it is 5–8% of the average number
of samples, good classification can be achieved [14]. Besides, we demonstrate the robustness of the
proposed method with the variation of u in Section 2.2. So here we simply pick a general value for u,
say 8. To sum up, in the following experiments, when certain parameters need to be fixed, their default
values are as follows. The value of d is 7 for sample sets GN-1000 and GN-220, and 3 for GP-1000 and
GP-220; the value of u is 8 and the k value in KNN classifier is 20.

2.1. The Comparison Results of the Overall Accuracy

2.1.1. The Accuracy Comparison between the Proposed Method and the Grid-Searching Method

In this section, first, the proposed method and the grid-searching method are respectively used in
the prediction of protein subcellular localization with different d values. The experimental results are
presented in Figure 1.
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Figure 1. The overall accuracy versus d for four sample sets.

In Figure 1, all four sample sets suggest that when we use the KDA algorithm to reduce dimension,
the larger the number of retained eigenvectors, the higher the accuracy. The overall accuracy of the
proposed method is always the same as that of the grid-searching method, no matter which value of d.
The proposed method is effective for selecting the optimal Gaussian kernel parameter.

Then, in the analyses and experiments, we find that superiority of the proposed method is the
low runtime, which is demonstrated in Table 1 and Figure 2.
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Table 1. The overall accuracy and the ratio of runtime for two methods.

Sample Sets Overall Accuracy Ratio (t1/t2)

GP-220 (PSSM-S)
The proposed method 0.9924

0.7087Grid searching method 0.9924

GP-1000 (PsePSSM)
The proposed method 0.9924

0.7362Grid searching method 0.9924

GN-220 (PSSM-S)
The proposed method 0.9801

0.7416Grid searching method 0.9801

GN-1000 (PsePSSM)
The proposed method 0.9574

0.7687Grid searching method 0.9574
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Figure 2. The overall accuracy and the ratio of runtime for two methods.

In Table 1, t1 and t2 are the runtimes of the proposed method and the grid-searching method,
respectively. The overall accuracy and the ratio of t1 and t2 are presented in both Table 1 and Figure 2,
from which we can see that for each sample set, the accuracy of the proposed method is always the same
as that of the grid-searching method; meanwhile, the runtime of the former is about 70–80% of that of
the latter, indicating that the proposed method has a higher efficiency than the grid-searching method.

2.1.2. The Comparison between Methods with and without KDA

In this experiment, we compare the overall accuracies between the cases of using KDA algorithm
or not, with k values of the KNN classifier varying from 1 to 30. The experimental results are shown in
Figure 3.

For each sample set, Figure 3 shows that the accuracy with KDA algorithm to reduce dimension
is higher than that of without it. However, the kernel parameter has a great impact on the efficiency
of the KDA algorithm, and the proposed method can be used to select the optimum parameter that
makes the KDA perform perfect. Therefore, accuracy can be improved by using the proposed method
to predict the protein subcellular localization.
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Figure 3. The overall accuracy versus k value with or without KDA algorithm.

2.2. The Robustness of the Proposed Method

In the proposed method, the value of u will have an impact on the radius value of neighborhood so
that it can affect the number of the selected internal and edge samples. Figure 4 shows the experimental
results when the value of u ranges from 6 to 10, in which the overall accuracies of the proposed method
and the grid-searching method are given.
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Figure 4. The overall accuracy for four sample sets with different u values.

It is easily seen from Figure 4 that the accuracy keeps invariable with different u values.
The number of the selected internal and edge samples has little effect on the performance of the
proposed method. Therefore, the method proposed in this paper has a good robustness.
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2.3. Evaluating the Proposed Method with Some Regular Evaluation Criterions

In this subsection, we compute the values of some regular evaluation criterions with the proposed
method for two standard data sets, which is show in Tables 2 and 3, respectively. In Table 3, “-” means
an infinity value, corresponding to the cases when the denominator is 0 in MCC.

Table 2. The values of evaluation criterion with the proposed method for the Gram-positive.

