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ABSTRACT

Motivation: Template-based modeling, including homology modeling

and protein threading, is the most reliable method for protein 3D struc-

ture prediction. However, alignment errors and template selection are

still the main bottleneck for current template-base modeling methods,

especially when proteins under consideration are distantly related.

Results: We present a novel context-specific alignment potential for

protein threading, including alignment and template selection. Our

alignment potential measures the log-odds ratio of one alignment

being generated from two related proteins to being generated from

two unrelated proteins, by integrating both local and global context-

specific information. The local alignment potential quantifies how well

one sequence residue can be aligned to one template residue based

on context-specific information of the residues. The global alignment

potential quantifies how well two sequence residues can be placed

into two template positions at a given distance, again based on con-

text-specific information. By accounting for correlation among a var-

iety of protein features and making use of context-specific information,

our alignment potential is much more sensitive than the widely used

context-independent or profile-based scoring function. Experimental

results confirm that our method generates significantly better align-

ments and threading results than the best profile-based methods on

several large benchmarks. Our method works particularly well for dis-

tantly related proteins or proteins with sparse sequence profiles be-

cause of the effective integration of context-specific, structure and

global information.

Availability: http://raptorx.uchicago.edu/download/.

Contact: jinboxu@gmail.com

1 INTRODUCTION

Protein structure is essential for the understanding of protein

functions. Predicting the 3D structure of a protein from its se-

quence remains one of the grand challenges confronting compu-

tational biologists. Template-based modeling (TBM), such as

homology modeling and protein threading, is the most reliable

method and can produce reasonable 3D models for about two-

third of the proteins without solved structures. TBM is based on

the observation that protein structures are much more conserved

than sequences. That is, given a target protein sequence, we can

predict its 3D structure by aligning it to structurally similar pro-

tein structures in PDB. The model quality of TBM depends on

sequence-template alignment and template selection, both of

which are challenging when only distantly related templates are

available for a protein sequence under prediction.

The threading accuracy critically depends on the choice of a

threading scoring function (Meng et al., 2011). Most of current

methods make heavy use of position-specific information, such

as sequence profile, which is usually represented as a position-

specific scoring matrix or a profile HMM (Eddy, 1998; Eskin and
Snir, 2007; Jaroszewski et al., 2005; Söding, 2005). Although

sequence profile is effective on homolog detection, it is only pos-
ition specific, but not context specific. Further, it is also lack of

structure information (e.g. secondary structure and solvent
accessibility). Context-specific information refers to the informa-

tion in the sequential neighborhood of one residue. The neigh-
boring residues of a given residue play an important role in

shaping the mutation pattern of the residue. Few alignment
methods, such as CS-BLAST (Biegert and Söding, 2009) are

developed to make use of context-specific information. Even
CS-BLAST makes use of only sequence, but not context-specific

structure information. To the best of our knowledge, no protein
threading method has integrated well both context-specific

sequence and structure information.
Although many protein alignment methods use only local in-

formation, a few protein threading methods (Akutsu and
Miyano, 1999; Godzik et al., 1992; Jones et al., 1992; Xu et al.,

2003) were developed to use global information, such as pairwise
contact potential, which quantifies how well two sequence resi-

dues can be placed into two template positions in a contact.
However, the gain from pairwise contact potential is not signifi-

cant as compared with the impact of sequence profile on protein
alignments. The underlying reason may be that the contact-based

pairwise potentials used in these threading methods do not carry
too much extra signal. To significantly improve the effectiveness

of global information especially pairwise potential in protein
threading, this article studies a context-specific distance-based

pairwise potential. Our pairwise potential is built on context-spe-
cific information and much more sensitive than the context-in-

dependent contact-based pairwise potentials and, thus, greatly
helps improve protein threading.
This article presents a novel context-specific alignment poten-

tial for protein threading, including both alignment and template
selection. Our alignment potential measures the log-odds ratio of

one alignment being generated from two related proteins to
being generated from two unrelated proteins, by integrating con-

text-specific local and global information. An alignment is
assumed to be optimal if it maximizes the alignment potential.

The local alignment potential quantifies how well one sequence
residue can be aligned to one template residue based on context-

specific information of these two residues. The global alignment
potential quantifies how well two sequence residues can be

placed into two template positions at a given distance, again
based on residue context-specific information.

