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After an ischemic injury, the heart undergoes a complex process of structural and
functional remodeling that involves several steps, including inflammatory and fibrotic
responses. In this review, we are focusing on the contribution of microRNAs in the
regulation of inflammation and fibrosis after myocardial infarction. We summarize the
most updated studies exploring the interactions between microRNAs and key regulators
of inflammation and fibroblast activation and we discuss the recent discoveries, including
clinical applications, in these rapidly advancing fields.
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INTRODUCTION

microRNAs (also known as miRNAs or miRs) are small (∼22 nucleotides) non-coding
RNA molecules that can regulate gene expression via translational repression and/or post-
transcriptional degradation; they have been implied in a number of cardiovascular disorders (1–4).
Following myocardial infarction (MI), the heart undergoes a series of structural, functional, and
pathophysiological modifications that are commonly known as cardiac remodeling (5–7).

In this minireview, we will focus on the role of miRNAs in two specific components of post-
ischemic cardiac remodeling, namely fibrosis and inflammation (Table 1).

EFFECTS OF microRNAs ON CARDIAC FIBROBLASTS POST-MI

Cardiac fibroblasts are the most abundant interstitial cell type in the heart (39–43). They play
essential roles in the regulation of cardiac remodeling following an ischemic injury; indeed, they
are generally activated in response to pathological stress or injury, and start to proliferate quickly
and to produce extracellular matrix (ECM), eventually leading to cardiac fibrosis (18, 42, 44–46).
Activated cardiac fibroblasts, known as myofibroblasts, exhibit an increased proliferation rate and
migratory capacities (47, 48).
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TABLE 1 | miRNAs and their target genes involved in inflammation and fibrosis
post-MI.

miRNA Target gene(s) References

Inflammation

miR-19a/b Bim1/PTEN (8)

miR-21 KBTBD7/NF-κB (9)

miR-22 VE-cadherin (10)

miR-92a JNK/ERK1/2 (11)

miR-133a VEGFR2 and FGFR1 (12)

miR-144-3p PI3K/Akt/VEGF (13)

miR-144-3p PTEN (13, 14)

miR-146a-5p TLR7 (15)

miR-155 SOCS1 (16)

miR-320 PI3K/Akt/VEGF (13)

miR-375 PDK-1/Akt (17)

Fibrosis

miR-1 Cyclin D2 and CDK6 (18)

miR-1 PTEN/Akt (19)

miR-19b PTEN (20)

miR-21 TGF-β1/SMAD7 (21)

miR-21 CADM1/STAT3 (22)

miR-21 Notch/Jagged1 (23)

miR-22 Osteoglycin/VSMC marker genes (24)

miR-34a SMAD4 (25)

miR-92a SMAD7 (26)

miR-125b p53/TGF-β1 (27)

miR-126 HIF-1α (28, 29)

miR-130a PTEN/Akt (30)

miR-132 FOXO3 and SERCA2a (49)

miR-133a GTP Cyclohydrolase 1 (GCH1) (31, 32)

miR-144-3p PTEN (14)

miR-146b-5p IRAK1 and CEACAM1 (33)

miR-155 Ang II (34)

miR-195 SMAD7 (35)

miR-200a-3p PIGF/VEGF-A (36)

miR-214 Mfn2 (37)

miR-590-3p ZEB1 (38)

The miRNA-212/132 family was originally detected by Ucar
et al. (49); miR-132 has been later shown to fine-tune Angiotensin
II actions in cardiac fibroblasts (50). These observations led to
a clinical trial (51), which will be discussed in detail in the last
paragraph of this minireview.

Another miRNA, generally considered to be muscle-specific
(52, 53), namely miR-1, was shown to be expressed in cardiac
fibroblasts as well, and to be significantly down-regulated upon
their activation (18); miR-1 negatively regulates cardiac fibroblast
proliferation by targeting Cyclin D2 and CDK6 (18). Glass and
Singla demonstrated that miR-1 triggers cardiac differentiation
and ameliorates heart function via targeting the PTEN/Akt
pathway (19). Likewise, miR-19b (20) and miR-144-3p (14) have
been proven to regulate proliferation and migration of cardiac
fibroblasts by modulating PTEN expression.

