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Noise propagation with interlinked 
feed-forward pathways
Surendhar Reddy Chepyala1,2,3, Yi-Chen Chen2,4, Ching-Cher Sanders Yan2, Chun-Yi David Lu4, 
Yi-Chun Wu5,6,7,8,9 & Chao-Ping Hsu2,5

Functionally similar pathways are often seen in biological systems, forming feed-forward controls. The 
robustness in network motifs such as feed-forward loops (FFLs) has been reported previously. In this 
work, we studied noise propagation in a development network that has multiple interlinked FFLs. A 
FFL has the potential of asymmetric noise-filtering (i.e., it works at either the “ON” or the “OFF” state 
in the target gene). With multiple, interlinked FFLs, we show that the propagated noises are largely 
filtered regardless of the states in the input genes. The noise-filtering property of an interlinked FFL 
can be largely derived from that of the individual FFLs, and with interlinked FFLs, it is possible to filter 
noises in both “ON” and “OFF” states in the output. We demonstrated the noise filtering effect in the 
developmental regulatory network of Caenorhabditis elegans that controls the timing of distal tip cell 
(DTC) migration. The roles of positive feedback loops involving blmp-1 and the degradation regulation 
of DRE-1 also studied. Our analyses allow for better inference from network structures to noise-filtering 
properties, and provide insights into the mechanisms behind the precise DTC migration controls in 
space and time.

Most of the cellular processes, which are various biochemical reactions, are inherently “noisy” because of extrinsic 
and intrinsic fluctuation of various factors. Even in isogenic populations under identical environmental condi-
tions, the cells may show greatly different phenotypes1–4. Gene expression can be highly noisy1,4, partly due to the 
burst production in mRNA and proteins, and thereby leading to a large cell-to-cell variations5–7. The expression 
of a gene in one cell can be affected by its upstream noise, other global factors, as well as its own intrinsic noise in 
the expression8. Noise can be both an obstacle for some types of cellular functions9–11 as well as a useful feature 
for others12–18. Living organisms go through a sequence of decision-making checkpoints that can not be reversed. 
Thus, cells need ways to cope with those fluctuations. Given the high level of stochastic fluctuations in gene 
expression at the intracellular level1,4 it is hard to imagine that stability can be achieved without certain endoge-
nous regulatory mechanism, such as feedback or feed-forward controls19,20. Understanding how cells efficiently 
and correctly process information in noisy environments is of fundamental importance.

In development, organisms grow with the same spatial and temporal patterns, with few variations among 
individuals. How the precise developmental events are controlled under the noisy condition has been an impor-
tant question to answer21,22. Gene regulation networks are often composed of a small set of recurring interaction 
patterns called network motifs23,24. Many motifs perform specific dynamic functions (as reviewed in ref. 25). In 
the cases studied so far, these motifs seem to preserve their autonomous functions even in their natural contexts, 
wired into the regulatory networks of the cell25,26. Therefore, studying the dynamics and fluctuations of biological 
processes with one particular network may help us to understand many other systems with networks composed 
of similar motifs.

Among the network motifs in biological systems, feed-forward loops (FFLs) play a significant role27. All 
possible FFL architectures have been identified and many were shown to regulate a multitude of cellular pro-
cesses23–25,27 in a diverse range of organisms, from bacteria to human cells28–34. The regulatory interactions in FFL 
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can be positive (activation) or negative (repression). On the basis of the effects acting on the downstream node in 
the two pathways, FFLs are classified as coherent or incoherent. A coherent FFL (cFFL) is capable of filtering noise 
asymmetrically (i.e., only in one of the gene regulatory states, either ON or OFF state)25,27,35. However, to have 
a precise and robust phenotype of a particular trait (or cellular function), the noise must be controlled in both 
ON and OFF-states of the gene. The cFFLs often combine with other FFLs or other motifs and form interlinked 
FFLs (IFFL) or other more complex circuits, and the noise-filtering property in these interlinked networks may 
be improved. The consequences of combined network motifs in terms of noise control need to be studied. To the 
best of our knowledge, such a study of combined IFFL has not been reported. In the present work, we analyze the 
general noise-propagating properties in a development gene regulatory network of C. elegans, to understand the 
link between network structure and its properties in robustness and noise-resisting.