In this article, the context of one residue includes a variety of
correlated protein features, such as sequence (profile) informa-

tion, (predicted) secondary structure and solvent accessibility,
amino acid physic-chemical properties in a local window cen-

tered at the residue. We integrate these correlated protein fea-
tures into an accurate alignment potential using advanced

statistical learning methods, including conditional neural fields*To whom correspondence should be addressed.
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(Peng et al., 2009). Experimental results show that our context-

specific alignment potential is much more sensitive than the

widely used context-independent or profile-based (which is pos-

ition specific) scoring function, generating significantly better

alignments and threading results than the best profile-based

methods on several large benchmarks. Our method works par-

ticularly well for distantly related proteins or proteins with sparse

sequence profiles because of the effective integration of context-

specific, structure and global information.

2 METHODS

2.1 Protein alignment potential

We represent one alignment A between two proteins as a sequence of

alignment states a1, a2, . . . , aL, where L is the alignment length and ai is

the alignment state at position i. There are three possible alignment states

M, It and Is, whereM represents two residues being aligned, It denotes an

insertion in the template and Is denotes an insertion in the sequence.

2.1.1 Definition of alignment potential Similar to many amino acid

substitution matrices, such as BLOSUM (Henikoff and Henikoff, 1992)

and PAM (Dayhoff, 1978), which define the mutation potential of two

amino acids, we define the potential of one protein alignment. Given a

protein sequence S and a template T and one of their alignments A, let

P(AjS,T) denote the probability of A being generated from S and T using

our alignment method. We define the potential of A, denoted as

U(AjS,T), as follows.

UðAjT,SÞ ¼ logðPðAjS,TÞ=PrefðAÞÞ ð1Þ

where PrefðAÞ is the background (or reference) probability of A, i.e. the

probability of A being generated from two randomly selected proteins

with the same lengths as S and T, respectively. Intuitively, an alignment is

good as long as its probability is much better than the expected probabil-

ity. We assume that an alignment is optimal if it maximizes its potential.

That is, given a sequence and a template, we can find their optimal align-

ment by maximizing the alignment potential function.

We use a recently developed probabilistic graphical model conditional

neural fields (Peng et al., 2009) to calculate P(AjS,T) as follows (Ma

et al., 2012),

P AjT, S, �ð Þ ¼
exp F AjT, S, �ð Þ þ wG AjT, S, �ð Þð Þ

ZðT, S, �Þ
ð2Þ

where � is the model parameter vector to be trained, w (¼ 1.0) is a weight

factor and ZðT,S, �Þ is the normalization factor (i.e. partition function)

summing over all possible alignments for a given protein pair. For the

purpose of simplicity, we omit � in the following sections unless we have

to spell it out. The function F estimates the log-likelihood of one sequence

residue being aligned to one template residue based on the input protein

features. The function G estimates the log-likelihood of a pair of sequence

residues being placed into two template positions at a given distance

based on the input protein features. The functions F and G are called

local and global alignment functions, respectively.

Once the forms of F(AjT,S) and G(AjT,S) are determined, we can

train their parameters by maximum-likelihood. That is, given a set of

training protein pairs and their reference alignments (built by a structure

alignment tool), we maximize their occurring probability defined by

Equation (2). However, as G(AjT,S) is a global alignment function, it

is computationally hard to directly maximize Equation (2). In addition, it

may cause overfitting by training the parameters of F and G simultan-

eously, as the parameter space is big. To avoid these problems, we deter-

mine the parameters of functions F and G separately, which will be

explained in the following sections.

2.1.2 Reference state We can calculate the reference alignment prob-

ability Pref(A) in Equation (1) by randomly sampling a set of protein

pairs, each with the same lengths as the sequence S and template T,

respectively, and then estimate the probability of alignment A based on

these randomly sampled protein pairs. As long as we generate sufficient

number of samplings, we shall be able to approximate PrefðAÞ well. Here,

we use the geometric mean to approximate the reference state as follows,

PrefðAÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYN

i¼1
PðAjX,YÞ

N

r
ð3Þ

where N is the number of samplings and X and Y represent two sampled

proteins with the same lengths as S and T, respectively. Combining

Equation (1–3), the potential of one alignment A can be calculated as

follows.

UðAjS,TÞ ¼ logðPðAjS,TÞ=PrefðAÞÞ

¼ logðPðAjS,TÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYN

i¼1
PðAjX,YÞ

N

r
Þ

¼ log
expðFðAjT,SÞ þ wGðAjT,SÞÞ=ZðT,SÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðFðAjX,YÞ þ wGðAjX,YÞÞ=ZðX,YÞN

p
ð4Þ

Note that an alignment is represented as a sequence of three states

(match state M, insertion state at sequence Is and insertion state at tem-

plate It), e.g. MMMMM IsIs MMMM It It It. Therefore, given two se-

quence–template pairs (S,T) and (X,Y), as long as S and T have the same

lengths as X and Y, respectively, the alignment space (i.e. the set of all

possible alignments) for S and T is the same as that for X and Y. That is,

any S-to-T alignment is also a feasible alignment between X and Y,

although it may have different probabilities. Conversely, any X-to-Y

alignment is also a feasible alignment between S and T.