By specifically targeting the signaling pathway that includes
transforming growth factor β1 (TGF-β1) and mothers against
DPP homologs 7 (SMAD7), miR-21 has been validated as an
activator of cardiac fibroblasts post-MI, subsequently eliciting

cardiac fibrosis, as well (23, 54); corroborating these findings,
miR-21 had been previously shown to upregulate the expression
of α-smooth muscle actin (α-SMA), Col-1, and F-actin (21)
and to promote fibroblast proliferation and interstitial fibrosis
via targeting the CADM1/STAT3 signaling pathway (22); on
the other hand, miR-21 suppression reduces cardiac fibroblast
proliferation (22). Independent investigators have confirmed
that miR-21 expression is upregulated by TGF-β1 and mediates
the conversion of quiescent cardiac fibroblasts to activated
myofibroblasts via targeting the Notch/Jagged1 pathway (23, 55,
56), and that miR-21 is strategic in mediating the profibrotic role
of cardiac macrophages (57).

Our group was the first to demonstrate that two different
miRs, namely miR-92a (26) and miR-195 (35), act as
transcriptional regulators of SMAD7, an inhibitor of α-SMA,
which is a well-established marker of myofibroblast activation
(58). We found that miR-92a is significantly upregulated in
cardiomyocyte-derived exosomes and in fibroblasts isolated
after MI compared with SHAM conditions, indicating that
miR-92a is transferred to fibroblasts in form of exosomal cargo
and is essential for the activation of cardiac myofibroblast (26).
We also observed (35) that miR-195, a cardiomyocyte-specific
miRNA that is upregulated in cardiac myocytes after an ischemic
insult (59), is secreted by injured cardiomyocytes within cardiac
exosomes (cardiosomes) and transferred to fibroblasts, where it
relieves the SMAD7-mediated inhibition of α-SMA transcription,
eventually leading to myofibroblast phenoconversion (35). The
mechanistic involvement of exosomal miRs in cardiac fibroblasts
has been more recently also reported by Suresh Verma’s research
team, who determined that TGF-β1 activates cardiac fibroblasts
and myofibroblasts-derived exosomes causes endothelial
dysfunction mediated by miR-200a-3p via PIGF/VEGF-A
signaling pathway (36).

Yuan and coworkers demonstrated that miR-590-3p can
decrease proliferation, differentiation, and migration of cardiac
fibroblasts via targeting ZEB1 expression (38); substantiating
these observations, inhibiting miR-590-3p drastically augmented
proliferation and migration of cardiac fibroblasts (38). Jazbutyte
and colleagues revealed that miR-22 upregulation accelerates the
senescence of cardiac fibroblasts by targeting osteoglycin (also
known as mimecan) (60). Other reports have also indicated
that miR-22 upregulates some specific genes of vascular smooth
muscle cells (VSMC), thereby suppressing VSMC proliferation
and migration, as well (24, 61–63).

Notably, miR-34a modulates cardiac fibrosis after MI via
targeting SMAD4 (25): the upregulation of miR-34a promotes
the profibrogenic activity of TGF-β1 in cardiac fibroblasts,
whereas suppressing miR-34a has opposite effects (25). Similarly,
miR-125b is decisive for the induction of cardiac fibrosis
and plays a critical role in inducing fibroblast proliferation
by suppressing p53 (27), a growth regulator and anti-
fibrotic factor (64, 65). TGF-β1 changes the morphology of
fibroblasts from spindle-shaped to well-spread myofibroblast-
like cells and causes upregulation of molecular markers of
myofibroblast activation, such as α-SMA and Col1; miR-125b
was found to be overexpressed in endothelial-to-mesenchymal
transition (EndMT)-derived myofibroblast-like cells, and such
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upregulation, triggered by TGF-β1, causes the inhibition of anti-
fibrotic genes thus promoting the proliferation and activation of
cardiac fibroblasts, leading to fibrosis (27). The inhibition of miR-
155 has been reported to decrease the conversion of fibroblasts
to myofibroblasts and to improve the cardiac fibrotic remodeling
induced by Angiotensin II (34). Another miRNA that was shown
to regulate fibroblast survival and proliferation via targeting the
mitofusin-2 (Mfn2) gene is miR-214 (37).

A very recent study by Liao et al. has shown that the
upregulation of miR-146b-5p activates fibroblast proliferation,
migration, conversion of fibroblast to myofibroblast, and
endothelial cell dysfunction (33); in contrast, inhibition of miR-
146b-5p has opposite effects and promotes angiogenesis by
targeting IRAK1 and CEACAM1 (33). Thus, suppression of miR-
146b-5p may be a novel therapeutic approach to treat cardiac
fibrotic dysfunction after MI.