In C. elegans, its reproductive organ, the hermaphrodite gonad, is shaped by migration of the two distal tip 
cells (DTCs) located on the anterior and posterior ends of the gonad. The final U shape of hermaphrodite gonad 
arms is determined by a sequential three-phase migration of these two DTCs. The DTCs undergo a long-range 
migration and re-orient twice, providing a paradigm for studying the spatiotemporal regulation of cell migration 
in vivo36. The timing of the first dorsalward DTC turning is regulated by a set of genes: blmp-1, lin-42, daf-12, lin-
29 and dre-137–40. DAF-12 is a steroid hormone receptor41; LIN-29 and BLMP-1 are both zinc-finger transcription 
factors37. Both LIN-29 and BLMP-1 are regulated by the Period-like protein LIN-42 at the transcriptional level39. 
The F-box protein DRE-1 promotes BLMP-1 degradation via the ubiquitin-mediated proteasome pathway42. A 
single mutation in daf-12, lin-29 and dre-1 does not affect DTC migration; however, double mutations delay the 
L3-specific DTC migration pattern, which frequently fails to take place, even in the L4 or adult37. In contrast, 
mutants defective in blmp-1 or lin-42 show a precocious DTC migration pattern37,39. It is observed that DRE-1 
and DAF-12 prevent BLMP-1 expression in late L3 stage37. However, when blmp-1 and daf-12 mutations are com-
bined, the DTC migration is heterogeneous37 and this result indicates susceptibility to variations in individual 
worms. The molecular basis of the heterogeneous phenotypes is unclear.

From previous observations, one can construct a gene regulatory network that includes steroid hormone sig-
naling (DAF-12), gene transcription (LIN-29, BLMP-1, LIN-42) and protein degradation (DRE-1), in the control 
of the L3-specific DTC migration pattern in C. elegans. This gene regulatory network controls the timely expres-
sion of the netrin guidance receptor UNC-5, which is both necessary and sufficient for DTC dosral migration38. 
While BLMP-1 inhibits unc-5 transcription, LIN-29 and DAF-12 promotes unc-5 transcription37. To understand 
the temporal regulation and noise-filtering effect of components in the regulatory network, we constructed a 
mathematical model describing the time change in protein levels. The model contains three input nodes (daf-12, 
lin-42 and dre-1), two intermediate nodes (lin-29 and blmp-1) and one output node (unc-5) (Fig. 1a). The timing 
of UNC-5 expression should be constrained into a specific developmental time window, neither too early nor too 
late. The noises in the upstream genes may propagate to UNC-5 and affect the timing. There are also two positive 
feedback loops (PFLs) coupled with the network. The presence of interlinked cFFLs and positive feedbacks in 
Fig. 1a prompted us to evaluate their potential roles in noise-filtering in the network. In this work, we studied the 
unc-5 gene regulation network for the noise-filtering property, with a stress on the roles of interlinked network 
motifs such as cFFLs and PFLs.

Results
Role of interlinked Feed-Forward Loops (IFFL) in noise-filtering. FFLs are network motifs that contain 
direct and indirect pathways from input to output nodes. When the input gene is switched, there is a delay in the 
indirect pathway. In the coherence case, depending on how the output gene integrates the two signals, the switch in 

Figure 1. (a) Regulatory network for the DTC migration in C. elegans. (b) Schematic representation of DTC 
migration in C. elegans and its timing.



www.nature.com/scientificreports/

3Scientific RepoRts | 6:23607 | DOI: 10.1038/srep23607

the output gene may be delayed, and the time-delay provides a chance to filter a fluctuation in the upstream, or the 
noise25,27. However, such a noise-filtering effect is asymmetric, which is only effective in the ON or OFF-state of the 
gene.

The DTC migration network contains multiple pathways from input to output, forming more than one FFL. 
Here we postulate that these IFFL further help to reduce the input noise in both ON and OFF-states. In other 
words, the IFFL in the current DTC network may be able to filter the propagated noise from DAF-12 and LIN-42 
to UNC-5, which we tested and discuss in this section.