Sample Set
Protein Subcellular Locations

Cell Membrane Cell Wall Cytoplasm Extracell

Sensitivity
GP-220 1 0.9444 0.9904 0.9919

GP-1000 0.9943 0.9444 1 0.9837

Specificity
GP-220 0.9943 1 1 09950

GP-1000 0.9971 1 0.9937 0.9925

Matthews coefficient correlation (MCC)
GP-220 0.9914 0.9709 0.9920 0.9841

GP-1000 0.9914 0.9709 0.9921 0.9840

Overall accuracy (Q)
GP-220 0.9924

GP-1000 0.9924

Table 3. The values of evaluation criterion with the proposed method for the Gram-negative.

Sample Set
Protein Subcellular Locations

(1) (2) (3) (4) (5) (6) (7) (8)

Sensitivity
GN-220 1 0.9699 1 0 0.9982 0 0.9677 1
GN-1000 1 0.9323 1 0 0.9659 0 0.9516 0.9556

Specificity
GN-220 0.9924 0.9902 1 1 0.9978 1 1 0.9953
GN-1000 0.9608 0.9872 1 1 0.9967 1 1 0.9992

Matthews coefficient correlation (MCC)
GN-220 0.9866 0.9324 1 - 0.9956 - 0.9823 0.9814
GN-1000 0.9346 0.8957 1 - 0.9681 - 0.9733 0.9712

Overall accuracy (Q)
GN-220 0.9801
GN-1000 0.9574

(1) Cytoplasm, (2) Extracell, (3) Fimbrium, (4) Flagellum, (5) Inner membrane, (6) Nucleoid, (7) Outer membrane,
(8) Periplasm.

Tables 2 and 3 show that the values of the evaluation criterion are close to 1 for the proposed
method. Then the selection of the kernel parameter using the proposed method will benefit the protein
subcellular localization.

3. Methods

3.1. Protein Subcellular Localization Prediction Based on KDA

To improve the localization prediction accuracy, it is necessary to reduce dimension of
high-dimensional protein data before subcellular classification. The flow of protein subcellular
localization prediction is presented in Figure 5.
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As shown in Figure 5, first, for a standard data set, some features of protein sequences such as
PSSM-based expressions are extracted to form the sample sets. The specific feature expressions used in
this paper are discussed in Section 4.2. Second, the kernel parameter is selected in an interval based on
the sample sets to reach its optimal value in KDA model. Third, with this optimal value, we used the
KDA to realize the dimension reduction of the sample sets. Lastly, the low dimensional data is treated
by certain classifier to realize the classification and the final prediction.

In the whole process of Figure 5, dimension reduction with KDA is very important, in which
the kernel selection is a key step and constructs the research focus of this paper. Kernel selection
includes the choice of the type of kernel function and the choice of the kernel parameters. In this paper,
Gaussian kernel function is adopted for KDA because of its good nature, learning performance, and
catholicity. So, the emphasis of this study is to decide the scale parameter of the Gaussian kernel,
which plays an important role in the process of dimensionality reduction and has a great influence on
prediction results. We put forward a method for selecting the optimum Gaussian kernel parameter
with the starting point of reconstruction error idea in [15].

3.2. Algorithm Principle

Kernel method constructs a subspace in the feature space by the kernel trick, which makes normal
samples locate in or nearby this subspace, while novel samples are far from it. The reconstruction
error is the distance of a sample from the feature space to the subspace [11], so the reconstruction
errors of normal samples should be different from those of the novel samples. In this paper, we use
the Gaussian KDA as the descending algorithms. Since the values of the reconstruction errors are
influenced by the Gaussian kernel parameters, the reconstruction errors of normal samples should be
differentiated from those of the novel samples by suitable parameters [11].

In the input space, we usually call the samples on the boundary as edge samples, and call those
within the boundary as internal samples [16,17]. The edge samples are much closer to novel samples
than the internal samples, while the internal samples are much closer to normal states than the edge
samples [11]. We usually use the internal samples as the normal samples and use the edge samples as
the novel samples, since there are no novel samples in data sets. Therefore, the principle is that the
optimal kernel parameter makes the reconstruction errors have a reasonable difference between the
internal samples and the edge samples.