CARDIAC INFLAMMATION AND
microRNAs

One of the most studied miRNAs in the regulation of the
post-ischemic inflammatory response in the heart is miR-21,
which is known to attenuate excessive inflammation and cardiac
dysfunction after MI by targeting MKK3/6 and suppressing p38
and NF-κB signaling activation post-MI (9) and to stimulate
MAP kinase signaling in fibroblasts (66), whereas its deficiency
induces inflammatory reactions post-MI and significantly
augments the phosphorylation of p38, IKKα/β, and p65 (9). Of
note, miR-21 is also upregulated in cardiac macrophages (57),
and nanoparticle-based targeted delivery of miR-21 to cardiac
macrophages has been shown to ameliorate cardiac remodeling
post-MI, modifying the phenotype of macrophages from a pro-
inflammatory to a reparative state (67).

Right after MI, the expression levels of many pro-
inflammatory cytokines including IL-1β, IL-6, and TNF-α
increase, contributing to cardiac remodeling (68); miR-146a-5p
induces expression of pro-inflammatory cytokines including
CXCL2, IL-6, and TNF-α, and activates innate immune cells such
as CD45+ leukocytes, Ly6Cmid+ monocytes, Ly6G+ neutrophils
via a TLR7-dependent mechanism (15). Moreover, miR-146a-5p
causes cardiac endothelial barrier dysfunction, further triggering
an increased transmigration of monocytes and neutrophils
into the myocardium (15). The inhibition of miR-146b-5p
considerably increases cytokines such as IL-1β, IL-6, TNF-α,
and MCP-1. In addition, in vivo assays demonstrated that
CD206+ macrophages are increased due to suppression of
miR-146b-5p (33).

Reducing the overexpression of miR-155 modulates the
expression of cytokines such as IL-1 and CXCL8 (69); miR-155-
enriched exosomes slow down cardiac fibroblast proliferation
by downregulating Son of Sevenless 1 (SOS1) expression—
which is also involved in the regulation of inflammation (70)—
and can promote inflammation and atherosclerotic lesions
by increasing STAT3 and NF-κB via targeting Suppressor of
Cytokine Signaling 1 (SOCS1) expression (16). By conducting
in vivo experiments. Wang et al. observed increased fibroblast

proliferation, augmented collagen production, and reduced
cardiac inflammation in the hearts of miR-155-deficient mice
compared to control animals (71). The expression of miR-155 is
also upregulated in exosomes of activated cardiac macrophages
post-MI (72, 73).

Another miR fundamental in post-MI remodeling is miR-
22: its overexpression triggers the synthesis of proinflammatory
cytokines such as IL-1β, IL-6, and IL-8 (74), moreover, the same
miR-22 is able to regulate inflammation and angiogenesis by
specifically targeting VE-cadherin (10).

The synergistic interplay between inflammation and
angiogenesis is crucial in post-ischemic cardiac remodeling
and healing (75–80), and several researchers have demonstrated
that non-coding RNAs are involved in the regulation of both
these processes (78, 81). For instance, miR-133a has been shown
to have beneficial effects on infarcted hearts by inhibiting
inflammation and angiogenesis via FGFR1 and VEGFR2
signaling pathways (82, 83). Similarly, miR-320 and miR-144-3p,
have been shown to be involved in post-MI responses by
regulating PTEN/PI3K/Akt signaling pathway (13, 84, 85);
miR-144-3p promotes cardiac fibrosis via targeting PTEN
following MI (14); miR-199a-3p and miR-590-3p also improve
cardiac function after MI (8, 86); miR-19a/19b inhibits the
inflammatory response and has been shown to enhance cardiac
function post-MI by targeting Bim1 and PTEN (8). All these
results are relevant when considering that in vivo studies
carried out in infarcted mice revealed that angiogenesis can be
improved by inhibiting PTEN via activating the PI3K/Akt/VEGF
pathway (13, 87, 88). On the same line, Lu and coworkers
reported that the overexpression of miR-130a promotes
endothelial cell proliferation and migration by increasing Akt
phosphorylation and inhibiting PTEN (30); the same group
also demonstrated that the activation of PI3K/Akt signaling
enhances angiogenesis and decreases the progression of MI and
fibrosis, attenuating myocardial dysfunction and reducing the
risk of cardiac rupture post-MI (30). Several members of the
miRNA cluster 17∼92 regulate angiogenesis following MI (89).
Equally important, suppressing miR-375 was shown to mitigate
post-MI inflammatory responses while improving angiogenesis
via PDK-1/Akt signaling mechanisms (17).