The DTC migration regulation network we studied is shown in Fig. 1a. daf-12, lin-42 and dre-1 were included 
as input nodes with their temporal activity indicated. The regulations are described by the Hill function (with 
further details in Methods). When more than one upstream gene regulates a downstream gene, the combination 
of the corresponding Hill functions are similar to the Boolean AND or OR operations. The logic gates were 
determined based on experimental or computational observations and the same logic combinations were used 
when analyzing the subnetworks (see Methods). To study the noise-filtering effect in DTC migration, we used a 
stochastic Langevin’s equation to simulate the gene regulatory network. We introduced the noise, which includes 
the burst effect in protein production in a modified Langevin equation (Supplementary of ref. 43, with further 
details in Methods). We simulated the deterministic and stochastic trajectories of the current network as shown 
in Fig. 1a.

Since we aimed at demonstrating the noise-filtering properties in structure of the network, we set up tests with 
a good number of general parameter sets with least screening. For most of the tests presented in this work, we 
randomly selected 1000 parameter sets out of 3.08 ×  107 of those produced downstream nodes (UNC-5, BLMP-1 
and LIN-29) expression as in wild type. For tests related to daf-12 and lin-29 mutants, we randomly chose 1000 
parameter sets that produced wild type and UNC-5 expression as in six homogeneous mutants, as there were 
5.35 ×  106 such parameter sets. For simulating the heterogeneous blmp-1;daf-12 mutant, we used more restricted 
parameter sets that reproduce the phenotype of the wild type, six homogeneous mutants and the heterogeneous 
blmp-1;daf-12 mutant in a stochastic simulation, and there were 109 parameter sets.

The magnitude of noise was calculated as the Fano factor (FF), defined as the variance divided by the mean 
value of the component, and the distribution of FF was reported. The FF of an intrinsically noisy protein is typ-
ically 17 from our parameter settings (see Methods). To study propagated noises, the noise of upstream genes 
was added, whereas the noise in the downstream components was set to zero, and the FF was calculated from the 
fluctuation due to the upstream genes.

An IFFL filters noises from DAF-12. We first studied the noise originating from DAF-12 in effecting 
UNC-5, the output of the network that controls DTC turning. In Fig. 2, we depict several subnetworks that 
can propagate signals from daf-12 to unc-5. As seen in Fig. 2a, with subnetworks originated from daf-12 input, 
we schematically illustrate the noise-filtering property. Direct regulation from daf-12 to unc-5 (subnetwork A) 
does not show any delay downstream, and the DAF-12 noise is propagated to UNC-5, regardless of its activity. 
According to the classification in ref. 27, Subnetwork B is a type-4 cFFL with an AND logic gate, with a delayed 
response in turning the input to ON. It is capable of filtering transient spikes in the OFF-state but not in the 
ON-state. In subnetwork C, lin-29 and its associated pathways are added; it forms a generalized FFL (purple 
color) that starts with daf-12, with blmp-1 and lin-29 as the intermediate nodes, and ends at unc-5. It is similar to a 
type-1 cFFL with an OR gate27, which shows a delayed response when the input turns OFF, filtering the ON-state 
noise. Thus with multiple pathways, IFFL as in subnetwork C can buffer the noise in both ON and OFF-states of 
input genes.

With stochastic numerical simulation, we further demonstrate the noise-filtering capability in the IFFL, sub-
network C. As seen in Fig. 2b, results for subnetwork A, a direct regulation from daf-12 to unc-5 sets the basal 
level of noise propagation. By adding blmp-1 to it, subnetwork B can reduce the OFF-state but not the ON-state 
noise from DAF-12. The ON-state noise is also reduced when lin-29 is added downstream of blmp-1 and a posi-
tive regulator for unc-5, forming subnetwork C. The stochastic simulation results also show that IFFL as subnet-
work C can indeed buffer the DAF-12 noise in both OFF and ON-states. Therefore, adding layers of feed-forward 
and forming IFFL helps the system better filter upstream noises.