3.3. Kernel Discriminant Analysis (KDA) and Its Reconstruction Error

KDA is an algorithm by applying kernel trick into linear discriminant analysis (LDA). LDA is an
algorithm of linear dimensionality reduction together with classifying discrimination, which aims to
find a direction that maximizes the between-class scatter while minimizing the within-class scatter [18].
In order to extend the LDA theory to the nonlinear data, Mika et al. proposed the KDA algorithm,
which makes the nonlinear data linearly separable in a much higher dimensional feature space than
before [9]. The principle of the KDA algorithm is shown as follows.
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Suppose the N samples in X can be divided into C classes and the ith class contains Ni samples

satisfying N =
C
∑

i=1
Ni. The between-class scatter matrix Sφb and the within-class scatter matrix nφn of X

are defined in the following equations, respectively:

Sφb =
C

∑
i=1

Ni

(
mφi −mφ

) (
mφi −mφ

)
T (1)

Sφw =
C

∑
i=1

Ni

∑
j=1

[
φ
(

xi
j

)
−mφi

] [
φ
(

xi
j

)
−mφi

]
T (2)

where mφi = 1
Ni

Ni
∑

j=1
φ
(

xi
j

)
is the mean vector of the ith class, and mφ = 1

N

N
∑

i=1
φ(xi) is the total mean of

X. To find the optimal linear discriminant, we need to maximize J(W) as follows:

max J(W) =
WTSφb W

WTSφwW
(3)

where W = [w1, w2, · · · , wd]
T(1 ≤ d ≤ C− 1) is a projection matrix, and wk(k = 1, 2, · · · , d) is a

column vector with N elements. Through certain algebra, it can be deduced that W is made up of the
eigenvectors corresponding to the top d eigenvalues of Sφw−1Sφb . Also, the projection vector wk can be
represented by a linear combination of the samples in the feature space:

wk =
N

∑
j=1

ak
j j
(
xj
)

(4)

where ak
j is a real coefficient. The projection of the sample X onto wk is given by:

wT
k ×φ(x) =

N

∑
i=1

ak
i K
(
x, xj

)
(5)

Let a =
[
a1, a2, · · · , ad]T be the coefficient matrix where ak =

[
ak

1, ak
2, · · · , ak

N
]T is the coefficient vector.

Combining Equations (1)–(5), we can obtain the linear discriminant by maximizing the function J(a):

max J(a) =
aTM̃a
aTL̃a

(6)

where M̃ =
C
∑

i=1
Ni(Mi −M) (Mi −M)T, L̃ =

C
∑

i=1
Ki

(
E− 1

Ni
I
)

KT
i , the kth component of the vector

Mi is (Mi)k = 1
Ni

Ni
∑

j=1
K
(

xk, xi
j

)
(k = 1, 2, · · · , N), the kth component of the vector M is (M)k =

1
N

N
∑

j=1
K
(

xk, xi
j

)
(k = 1, 2, · · · , N), Ki is a N ×Ni matrix with (Ki)mn = K

(
xm, xi

n
)
, E is the Ni ×Ni

identity matrix, and 1
Ni

I is the Ni ×Ni matrix that all elements are 1
Ni

[9]. Then, the projection matrix a

is made up of the eigenvectors corresponding to the top d eigenvalues of L̃
−1

M̃.
According to the KDA algorithm principle in (3) or (6), besides the Gaussian kernel parameter s,

the number of retained eigenvectors d also affects the algorithm performance. Generally, in this paper,
the proposed method is mainly used to screen an optimum S under a predetermined d value.
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The Gaussian kernel function is defined as follows:

K
(
xi, xj

)
= exp(−

‖xi − xj‖2

σ2 ) (7)

where σ is the scale parameter which is generally estimated by s. Note that ‖φ(x)‖2 = K(x, x) = 1.
The kernel-based reconstruction error is defined in the following equation:

RE(x) = ‖φ(x)−W t(x) ‖2 = ‖φ(x) ‖2 − ‖ t(x) ‖2

= K(x, x)− ‖ t(x) ‖2 (8)

where t(x) is the vector obtained by projecting φ(x) onto a projection matrix a.