By definition, Z(S,T) is equal to the alignment space size times the

mean value of the denominator in Equation (2). As S and T have the

same alignment space as X and Y, Z(S,T) differs from Z(X,Y) only in

the mean values of their corresponding denominators in Equation (2),

which is independent of any specific alignment, but it may depend on

protein residue composition. Therefore, we have,

UðAjS,TÞ ¼ ðFðAjT,SÞ � EXPX,YFðAjX,YÞÞ

þ w G AjT,Sð Þð Þ � EXPX,Y G AjX,Yð Þð Þ þ cðT,SÞ
ð5Þ

where EXP is the expectation operator, the first term of Equation (5) can

be interpreted as local alignment potential and the second term can be

interpreted as global alignment potential.

In Equation (5), c(S,T) depends on only the residue composition of S

and T but not any specific alignment. In particular, c(S,T) is equal to 0 if

the sampled protein pairs have similar residue composition as S and T.

As such, for the purpose of finding the optimal alignment between S and

T, we can simply ignore c(S,T). Therefore, the key challenge is to deter-

mine the local and global alignment potential functions in the right-hand

side of Equation (5).

2.2 Local alignment potential

The function F in Equation (2) estimates the log-likelihood of one pair of

residues being aligned based on their context-specific information. We

represent an alignment A as a1, a2 , . . . ,aL where L is the alignment

length ai�1 and ai are the alignment state at position i. As shown in

Figure 1, we use a linear-chain context-specific conditional neural field

to calculate F as follows.

FðAjT,SÞ ¼
XL

i¼1
Eðai�1, ai,T,SÞ ð6Þ

where the function E is a neural network with one hidden layer, estimat-

ing the log-likelihood of state transition from ai�1 and ai based on protein

features in a local window (of size 11) centered at the two residues to be

aligned. As in total there are nine possible state transitions in an

i258

J.Ma et al.



alignment, we need nine different neural networks, each corresponding to

one type of state transition.

We use the maximum-likelihood method to train the parameters in

function Eðai�1, ai, T, SÞ. That is, given a set of reference alignments, we

maximize their occurring probability defined later in the text.

PðAjT,S, �Þ ¼ exp
XL

i¼1
Eðai�1, ai,T,SÞ

� �
=ZðT,SÞ ð7Þ

where Z(T,S) is the partition function. This maximization problem can

be solved using the L-BFGS (Liu and Nocedal, 1989) (i.e. limited-

memory BFGS) algorithm, one of the quasi-Newton methods. Instead

of exactly calculating the Hessian matrix required by the Newton’s

method, BFGS approximates the inverse Hessian matrix to speed-up.

We use a L2-norm regularization factor to restrict the search space of

model parameters to avoid overfitting. The regularization factor is deter-

mined by 5-fold cross-validation.

Once the parameters of Eðai�1, ai,T,SÞ are trained, the expectation

term EXPX,YFðAjX,YÞ in Equation (5) can be calculated in advance by

uniformly sampling a few thousand protein pairs. As the function

Eðai�1, ai,T,SÞ depends on only a local window of protein features (i.e.

independent of protein length), we do not need to calculate

EXPX,YFðAjX,YÞ for each protein pair to be aligned, which saves a lot

of computational time.

2.2.1 Protein features The features we use for Eðai�1, ai,T,SÞ include

sequence similarity measured by BLOSUM (Henikoff and Henikoff,

1992), profile similarity, structure-derived amino acid substitution

matrix (Tan et al., 2006), statistical potential-derived amino acid similar-

ity matrix (Prlić et al., 2000), three-class and eight-class secondary struc-

ture similarity and three-state solvent accessibility similarity. The

secondary structure and solvent accessibility of a template protein is

calculated by DSSP (Kabsch and Sander, 1983). We predict the three-

class and eight-class secondary structure types of a target protein using

PSIPRED (McGuffin et al., 2000) and our in-house tool RaptorX-SS8

(Wang et al., 2011), respectively. We predict solvent accessibility of a

target protein using our in-house tool. For each residue, we use all

these features in a local window of size 11. In addition, all the similarity

scores are computed as potentials. For example, let ssi and ssj denote the

secondary structure types at sequence position i and template position j,

respectively. The secondary structure similarity score for these two pos-

itions is calculated as log(P(ssi, ssj)/P(ssi) P(ssj)).