An IFFL filters noises from LIN-42. The subnetworks we studied, starting from lin-42 to unc-5 are shown 
in Fig. 3. A direct pathway through lin-29 (subnetwork F) shows how noise propagates to UNC-5. The signal 
can also propagate through blmp-1, adding an interaction mediated by blmp-1 (subnetwork G), and forming 
a generalized cFFL among the four components. The feed-forward structure in subnetwork G can be regarded 
as a generalized form of cFFL types 2 or 3 with an AND gate. Both of these cFFLs exhibit a delayed response in 
turning OFF27, and thus, they are potentially able to filter LIN-42 ON-state noise as long as the time needed to 
pass through these two pathways are not the same. As shown in Fig. 3, for subnetwork G, the LIN-42 ON-state 
noise is reduced.

lin-29 and blmp-1 inhibit each other, and these inhibitions also offer a chance to feed-forward the signal, 
in additional to the feedback effect that is discussed in the following section. In subnetwork H, we include the 
inhibition from blmp-1 to lin-29 and further study the IFFL effects. An additional type 3 cFFL with an AND gate 
(marked in light blue color) is formed between lin-42, blmp-1 and lin-29, which reduces the ON-state propagated 
noise from lin-42 to lin-29, thereby leading to reduced propagated noise in UNC-5 (Fig. 3). As shown in sub-
network I, including the inhibition from lin-29 to blmp-1, a type-4 cFFL (marked in light brown) with an AND 
gate formed between lin-42, lin-29 and blmp-1 is formed, which filters the LIN-42 OFF-state noise. Subnetwork J 
includes the both the FFLs shown in subnetworks H and I and is able to filter the noise in both ON and OFF-states 
of LIN-42, with a mild increase in both the states as compared to the well-filtered ON-state for H or the OFF-state 
for I. Our results show that the both ON and OFF-state noises in LIN-42 are buffered and this noise-buffering 
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effect can be understood through layers of FFLs in the subnetworks. Similar behavior is also observed from the 
subnetworks from DAF-12. Therefore, the noise-filtering property of an IFFL can be largely derived from that of 
the individual FFLs.

Positive feedback loops in filtering the propagated noise. PFLs can buffer the propagated noise44–46. 
Computational study of PFLs that maintain signal sensitivity showed PFLs with mutual activation can buffer 
the noise in both OFF and ON-states as compared to PFLs with mutual repression45. However, feedback motifs 
in natural systems are not isolated, and they often coupled with additional PFLs46–49. Because PFLs with mutual 
inhibition and mutual activation have different strengths (roles) of noise-buffering in the ON and OFF-states45, 
we further aimed to investigate the role of the two coupled PFLs in noise-filtering.

Two PFLs exist in the DTC network: one is the autoregulation of blmp-1 (auto-PFL), and the other is the 
mutual repression between lin-29 and blimp-1 (subnetworks D and E, respectively, in Fig. 2). In the current 
network, both the PFLs are integrated with other FFLs. Hence, they are regulated by upstream genes and regulat-
ing downstream genes. Adding auto-PFL on blmp-1 reduced the propagation of DAF-12 OFF-state and LIN-42 
ON-state noise in UNC-5 (subnetwork D in Fig. 2, subnetwork K in Fig. 3). Results for subnetwork E, with an 
additional positive feedback of mutual repression, also show reduced noise in the DAF-12 ON-state.

Positive feedback increases response time and thus provides a better averaging over rapid fluctuations in both 
the ON and OFF-states44,45. In the current study, auto-PFL on BLMP-1 acts with other regulators with an OR gate, 
which lead to an increases of response time in the BLMP-1 ON-state but not in the OFF-state. The asymmetric 
response time change of BLMP-1 implies noise-filtering in the ON-state of BLMP-1 or the OFF-state of DAF-12 
(subnetwork D in Fig. 2). In contrast, another PFL with mutual repression is integrated with an AND gate on 
BLMP-1, increases the response time in both ON and OFF-states (subnetwork E in Fig. 2), and the propagated 
noise is filtered in both states. Therefore, the noise-filtering effects of PFL, when coupled to other regulations in 

Figure 2. Noise filtering in IFFL. (a) Schematic representation of noise filtering for a spike in the OFF and 
ON-states through FFL and IFFL (subnetworks A-C) and feedbacks (subnetworks D and E). (b) Propagated 
noises from DAF-12 as observed fluctuation in UNC-5 in different subnetworks as shown on the top. Intrinsic 
noises were added to DAF-12 only, and the FF of the propagated fluctuation in UNC-5 are calculated and 
plotted. Blue boxes are for DAF-12 sampled in its ON-state, while red boxes are for the OFF-state. Shown are 
box plots for the FFs for UNC-5 from the 1000 sampled parameter sets, with the median, and the upper and 
lower quantiles indicated. Whiskers indicate furthest observation within 1.5 times the interquartile range 
outside of the upper and lower quartiles. We excluded the outliers for better visibility.
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a network, is dependent on the logic gate that combines the output of PFL and other inputs. In the present study, 
logic gates of the two PFL are determined by the robustness in reproducing the wild type and homogeneous 
mutants (Supplementary Table S1). It is interesting to see the logic gate setting that generates desirable pheno-
types with the highest probability also allows good noise filtering.