3.4. The Proposed Method for Selecting the Optimum Gaussian Kernel Parameter

The method of kernel parameter selection relies on the reconstruction errors of the internal
samples and the edge samples. Therefore, first we find a method to select the edge samples and the
interior samples, then we propose the method for selection of the Gaussian kernel parameter.

3.4.1. The Method for Selecting Internal and Edge Samples

Li and Maguire present a border-edge pattern selection method (BEPS) to select the edge samples
based on the local geometric information [16]. Xiao et al. [11] modified the BEPS algorithm so that
it can select both the edge samples and internal samples. However, their algorithm has the risk of
making all samples in the training set become the edge samples. For example, when all samples are
distributed on a spherical surface in a three-dimensional space, every sample in the data set will be
selected as the edge samples since its neighbors are all located on one side of its tangent plane. In order
to solve this problem, this paper innovatively combines the ideas in [19,20] to select the internal and
edge samples, respectively, which is not dependent on the local geometric information. The main
principle is that the edge sample is usually surrounded by the samples belonging to other classes while
the internal sample is usually surrounded by the samples belonging to its same class. Further, the edge
samples are usually far from the centroid of this class, while the internal samples are usually close
to the centroid. So, a sample will be selected as the edge sample if it is far from the centroid of this
class and there are samples around it that belongs to other classes, otherwise it will be selected as the
internal sample.

Specifically, suppose the ith class Xi =
{

x1, x2, · · · , xNi

}
in the sample set X is picked out as the

training set. Denote ci be the centroid of this class:

ci =
1

Ni

Ni

∑
i=1

xi (9)

We use the median value m of the distances from all samples in a class to its centroid to measure
the distance from a sample to the centroid of this class. A sample is conserved to be far from the
centroid of this class if the distance from this sample to the centroid is greater than the median value.
Otherwise, the sample is considered to be close to the centroid.

Denote dist
(
xi, xj

)
as the distance between any two samples xi and xj, and Nε(x) as the

ε-neighborhood of X:
Nε(x) = {y|dist(x, y) ≤ ε, y ∈ X } (10)

The value of neighborhood ε is given as follows. Let u be a given number which satisfies
0 < u < Ni. Densityu(Xi) is the mean radius of neighborhood of Xi for the given number u:

Densityu(Xi) =
1

Ni

Ni

∑
i=1

distu(xi) (11)
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where distu(xi) is the distance from xi to its uth nearest neighbor. So, Densityu(Xi) is used as the value
of ε for the training set Xi. The flow for the selection of the internal and edge samples is shown in
Table 4.

Table 4. The Selection of Internal and Edge Samples.

Input: X = {X1, X2, · · · , XC}, the training set Xi = {x1, x2, · · · , xNi} (1 ≤ i ≤ C).

1. Calculate the radius of neighborhood ε using Equation (11).
2. Calculate the centroid ci of the ith class according to Equation (9).
3. Calculate the distances distj(j = 1, 2, · · · , Ni) from all samples in training set to ci, respectively, and the
median value m of them.
4. For each training sample xj of the set Xi

• Calculate the Nε
(
xj
)

according to Equation (10).
• If distj > m and there are samples in Nε

(
xj
)

belonging to other classes, xj is selected as an edge sample.
• If distj < m and no sample in Nε

(
xj
)

belongs to other classes, xj is selected as an internal sample.

Output: the selected internal sample set Ωin, the selected edge sample set Ωed.

In Table 4, a sample X is considered to be the edge one when the distance from X to the centroid
is larger than the median m and there are samples in Nε(x) belonging to other classes in this case.
A sample X is considered to be the internal one when the distance from X to the centroid is less than m
and in this case all samples of Nε(x) belong to this class.