Endothelial cells play decisive roles in post-MI cardiac
remodeling (90, 91), and miR-126 is considered one of the
most important miRs in endothelial biology (92–94). In mature
endothelial cells, miR-126 promotes vascular homeostasis by
preventing angiogenesis and preserving the quiescent endothelial
phenotype via the HIF-1α pathway (28, 29). Remarkably, miR-
199a-5p inhibition causes upregulation of VEGF-A, enhances
nitric oxide (NO) bioavailability by activating eNOS (endothelial
NO synthase), and stimulates the formation of network-
like structures (95). Likewise, miR-133a causes endothelial
dysfunction by suppressing eNOS, and its overexpression
significantly reduces endothelial cell survival by targeting GTP
Cyclohydrolase 1 GCH1 (31, 32). Lastly, the overexpression
of miR-92a inhibits endothelial cell migration and regulates
angiogenesis (11, 89) whereas its inhibition enhances endothelial
cell proliferation via the activation of the JNK and ERK1/2
pathway (11).
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FIGURE 1 | Schematic representation of miRNA-based drug development.
Adenovirus, adeno-associated virus (AAV), lentivirus particles, and liposomes
are used to deliver miRNA mimics or antimiRs; miRNAs are investigated
in vitro, in vivo, and ex vivo models to develop next-generation therapeutics
for cardiovascular diseases. CMs, cardiomyocytes; EHTs, engineered heart
tissues; hiPSCs, human induced pluripotent stem cells; I/R,
ischemia-reperfusion; MI, myocardial infarction; TAC, transverse aortic
constriction.

CLINICAL PERSPECTIVE:
microRNA-BASED DRUG
DEVELOPMENT

miRNA-based therapeutics have been proven to be effective
for treating cardiovascular diseases (1, 96). Since miRNAs can
regulate multiple genes using different signaling pathways, they
have a great potential as novel therapeutic agents; therapeutic
strategies based on miRNA modulation have been widely
utilized in angiogenesis, atherosclerosis, ischemic injury, vascular
remodeling, hypertrophy, and fibrosis (97, 98).

Treatment options with miRNA-based drugs include
suppression of miRNAs to reduce the levels of upregulated
miRNAs and substitute missing miRNA to restore
the expression of miRNAs in post-ischemic HF (99).
A representation of the work-flow leading to miRNA-
based drug development is shown in Figure 1. Several
approaches to deliver miRNAs to specific target tissues
or organs without degradation have been discovered
including viral vectors, vesicles, antagomirs or mimics,
plasmids and sponges, with a focus on bioavailability and
bio-efficacy (100).

In recent years, miRNA-targeted therapeutics have been tested
in clinical trials, mostly in cancer; because of the limited space
allowed in this minireview, for these aspects we refer to dedicated
reviews (101–104). A successful example of how to develop a
miRNA-based therapy in cardiovascular medicine is given by
miR-132, which has among its targets FOXO3 and SERCA2a
(49, 105).

Several in vitro and in vivo experiments demonstrated that
inhibiting miR-132 caused a reduction of cardiac fibrosis,
normalization of autophagy, and calcium signaling, and
reversal of cardiomyocyte hypertrophy; after a pharmacokinetic
assessment, miR-132 inhibition was shown to improve HF
in a clinically relevant pig model (96, 106). The following
logical step was the clinical investigation: a prospective,
randomized, and placebo-controlled phase 1b dose-escalation
study was designed to assess safety, pharmacokinetics, target
engagement, and exploratory pharmacodynamic effects of
miR-132 inhibition, achieved by administering a chemically
modified oligonucleotide (CDR132L) containing locked
nucleic acid (LNA) nucleotides and phosphonothioate linkages
to increase in vivo stability (51). The trial, conducted in
patients with stable chronic HF of ischemic origin (20
randomized to CDR132L and 8 to placebo), revealed that
CDR132L was overall safe and well-tolerated, confirmed linear
plasma pharmacokinetics with no signs of accumulation,
and, despite the small size, suggested cardiac functional
improvements, reflected in a clinically meaningful median
reduction in NT-proBNP and narrowing of the QRS
complex (51).

CONCLUSION

In this review, we have presented the most updated investigations
on microRNAs and some primary regulators of inflammation and
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fibrosis, also discussing the most recent discoveries and actual
applications in the clinical scenario.
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