Additional results are included in Supplementary Fig. S1, where we show the magnitude of propagated fluc-
tuation at BLMP-1 and LIN-29. Again we observed that auto-PFL on blmp-1 alone was sufficient for filtering the 
propagated noise from DAF-12 and LIN-42 when BLMP-1 is in the ON-state (Supplementary Fig. S1).

Effect of intrinsic noises in BLMP-1 and LIN-29. Every gene expression is stochastic in nature. In this 
part, we studied the effect of intrinsic noise of intermediate nodes, BLMP-1 and LIN-29.

Both blmp-1 and lin-29 are coupled to PFLs in the network. For blmp-1, an upstream inhibitor DAF-12 
becomes active in the early L337,41, whereas the activator, LIN-42, oscillates in its expression relative to the devel-
opmental molts in C. elegans39. Moreover, immunostaining detected BLMP-1 during L2 and early L3 but not late 
L3 stage37. Therefore, the expression of blmp-1 needs to be maintained until early L3 stage, including the late L2 
stage when the activator of blmp-1, LIN-42, is in the low-expression phase of the oscillation. The auto-positive 
regulation of blmp-1 was necessary for maintaining its expression37. lin-29 mutant is the wild type in DTC turn-
ing, which implies that it is the auto-PFL, not the mutual inhibition involving LIN-29, that maintains the activity 
of BLMP-1. While searching for parameters that produce wild-type expression in UNC-5, BLMP-1 and LIN-29, 
we found that the most of the selected parameter sets have a low threshold level for BLMP-1 auto-activation 
(Supplementary Fig. S3), indicating a strong auto-activation in BLMP-1.

PFL has been reported to amplify intrinsic noise25. Similar results were also observed in our system, with 
auto-PFL increasing the intrinsic noise (Supplementary Fig. S2, subnetworks T and K). While BLMP-1 is in 
the ON-state, the strong auto-PFL helps maintain the ON-state. However, in the OFF-state, because of the 
low auto-activation threshold, intrinsic noise allows the BLMP-1 to reach to a higher steady state and thereby 
increasing the OFF-state noise. Therefore, the auto-PFL of blmp-1 amplifies the intrinsic noise at the OFF-state 
of BLMP-1 because of its spurious activation. On the other hand, the PFL from mutual inhibition only mildly 
increased the intrinsic noise at BLMP-1 and LIN-29 (Supplementary Fig. S2, subnetwork J).

We next studied how the noises in BLMP-1 and LIN-29 may be propagated to UNC-5. Both are direct 
upstreams of UNC-5, regulating unc-5 through an AND logic, and it allows better noise filtering in the OFF-state 
noise of UNC-5. We allowed blmp-1 and lin-29 nodes to be noisy and observed the noise propagation in different 
subnetworks as shown in Fig. 4. As compared with direct regulation from lin-29 and blmp-1 (subnetworks L, M) 
when combining both regulators (subnetworks N, O and P), the OFF-state noise of UNC-5 was generally reduced 
(which corresponds to the ON-state of LIN-42 shown in the figure).

DRE-1 functions in the SCF ubiquitin ligase complex and post-translationally regulates BLMP-1 by degrading 
it42. Its expression in the mid L3 stage reduces BLIMP-1 level and allows DTC turning. When DRE-1 is expressed 
(subnetwork Q), it keeps the BLMP-1 at a lower level, and the degradation by DRE-1 reduces BLMP-1 OFF-state 
noise, leading to a low noise level in UNC-5 as well (OFF-state of LIN-42).