3.4.2. The Proposed Method

In order to select the optimum kernel parameter, it is necessary to propose a criterion aiming to
distinguish reconstruction errors of the edge samples from those of the internal samples. A suitable
parameter not only maximizes the difference between reconstruction errors of the internal samples and
those of the edge samples, but also minimizes the variance (or standard deviation) of reconstruction
errors of the internal samples [11]. According to the rule, an improved objective function is proposed in
this paper. The optimal Gaussian kernel parameter S is selected by maximizing this objective function.

s = argmax
s

f(s) = arg max
s

‖RE(Ωed) ‖∞ − ‖RE(Ωin) ‖∞
std{RE(Ωin)}

(12)

where ‖ · ‖∞ is the infinite norm which computes the maximum absolute component of a vector
and std(·) is a function of the standard deviation. Note that in the objective function f(s), our key
improvement is to use the infinite norm to compute the size of reconstruction error vector since it can
lead to a higher accuracy than many other measurements, which has been verified by a series of our
experiments. The reason is probably that the maximum component is more reasonable to evaluate the
size of a reconstruction error vector than others such as the 1-norm, p-norm (1 < p < +∞) and the
minimum component of a reconstruction error vector in [11].

According to (8), when the number of retained eigenvectors is determined, we can select the
optimum parameter s from a candidate set using the proposed method. The optimum parameter
ensures that the Gaussian KDA algorithm performs well in dimensionality reduction, which improves
the accuracy of protein subcellular location prediction. The proposed method for selecting the Gaussian
kernel parameter can be presented in Table 5.
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Table 5. The Method for Selecting the Gaussian KDA Parameter.

Input: A reasonable candidate set S = {s1, s2, · · · , sm} for Gaussian kernel parameter, X = {X1, X2, · · · , XC},
the training set Xi = {x1, x2, · · · , xNi} (1 ≤ i ≤ C), the number of retained eigenvectors d.

1. Get the internal sample set Ωin and the edge sample set Ωed from the training set Xi using Algorithm 1.
2. For each parameter si ∈ S, i = 1, 2, · · · , m

• Calculate the kernel matrix K using Equation (7).
• Reduce dimension of the K using the Gaussian KDA algorithm.
• Calculate RE(Ωed) and RE(Ωin) using Equation (8).
• Calculate the value of objective function f(si) using Equation (12).

3. Select the optimum parameter s = argmax
si∈S

f(si)

Output: the optimum Gaussian kernel parameter S.

As the end of this section, we want to summarize the position of the proposed method in protein
subcellular localization once more. First, two kinds of regularization forms of PSSM are used to extract
the features in protein amino acid sequences. Then, the KDA method is performed on the extracted
features for dimension reduction and discriminant analysis according to the KDA algorithm principle
in Section 3.3 with formulas (1)–(6). During the procedure of KDA, the novelty of our work is to
give a new method for selecting the Gaussian kernel parameter, which is summarized in Table 5.
Finally, we choose the k-nearest neighbors (KNN) as the classifier to cluster the dimension-reduced
data after KDA.

4. Materials

In this section, we introduce the other processes in Figure 5 except KDA model and its parameter
selection, which are necessary materials for the whole experiment.

4.1. Standard Data Sets

In this paper, we use two standard datasets that have been widely used in the literature for
Gram-positive and Gram-negative subcellular localizations [13], whose protein sequences all come
from the Swiss-Prot database.

For the Gram-positive bacteria, the standard data set we found in the literature [13,14,21]
is publicly available on http://www.csbio.sjtu.edu.cn/bioinf/Gpos-multi/Data.htm. There are
523 locative protein sequences in the data set that are distributed in four different subcellular locations.
The number of proteins in each location is given in Table 6.

Table 6. The name and the size of each location for the Gram-positive data set.