We do not use an affine gap penalty. Instead we use context-specific

gap penalty depending on the following features: sequence profile, amino

acid identity, hydropathy index, both three-class and eight-class second-

ary structure and three-state solvent accessibility. For disordered regions,

no structure information is used.

2.3 Global alignment potential

The function G estimates the log-likelihood of a pair of sequence residues

being placed to two template positions at a given distance. Instead of

using a contact-based pairwise potential, here, we use a distance-based

pairwise potential. We calculate the log-likelihood function G(AjT,S) asP
i5j logPðd

T
ij jsi, sjÞ and the expectation item in Equation (5)

EXPX,YFðAjX,YÞ as
P

i5j log Pref drij

� �
where i and j are two aligned

positions, dTij is the C� distance of the template residues at these two

aligned positions, PðdTij jsi, sjÞ is the probability of two sequence residues

si and sj being placed to two template positions at distance dTij and Prefðd
T
ij Þ

is the background probability of dTij , which can be calculated by simple

statistics. Therefore, the pairwise alignment potential is calculated as

follows,

GðAjT,SÞ � EXPX,YGðAjX,YÞ ¼
1

L

X
i5j

log
PðdTij jsi, sjÞ

Prefðd
T
ij Þ

ð8Þ

where L is the alignment length. As there are O(L2) pairwise terms

in right-hand side of Equation (8), we normalize it by L so that the

global alignment potential has the same scale as the local alignment

potential.

To calculate PðdTij jsi, sjÞ in Equation (8), we use the following equation,

PðdTij jsi, sjÞ ¼
X

dS
ij

PðdTij jd
S
ij ÞPðd

S
ij jCi,CjÞ ð9Þ

where dSij represents the distance of the two sequence residues at the two

aligned positions, PðdTij jd
S
ij Þ is the conditional probability of dTij on dSij and

PðdTij jCi,CjÞ is the conditional probability of the distance on the template

estimated from the contexts (denoted Ci and Cj) of the two sequence

residues. The intuition underlying Equation (8) is that if the alignment

is good, the distance of a sequence residue pair shall match well with that

of their aligned template residue pair. The conditional probability of

Equation (9) can be calculated as PðdTij jd
S
ij Þ ¼ PðdTij , d

S
ij Þ=Pðd

S
ij Þ using the

chain rule. Where PðdSij Þð¼ Prefðd
T
ij ÞÞ is the background probability, and

PðdTij , d
S
ij Þ is the joint probability of the pairwise distances of two aligned

residue pairs and can be calculated by simple statistics using a set of non-

redundant protein structure alignments generated by our in-house tool

DeepAlign (Wang et al., 2013). As the distance between two sequence

residues is unknown, we predict PðdSij jCi,CjÞ using a probabilistic neural

network (PNN) implemented in our context-specific distance-dependent

statistical potential package EPAD (Zhao and Xu, 2012). EPAD takes as

input the contexts of two sequence residues and yields their distance

probability distribution. The context of one residue includes sequence

profile, predicted secondary structure and amino acid chemical properties

in a local window centered at this residue.

Unlike previous threading methods that make use of contact-based

pairwise potentials (Alexandrov et al., 1996; Lathrop and Smith, 1996;

Miyazawa and Jernigan, 1996; Xu et al., 2003), we use a context-specific

distance-based pairwise potential. Our pairwise potential is distance based

and makes use of context-specific information; therefore, it is much more

accurate than the context-independent contact-based potentials. The

EPAD package was implemented before CASP10 started and has been

blindly tested in CASP10 for template free modeling. The CASP10 results

show that EPAD can successfully fold some targets with unusual fold

(according to the CASP10 Free Modeling assessor Dr B. K. Lee). Our

large-scale experimental test also indicates EPAD is much better than

those context-independent distance-based pairwise potentials, such as

DOPE (Shen and Sali, 2009), DFIRE (Zhou and Zhou, 2009) and RW

(Zhang and Zhang, 2010) in ranking protein alignments (or template-

based models) generated by both threading and structure alignment

tools (Zhao and Xu, 2012).