In subnetwork R, it is seen that adding daf-12 regulation reduces the LIN-29 ON-state noise and further 
reduces the UNC-5 ON-state noise with a mild increase in OFF-state noise. This effect is similar to that observed 

Figure 3. Propagated noise from LIN-42 as observed fluctuation in UNC-5 in different subnetworks 
indicated on the top. Intrinsic noise was added to LIN-42 only, and the FF of the propagated fluctuation in 
UNC-5 is calculated and plotted. Red boxes are for LIN-42 sampled in its ON-state, which also corresponds to 
the BLMP-1 ON-state, LIN-29 OFF-state, and UNC-5 ON-state. Blue boxes are for the opposite state. Other 
details are similar to that in Fig. 2.
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in subnetwork C (Fig. 2). In maintaining the UNC-5 ON-state, either daf-12 or lin-29 presence is sufficient, and 
thus the UNC-5 ON-state noise is reduced (shown as LIN-42 OFF-state in Fig. 4).

Network architecture controls the overall noise of UNC-5. In the current network, BLMP-1 is tem-
porally regulated by daf-12, lin-42, lin-29 and dre-1 genes37. From previous results, we can see that UNC-5 noise 
is well-controlled by IFFL and PFLs. To see the UNC-5 noise level at different developmental time periods, we 
simulate the complete network shown in Fig. 1a, allowing for all nodes with intrinsic noise and all noise propaga-
tion. The result is shown in Fig. 5; at the time of DTC turning, the noise of UNC-5 is kept low, close to its intrinsic 
noise with an FF of 17. This result shows that the regulation network gives UNC-5 a timing control in turning it 
on but also in a stringent manner such that the propagated noise is minimal.

In the earlier stages, the noise of UNC-5 varies. The first stage we studied, early L2, has a low level of noise, with 
LIN-42 turned ON, while DAF-12 and DRE-1 are OFF. In this stage the network is working coherently and UNC-5 
is kept in the OFF-state. The second stage is when the oscillatory LIN-42 turned OFF. At this stage, BLMP-1 is 
maintained in its ON-state through its auto-PFL, and the DRE-1 OFF-state noise can degrade the BLMP-1, thereby 
leading to the observed noises in BLMP-1 and UNC-5. At the third stage, LIN-42 is turned back ON again, and at 
about the same time, DAF-12 is now turned ON, sending an inhibitory effect to blmp-1. The inconsistent inputs of 
DAF-12 and LIN-42 lead to a compromised level in the blmp-1 regulation. In other words, the combination of Hill 
functions of DAF-12 and LIN-42 in controlling blmp-1 is in an intermediate level, leading to better noise propaga-
tion, and results in a higher noise in BLMP-1. As we have seen in subnetwork Q, R in Fig. 4, adding dre-1 and daf-
12 regulation decreased the UNC-5 ON-state noise with the price of a mild increase in OFF-state noise. Thus the 
network architecture play a significant role in expression of a key regulatory protein, UNC-5, with minimal noise.

However, the higher noise in UNC-5 in the earlier developmental stages might cause problems in develop-
ment. We next studied the dynamics in UNC-5 in light of phenotypes observed in mutants.

Noise propagation in mutants with homogeneous phenotypes. Single mutants including lin-29 
and daf-12 shows a wild type DTC turning phenotype37. These results imply that the positive regulation of LIN-
29 or DAF-12 alone is sufficient to express UNC-537. We further studied the noise-filtering capacity of UNC-5 
expression in the two mutant networks. For this test, we selected the parameters that produce the wild type and 
six other homogeneous mutants.

From Fig. 6a, we can see that the noise of UNC-5 during the late L3 stage (at the time of DTC turning) was 
increased in lin-29 and daf-12 mutants. Deterministic simulation in these two mutants shows that UNC-5 expres-
sion is similar to that of the wild type, where a clear separation is observed between the ON and OFF-state of 
UNC-5. However, in these mutants, we observed a mild decrease in steady state level of UNC-5 when it is turned 
ON in late L3 stage (Fig. 6b). Such a decrease in UNC-5 expression was previously observed in experiments37, 

Figure 4. Regulation of noise propagation from BLMP-1 and LIN-29 to UNC-5. Shown are the subnetworks 
analyzed, and the FF distribution for BLMP-1, LIN-29 and UNC-5. Blue boxes are for LIN-42 OFF-state, which 
also corresponds to the BLMP-1 OFF-state, LIN-29 ON-state and UNC-5 ON-state. Red boxes are for the 
opposite state. Other details are similar to that in Fig. 2.
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which supports our simulation results. With a general parameter setting, we show that a partial loss of function 
in the network could still maintain the desirable outcome (such as UNC-5 expressed at the right time), but the 
system becomes more fragile due to the higher noise.