No. Subcellular Localization Number of Proteins

1 cell membrane 174
2 cell wall 18
3 cytoplasm 208
4 extracell 123

For the Gram-negative bacteria, the standard data set of subcellular localizations is presented in
the literature [13,22], which can be downloaded freely from http://www.csbio.sjtu.edu.cn/bioinf/
Gneg-multi/Data.htm. The data set contains 1456 locative protein sequences located in eight different
subcellular locations. The number of proteins in each location is shown in Table 7.

http://www.csbio.sjtu.edu.cn/bioinf/Gpos-multi/Data.htm
http://www.csbio.sjtu.edu.cn/bioinf/Gneg-multi/Data.htm
http://www.csbio.sjtu.edu.cn/bioinf/Gneg-multi/Data.htm
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Table 7. The name and the size of each location for the Gram-negative data set.

No. Subcellular Localization Number of Proteins

1 cytoplasm 410
2 extracell 133
3 fimbrium 32
4 flagellum 12
5 inner membrane 557
6 nucleoid 8
7 outer membrane 124
8 periplasm 180

4.2. Feature Expressions and Sample Sets

In the prediction of protein subcellular localizations with machine learning methods, feature
expressions are important information extracted from protein sequences, which have certain
proper mathematical algorithms. There are many efficient algorithms used to extract features of
protein sequences, in which two of them, PsePSSM [12] and PSSM-S [13], are used in this paper.
The two methods rely on the position-specific scoring matrix (PSSM) for benchmarks which is obtained
by using the PSI-BLAST algorithm to search the Swiss-Prot database with the parameter E-value of
0.01. The PSSM is defined as follows [12]:

PPSSM =



M1→1 M1→2 · · · M1→20

M2→1 M2→2 · · · M2→20
...

...
...

...
Mi→1 Mi→2 · · · Mi→20

...
...

...
...

ML→1 ML→2 · · · ML→20


(13)

where Mi→j represents the score created in the case when the ith amino acid residue of the protein
sequence is transformed to the amino acid type j during the evolutionary process [12].

Note that, usually, multiple alignment methods are used to calculate PSSM, whose chief drawback
is being time-consuming. The reason why we select PSSM instead of simple multiple alignment
in this paper to form the total normalized information content is as follows. First, since our
focus is to demonstrate the effectiveness of dimensional reduction algorithm, we need to construct
high-dimensional feature expressions such as PsePSSM and PSSM-S, whose dimensions are as high as
1000 and 220, respectively. Second, PSSM has many advantages, such as those described in [23]. As far
as the information features are concerned, PSSM has produced the strongest discriminator feature
between fold members of protein sequences. Multiple alignment methods are used to calculate PSSM,
whose chief drawback is being time-consuming. However, in spite of the time-consuming nature of
constructing a PSSM for the new sequence, the extracted feature vectors from PSSM are so informative
that are worth the cost of their preparation [23]. Besides, for a new protein sequence, we only need to
construct a PSSM for the first time, which could be used repeatedly in the future for producing new
normalization forms such as PsePSSM and PSSM-S.

4.2.1. Pseudo Position-Specific Scoring Matrix (PsePSSM)

Let P be a protein sample, whose definition of PsePSSM is given as follows [12]:

PξPse−PSSM =
[
M1M2 · · ·M20Gξ1 Gξ2 · · ·G

ξ
20

]T
(ξ = 0, 1, 2, · · · , 49) (14)
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Mj =
1
L

L

∑
i=1

Mi→j(j = 1, 2, · · · , 20) (15)

Gξj =
1

L− ξ
L−ξ
∑
i=1

[
Mi→j −M(i+ξ)→j

]2

(j = 1, 2, · · · , 20; ξ < L) (16)

where L is the length of P, Gξj is the correlation factor by coupling the ξ-most contiguous
scores [22]. According to the definition of PsePSSM, a protein sequence can be represented by a
1000-dimensional vector.

4.2.2. PSSM-S

Dehzangi et al. [13] put forward a new feature extraction method, PSSM-S, which combines four
components: AAO, PSSM-AAO, PSSM-SD, and PSSM-SAC. According to the definition of the PSSM-S,
it can be represented a feature vector with 220 (20 + 20 + 80 + 100) elements.

4.2.3. Sample Sets

For the two benchmark data, PsePSSM and PSSM-S are used to extract features, respectively.
Finally we get four experimental sample sets GN-1000, GN-220, GP-1000 and GP-220, shown in Table 8.