Fig. 1. Context-specific conditional neural fields for alignment. At each

alignment position, the likelihood of state transition is calculated from

context-specific information by a neural network. The hidden neurons

non-linearly transform the input features
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3 RESULTS

Training and validation data: We constructed the training and

validation data from BC40, a subset of PDB, in which any two

proteins share540% sequence identity. In total, we use a set of

1800 protein pairs as the training data, which covers most of the

folds in the SCOP database, and a set of 500 protein pairs as the

validation data. There is no redundancy between the training and

validation data (i.e.540% sequence identity). The training and

validation data have the following properties: (i) all the proteins

have lengths5400 and contain510% of residues with missing

coordinates; (ii) the TM-score (Zhang and Skolnick, 2005) of a

protein pair is uniformly distributed from 0.55 to 1; and (iii) we

use our in-house structure alignment tool DeepAlign (Wang

et al., 2013) to generate the reference alignment for a protein

pair. Each alignment has fewer than 50 middle gaps, and the

number of terminal gaps is520% of the alignment length.
Test data for alignment: We use the following three datasets to

test the alignment accuracy of our method.

(1) Set6K: a set of �6000 protein pairs. Any two target pro-

teins in this set share540% sequence identity. The TM-

score of a protein pair is uniformly distributed between

0.55 and 0.8. Two proteins in a pair have small length

difference. The protein pairs in Set6K have 5% of overlap

with our training and validation data. By ‘overlap’ we

mean that the proteins in one pair have sequence identity

30–50% with those in another pair.

(2) Set4K: a set of 4547 protein pairs. Any two target proteins

in the set share525% sequence identity. The protein pairs

in Set4K have 3% of overlap with our training and valid-

ation data. Two proteins in a pair have length difference

430%; therefore, this set can be used to test whether the

domain boundary is correctly aligned.

(3) Set180K: a very large set of 179 390 protein pairs. Any two

proteins in most pairs share540% sequence identity. The

TM-score of a protein pair is uniformly distributed be-

tween 0 and 1. Note that the size of our training set is

only 1% of this large set; therefore, the test result on

this set is unlikely biased by the training set.

Test data for threading: We use the following two datasets to

test the threading accuracy of our method.

(1) Set 1000� 6000: a large set constructed from PDB25,

which consists of �6000 proteins. All the proteins in

PDB25 are used as templates, and 1000 of them are ran-

domly chosen as the target proteins. We predict the 3D

structure for all the 1000 targets using the �6000 tem-

plates, but excluding self-threading.

(2) CASP10: a set of 123 test proteins. We use the CASP of-

ficial domain boundary definition for each test protein.

Evaluation criteria and programs to compare: We evaluate our

threading method using both reference-dependent and reference-

independent alignment accuracy. The reference-dependent accur-

acy is defined as the percentage of correctly aligned positions

judged by the reference alignments, which are built using our

in-house tool DeepAlign (Wang et al., 2013). We also built the

reference alignments using other structure alignment tools, such

as DALI, Matt and TMalign (Holm and Sander, 1993; Menke
et al., 2008; Zhang and Skolnick, 2005) and observed similar
performance trend. To evaluate the reference-independent align-

ment accuracy, we build a 3D model for the target protein using
MODELLER (Šali et al., 2004) from its alignment to the tem-
plate and then evaluate the quality of the resultant 3D model

using TM-score. TM-score ranges from 0 to 1, indicating the
worst and best model quality, respectively. As our ultimate
goal is to predict 3D structure for a target protein, reference-

independent alignment accuracy is more important than refer-
ence-dependent accuracy. We compare our method with the
top-notch profile-based method HHalign, which is run with the

option ‘-mact 0.1’.
As shown in Table 1, our method outperforms HHalign in

terms of both reference-dependent and reference-independent

alignment accuracy on the two benchmarks Set6K and Set4K.
On these two sets, our method outperforms HHalign by 13.6 and
9%, respectively, in terms of the model quality (i.e. reference-

independent accuracy). In terms of reference-dependent accur-
acy, our method is better than HHalign by only 8.8 and 5.2%,
which is not as big as reference-independent accuracy. We

also calculate the reference-dependent accuracy on Set6K and
Set4K by allowing four-position off the exact match, as shown
in Table 2, which indicates that our method is still much better

than HHalign when four-position off the exact match is allowed.
As shown in Table 3, on the very large Set180K set, our

method yields slightly better performance than HHalign when

two proteins under consideration are similar. This is not surpris-
ing, as most methods can generate pretty good alignments for
two closely related proteins. When the TM-score of two proteins

under consideration falls into [0.65, 0.80], our method outper-
forms HHalign by �3.3% in terms of the reference-dependent
accuracy and by �7.6% in terms of the reference-independent

accuracy. When the TM-score of two proteins under consider-
ation falls into [0.40, 0.65], our method outperforms HHalign by
�9.4% in terms of the reference-dependent accuracy and by

�11.3% in terms of the reference-independent accuracy.
When the TM-score of two proteins falls into [0.25, 0.40], our

method outperforms HHalign by a very large margin in terms of

reference-dependent alignment accuracy. However, in terms
of the reference-independent alignment accuracy, the advantage
of our method is not as big, although it is still substantial. This

may be because that MODELLER cannot build a reasonable
model from an alignment with too many errors. By the way,
when the TM-score of two proteins is50.4, it may not be so

important to generate an accurate alignment for them, as the
resultant 3D model has low quality and, thus, will not be useful.
Threading performance on a large test set: We test the thread-

ing performance of our method and HHpred on Set 1000� 6000.
We run both our method and HHpred to predict the 3D struc-
ture for each of the 1000 targets using the �6000 templates.