Figure 5. Noise propagation in the complete network, calculated with intrinsic noises included in all nodes. 
Shown on top are the activity of the three input genes, DAF-12, DRE-1 and LIN-42. The red curves are the mean 
trajectories, scaled to the left, of the 3 downstream components. Gray boxes and whiskers are for the FF distribution 
of the corresponding components, calculated at the steady state of the 4 different developmental stages as indicated.

Figure 6. Comparison of UNC-5 noise (a) and mean level (b) in the wild type, lin-29 and daf-12 mutants at the 
time of DTC turning.
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Noise causes the heterogeneous phenotype in the blmp-1;daf-12 mutant. Noise is the main 
source of heterogeneity in identical cells1,2. Although most of the single and double mutants of the DTC migra-
tion network show a homogeneous phenotype, blmp-1;daf-12 mutant shows a heterogeneous phenotype, where 
the DTC turns both precociously and similar to the wild type (Table 1)37.

Deterministic simulation showed that DTC turning is precocious in blmp-1;daf-12. When LIN-42 is turned 
OFF in L2, without BLMP-1’s inhibition, UNC-5 is turned ON (the red trajectory in Fig. 7b) and DTC is allowed 
to turn early (Fig. 7d).

To demonstrate the noise driven heterogeneity in blmp-1;daf-12, we applied stochastic simulation. To correlate 
the noisy UNC-5 expression with the DTC turning time, we integrated the UNC-5 protein signal and considered 
that DTC was turned when the signal crossed the threshold value (Fig. 7a,b, with gray trajectories as integrated 
UNC-5 strength and green line for the threshold). Here we have assumed that DTC turning takes place in a slow 
time-scale with many down-stream changes following UNC-5, and therefore, an accumulation of UNC-5 signal 
is accounted.

In the wild type, all the integrated UNC-5 protein signal crossed the threshold value during the late L3 stage 
(Fig. 7a), and the distribution of DTC turning time was close to that from deterministic simulation (Fig. 7c). In 
the blmp-1;daf-12 mutant, the decrease in LIN-42 expression allows UNC-5 to express in the late L2 stage, and 
thus, UNC-5 expresses precociously, but without the activation from DAF-12, it is expressed at a lower level 
(Fig. 7b). As a result, many trajectories cross the threshold value precociously (with a typical blue color trajectory 
shown in Fig. 7b), but about 10% of the worms with integrated UNC-5 signal do not reach the threshold value 
until late L3 (a representative trajectory shown in black), thereby showing wild-type phenotype. Therefore, blmp-
1;daf-12 mutant expresses a relatively high level of UNC-5 in the L2 stage, but not sufficient to make every DTC 
turn. Our computational study showed how the dynamics and noises in the UNC-5 lead to the heterogeneity in 
the phenotypes.

Genotype DTC turning phenotype

blmp-1(s71) precocious

lin-29(n546) wild type

daf-12(rh61rh411) wild type

lin-29(n546);dre-1(dh99) retarded

lin-29(n546);daf-12(rh61rh411) retarded

dre-1(dh99);daf-12(rh61rh411) retarded

blmp-1(s71);daf-12(rh61rh411) precocious (31%) wild type (43%)

Table 1.  Experimental observation of DTC turning in different genotypes37.

Figure 7. Trajectories and phenotypes for the wild type and blmp-1;daf-12 mutant. Shown in (a,b) 
are deterministic UNC-5 trajectory (red, scaled to the right) and representative stochastic trajectories of 
accumulated UNC-5 signal (gray lines with one trajectory shown in black) scaled to the left, for the wild type  
(a) and blmp-1;daf-12 mutant (b). In (b) a precocious turning trajectory is shown in blue. The DTC turning time 
distribution is shown in (c) for the wild type and in (d) for blmp-1;daf-12 mutant. The network for blmp-1;  
daf-12 mutant is included in (e).
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Discussion
Robustness of different cellular functions may come from the local structures of the regulatory network, or motifs, 
such as FFLs. Coherent FFLs provide a time delay in the two regulating pathways, which offers a chance to filter 
ON or OFF-state input noise. In the present work, we provide insight into how multiple FFLs or IFFL are inte-
grated in a developmental gene regulatory network to filter the propagated noise in both the ON and OFF-states. 
Our sub-network analyses with daf-12 and lin-42 input shows that IFFL are effective in filtering the propagated 
noise in UNC-5. In other words, with layers of FFLs, it is possible to ensure the reliable target gene expression 
with minimal propagated noises.