Table 8. Sample sets.

Sample
Sets

Benchmarks for
Subcellular Locations

Extraction
Feature Method

The Number of
Classes

The Dimension of
Feature Vector

The Number of
Samples

GN-1000 Gram-negative PsePSSM 8 1000 1456
GN-220 Gram-negative PSSM-S 8 220 1456
GP-1000 Gram-positive PsePSSM 4 1000 523
GP-220 Gram-positive PSSM-S 4 220 523

4.3. Evaluation Criterion

To evaluate the performance of the proposed method, we use Jackknife cross-validation, which has
been widely used to predict protein subcellular localization [13]. The Jackknife test is the most objective
and rigorous cross-validation procedure in examining the accuracy of a predictor, which has been
used increasingly by investigators to test the power of various predictors [24,25]. In the Jackknife test
(also known as leave-one-out cross-validation), every protein is removed one-by-one from the training
dataset, and the predictor is trained by the remaining proteins. The isolated protein is then tested by
the trained predictor [26]. Let x be a sample set with N samples. For each sample, it will be used as the
test data, and the remaining N− 1 samples will be used to construct the training set [27]. In addition,
we use some criterion to assess the experimental results, defined as follows [12]:

MCC(k) =
TPk × TNk − FNk × FPk√

(TPk + FNk) (TPk + FPk) (TNk + FPk) (TNk + FNk)
× 100% (17)

Sen(k) =
TPk

TPk + FNk
× 100% (18)

Spe(k) =
TNk

TPk + FPk
× 100% (19)

Q =

C
∑

k=1
TPk

N
× 100% (20)

where TP is the number of true positive, TN is the number of true negative, FP is the number of
false positive, and FN is the number of false negative [12]. The value of MCC (Matthews coefficient
correlation) varies between −1 and 1, indicating when the classification effect goes from a bad to
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a good one. The values of Specificity (Spe), sensitivity (Sen), and the overall accuracy (Q) all vary
between 0 and 1, and the classification effect is better when their values are closer to 1, while the
classification effect is worse when their values are closer to 0 [13].

4.4. The Grid Searching Method Used as Contrast

In this section, we introduce a normal algorithm for searching S, the grid-searching algorithm,
which is used as a contrast with the proposed algorithm in Section 3.4.

The grid-searching method is usually used to select the optimum parameter, whose steps are as
follows for the candidate parameter set S [28].

• Compute the kernel matrix k for each parameter si ∈ S, i = 1, 2, · · · , m.
• Use the Gaussian KDA to reduce the dimension of K.
• Use the KNN algorithm to classify the reduced dimensional samples.
• Calculate the classification accuracy.
• Repeat the above four steps until all parameters in S have been traversed. The parameter

corresponding to the highest classification accuracy is selected as the optimum parameter.

5. Conclusions

Biological data is usually high-dimensional. As a result, it is necessary to reduce dimension
to improve the accuracy of the protein subcellular localization prediction. The kernel discriminant
analysis (KDA) based on Gaussian kernel function is a suitable algorithm for dimensional reduction in
such applications. As is known to all, the selection of a kernel parameter affects the performance of
KDA, and thus it is important to choose the proper parameter that makes this algorithm perform well.
To handle this problem, we propose a method of the optimum kernel parameter selection, which relies
on reconstruction error [15]. Firstly, we use a method to select the edge and internal samples of the
training set. Secondly, we compute the reconstruction errors of the selected samples. Finally, we select
the optimum kernel parameter that makes the objective function maximum.

The proposed method is applied to the prediction of protein subcellular locations for
Gram-negative bacteria and Gram-positive bacteria. Compared with the grid-searching method,
the proposed method gives higher efficiency and performance.

Since the performance of the proposed method largely depends on the selection of the internal
and edge samples, in the future study, researchers may pay more attention to select more representative
internal and edge samples from the biological data set to improve the prediction accuracy of protein
subcellular localization. Besides this, it is also meaningful to research how to further improve the
proposed method to make it suitable for selecting parameters of other kernels.
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