HHpred is run with its ‘realign’ option. That is, HHpred first
searches through the template database using local alignment
and then re-aligns a target to the top templates using global

alignment. By doing so, HHpred can improve its modeling
accuracy a little bit over the default mode. To speed-up, our
method first aligns a target to all the templates using only the

local alignment potential and then ranks all the templates using
both the local and global alignment potentials described in
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Section 2. After ranking, only the first-ranked templates are used

to build a 3D model by MODELLER for each target.

As shown in Figure 2, our method is significantly better than

HHpred when the targets are not so easy (i.e. the HHpred model

has TM-score 50.7). On the 1000 targets, our method and

HHpred obtain average TM-score 0.566 and 0.517, respectively.

Our method outperforms HHpred no matter whether the target

is easy or hard. If we exclude the 170 easy targets (i.e. either our

model or HHpred model has TM-score 40.8) from consider-

ation, the accumulative TM-score obtained by our method and

HHpred is 0.524 and 0.451, respectively. That is, our method is

�16.1% better than HHpred. Further, as indicated by the yellow

lines in Figure 3, our method can generate models with TM-score

40.5 for many targets for which HHpred fails to generate a

model with TM-score 40.5. We use TM-score¼ 0.5 as a cut-

off because when a model has TM-score40.5, its overall fold

is basically correct.
As shown in Figure 3, our method generates models better

than HHpred by at least 0.05 for 342 targets, whereas HHpred

is better than our method by this margin for only 93 targets.

Further, the number of targets for which our method generates

models better than HHpred by at least 0.10 is 197, whereas

HHpred is better than our method by this margin for only 49

targets. In summary, our method has a large advantage over

HHpred on hard targets.

Threading performance on CASP10 data set:We further evalu-

ate the threading performance of our method on the most recent

CASP10 targets. We use the CASP official domain boundary

definition for each target, and in total there are 123 test proteins.

To make the test as fair as possible, both our method and

HHpred used the same set of templates and the same protein

sequence database (i.e. NR), which were constructed before

CASP10 started.

As shown in Figure 4, similar to what we have observed on the

large threading test set, our method significantly outperforms

HHpred when the targets are not so easy. Our method generates

a model with TM-score40.5 for a few targets for which HHpred

fails to generate a model with TM-score40.5. On the whole test

Table 3. Reference-dependent (Ref-dep) and reference-independent (Ref-

ind) alignment accuracy on the very large benchmark Set180K

TM-score Ref-dependent Ref-independentTM

HHalign (%) Our

work (%)

HHalign Our

work

0.80–1.00 83 84 0.78 0.79

0.65–0.80 60 62 0.52 0.56

0.40–0.65 32 35 0.30 0.34

0.25–0.40 11 19 0.16 0.20

Note: Reference-independent alignment accuracy is measured by TM-score. The

protein pairs are divided into four groups depending on their structure similarity

measured by TM-score.

Fig. 2. The quality of the models by our method and HHpred for the

1000 targets randomly chosen from PDB25. Each point represents two

models generated by our method (y-axis) and HHpred (x-axis),

respectively

Fig. 3. Distribution of the model quality difference, measured by TM-

score. Each blue column shows the number of targets for which our

method is better by a given margin. Each red column shows the

number of targets for which HHpred is better by a given margin

Table 1. Reference-dependent (Ref-dep) and reference-independent (Ref-

ind) alignment accuracy on two benchmarks Set6K and Set4K

Set6K Set4K

Ref-dep (%) Ref-indTM Ref-dep (%) Ref-indTM

Our work 52 0.52 63 0.62

HHalign 45 0.44 57 0.56

Note: Reference-independent alignment accuracy is measured by TM-score.

Table 2. Reference-dependent alignment accuracy on two benchmarks of

Set6K and Set4K

Set6K Set4K

Exact

match (%)

Four-position

off (%)

Exact

match (%)

Four-position

off (%)

Our work 52 57 63 67

HHalign 45 50 57 60
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set, our method and HHpred obtain accumulative TM-score

77.52 and 70.65, respectively. If we exclude the ‘Server’ targets

from consideration and only look at the more challenging

‘Human/Server’ targets. The average TM-score obtained by

our method and HHpred is 0.63 and 0.57, respectively. That is,

our method is �10.5% better than HHpred.
It is challenging to fairly compare our single-template thread-

ing method with the CASP10-participarting servers because that

most of the CASP10 servers used a hybrid method instead of an

individual threading method. For example, the first-ranked

Zhang-Server integrated both consensus analysis of �10 individ-

ual threading programs and fragment-based 3D model building

technique. The top-ranked HHpred server integrated new profile

generation method, multi-template alignment and a better 3D

model building technique. The top-ranked Robetta server used

consensus results from three programs, including HHpred,

RaptorX and SPARKS and also a new 3D model building

method. Our RaptorX server, which is ranked No. 2 overall,

used multiple-template threading, which can generate better 3D

models than single-template threading for many targets espe-

cially the easy ones. In summary, the accumulative TM-score

obtained by our single-template threading method described in

this article is only 0.85 less than what was obtained by RaptorX

in CASP10. It can be ranked No. 6 among all the CASP10-

participating servers.
P-value: It is desirable that any structure prediction program

can assign a confidence score to predicted models. Here, we use

P-value to quantify the relative quality of the top-ranked tem-

plates and alignments. To calculate the P-value, we use a set of

reference templates, which consist of �1800 single-domain tem-

plates with different SCOP folds. Given a target, we first thread

it to this reference template database and then estimate an ex-

treme value distribution from the �1800 alignment scores (i.e.

alignment potentials). Based on this distribution, we calculate the

P-value of each alignment when threading the target to the real

template database. The P-value actually measures the quality of

the template (and the alignment) by comparing it with the refer-

ence templates.
To measure the real model quality, we use both GDT (Global

Distance Test) (Zemla et al., 1999) and uGDT (i.e. un-normal-

ized GDT). GDT has been used as an official measure by CASP

for many years. It measures the quality of a model by comparing
it with the native and outputs a value from 0 to 100, indicating
the worst and the best quality, respectively. uGDT is equal to

GDT times the target length divided by 100. uGDT is more
suitable when a large or multi-domain target protein can only
be partially covered by good templates. In this case, GDT is

likely to be small and not a good indicator even if the templates
are closely related to the target, as GDT is normalized by the
whole target length. However, uGDT is not good for a target

with length smaller than 100. For example, when a target of 60
residues is covered by a template perfectly on 48 of the 60 resi-
dues, the uGDT of this alignment is 48, whereas the GDT is 80.

In this case, GDT is more suitable than uGDT. In summary, we
use max(uGDT,GDT) to measure the model quality. We say one
alignment is reasonable when its resultant model has uGDT or

GDT450. We use 50 as a cut-off because that many proteins
similar at only the fold level have GDT or uGDT �50.
As shown in Figure 5, the P-value is a reliable indicator of

model quality. When P-value is small (i.e.510�5), the models
have uGDT or GDT� 50. Even if P-value is510�4, there are
few models that have both uGDT and GDT550. That is, the

prediction from our threading method is reliable when the
P-value is510�4.
Contribution of the distance-based pairwise potential: To evalu-

ate the contribution of our pairwise potential to alignment ac-
curacy, we calculate the accuracy improvement resulting from
adding our pairwise potential to the alignment potential using

two benchmarks Set6K and Set4K. As shown in Table 4, our
pairwise potential can improve reference-dependent accuracy by
3% and reference-independent accuracy by 0.01, respectively.

We have not fully exploited the power of our pairwise alignment
potential because it is computationally expensive. We just used
our pairwise potential to refine the alignment generated by local

alignment potential as follows. For each aligned position gener-
ated by our local potential, we allow it to move at most four
positions to improve the total potential (i.e. local poten-

tialþ pairwise potential). We expect that a more efficient pair-
wise potential optimization algorithm that can search a larger
alignment space will further improve the alignment accuracy.

We also evaluate the contribution of our pairwise potential to
template selection. To speed-up, we generate alignments using
our local alignment potential, and then rank all the templates

using a linear combination of our local and pairwise alignment
potentials (with equal weight). Experimental results on the
1000� 6000 threading set and the CASP10 set indicate that the

pairwise potential indeed improves template selection, as shown
in Figures 6 and 7. On the 1000� 6000 set, the average TM-score
increases from 0.547 to 0.566 when the pairwise potential is used

to rank the templates. On the CASP10 set, the accumulative TM-
score increases from 75.58 to 77.52 when the pairwise potential is
used. As shown in Figures 6 and 7, the context-specific pairwise

potential is particularly helpful to hard targets.
Case study: Here, we use two specific examples to further

demonstrate the strength of our method. Both of these two

cases are from our Set6K benchmark. The first example is to
align two proteins 3qnrA and 2gffA, which have TMscore be-
tween 0.62 and 0.65 according to the structural alignments gen-

erated by TM-align (Zhang and Skolnick, 2005), Matt (Menke
et al., 2008), Dali (Holm and Sander, 1993) and our in-house tool

Fig. 4. The model quality, measured by TM-score, of our method and

HHpred for the 123 CASP10 targets. Each point represents two models

generated by our method (y-axis) and HHpred (x-axis), respectively
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DeepAlign (Wang et al., 2013). That is, these two proteins are

similar in structures but not much in sequences. Meanwhile,

2gffA contains two � and two � segments that are similar to

one domain in 3qnrA. As shown in Figure 8, our method can

correctly align 490% of the positions judged by the reference

alignment (regardless of which structural alignment tools are

used to generate it). In contrast, HHalign fails to align the

second � and � segments. This is partially because HHalign

favors generating short alignment. If we choose 3qnrA as the

template to build a 3D model for 2gffA, the resultant models

from our method and HHalign have TM-score 0.63 and 0.25,

respectively.

We use another two proteins 3k53A and 1cb7A to showcase

that our method and HHalign generate two alignments of nearly

the same length, but our alignment has much better quality. As

shown in Figure 9, our method aligns nearly 80% of positions

correctly, whereas HHalign fails to align any position correctly.

If we use 3k53A as the template to build models for 1cb7A, the

resultant 3D models from our method and HHalign have TM-

score 0.64 and 0.22, respectively. We can also examine the align-

ments visually. As shown in Figure 10A and B, our method

aligns the local structure well, whereas HHalign seemingly pro-

duces a totally wrong alignment. In this case, both 3k53A and

1cb7A have pretty good sequence profile information, and the

predicted secondary structure for 1cb7A is also accurate (480%).

4 CONCLUSION

This article has presented a novel protein threading method using

a context-specific alignment potential, which measures the

Fig. 8. Two alignments between 3qnrA and 2gffA generated by our

method and HHalign. The blue and red colors demonstrate correctly

aligned regions judged by the reference alignment. To save space, only

one of the domains of 3qnrA is shown

Fig. 6. Contribution of the distance-based pairwise alignment potential

to Set 1000� 6000. Each point represents the quality, measured by TM-

score, of two models: one is generated using the local alignment potential

only (x-axis), and the other using both the local and global alignment

potentials (y-axis)

Fig. 7. Contribution of the distance-based pairwise alignment potential

to the CASP10 set. Each point represents the quality, measured by TM-

score, of two models: one is generated using the local alignment potential

only (x-axis), and the other using both the local and global alignment

potentials (y-axis)

Fig. 5. The relationship between P-value and the model quality on the

123 CASP10 targets. The x-axis is the model quality measured by

max(GDT, uGDT) and the y-axis is �log (P-value)

Table 4. Contribution of pairwise potential to alignment accuracy, tested

on two benchmarks Set6K and Set4K

Set6K Set4K

Ref-dep (%) Ref-indTM Ref-dep (%) Ref-indTM

Local potential 49 0.51 60 0.61

Localþ pairwise 52 0.52 63 0.62

Note: Reference-independent alignment accuracy is measured by TM-score.
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log-odds ratio of one alignment being generated from two related

proteins to being generated from two unrelated proteins.

Intuitively, an alignment is regarded as good only when its esti-

mated probability is much higher than the expected. Our align-

ment potential integrates both local and global context-specific

and structure information through advanced machine learning

techniques, such as conditional neural fields, which can combine

a variety of highly correlated protein sequence and structure fea-

tures, without worrying too much about overcounting and

undercounting of features. Experimental results show that our

context-specific alignment potential is much more sensitive than

the widely used context-independent (e.g. profile-based) scoring

function and yields significantly better alignments and threading

results. Our method works particularly well for distantly related

proteins or proteins with sparse sequence profiles because of the

effective integration of context-specific, structure and global

information.

This article also shows that our context-specific distance-based

pairwise potential is helpful to protein threading, as opposed to

the contact-based potentials previously used by some protein

threading methods. Combined with our context-specific local

alignment potential, our distance-based pairwise potential can

help improve both alignment accuracy and template selection

especially for hard targets. We expect that a more efficient algo-

rithm that can optimize the pairwise potential better will yield

more accurate alignments.
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