The PFL effect we observed is in line with literature reports showing in increased response time and reduced 
propagated noise50. In the current study, the auto-PFL on blmp-1 maintains the robust and stable steady state in 
BLMP-1 until the DRE-1 starts to express. The auto-PFL ensures the BLMP-1 ON-state in a low-noise state and 
prevents precocious DTC turning. This auto-PFL is coupled with other regulation of blmp-1 with an OR gate. As 
a result, the OFF-state may be easily perturbed from an upstream fluctuation in any of its regulators. However, 
this amplified intrinsic noise in the BLMP-1 OFF-state was largely filtered by the post-transcriptional regulation 
of DRE-1, and thus the network remains robust to the noise propagated from blmp-1 and its upstream genes.

Although cells are able to manage noise during development, blmp-1;daf-12 mutant with an incomplete reg-
ulatory network shows a heterogeneous phenotype. Deterministic expression of UNC-5 in this mutant shows a 
plausible precocious DTC migration. The stochastic simulation in the current study offers a molecular level of 
understanding for this variability in this system. The mild reduction in the steady-state level of ON-state in UNC-
5, and the propagated and intrinsic noises, lead to the heterogeneous mutant phenotype.

Noise filtering effects can be studied by analytical approaches such as a mathematical derivation for the 
noise-filtering capacity in the frequency domain. These works offer a general understanding, but a linear regula-
tion function is often needed35. We employ nonlinear gene regulation function, the Hill function, in the model, 
with a goal in deriving experimentally relevant insights. Therefore, with a good number of general parameter sets, 
we study the change of noises in the distribution of FFs. Our approach still offer rather general ground for the 
observation and for drawing conclusions, without loosing the connection to the biological reality in the model.

In the parameter setting, we fixed the maximum steady-state value for all the proteins as 272 particles per cell. 
This number is on the lower end, given that experimental works reported 102–105 copies per cell for transcription 
factors in eukaryotes51,52. A higher particle number implies a lower level of intrinsic noise. However, because we 
did not include any other noise source, such as the global noise, and noise propagated from components outside 
of the network considered, we believe that the setting is a practical compromise that allows us to capture the 
essential part of the realistic fluctuations.

Conclusion
We studied the noise propagation in a development network of C. elegans that controls the turning time of the 
DTC. The DTC guides the gonad development, and its turning is well regulated in normal development. The 
network we studied has multiple IFFL. We found that IFFL can filter propagated noises regardless of the states 
in the input genes. We also found that the noise-filtering property of an IFFL can be largely derived from that of 
the individual FFLs. The auto-PFL of blmp-1 is also helpful in maintaining the desirable activity of blmp-1 and 
decreasing the propagated noises but may enhance intrinsic noise of the genes involved. We found that the deg-
radation regulation of DRE-1 also plays a crucial role in reducing the propagated noises in the final target gene 
UNC-5. Our analyses offers insights into the mechanisms behind the precise DTC migration controls in space 
and time that are difficult to obtain experimentally. The observation that IFFL can filter both ON and OFF-state 
noises also allows for better inference from network structures to noise-filtering properties.

Methods
General computational settings. As shown in Fig. 1a, the current network has three input genes (daf-12,  
lin-42 and dre-1) and three intermediate and downstream genes (blmp-1, lin-29 and unc-5), with their roles in 
DTC migration experimentally validated. There are other closely related genes and proteins that were not included 
in the current work, such as unc-6, daf-9, daf-16 and kin-20. UNC-6 is the netrin guidance cue, which is secreted 
earlier than the expression of the UNC-5 receptor53. DTC migration occurs when the unc-5 is express38. Therefore, 
UNC-6 expression does not determine the DTC turning and it is not included in the current work. DAF-12 
is activated by the binding of dafachronic acid (DA), a steroid hormone synthesized by the enzyme DAF-954.  
Therefore, DAF-9 is an upstream of DAF-12, which we chose not to include in the model. Previous studies 
reported that DAF-12 together with DAF-16 regulates the longevity and dauer formation in C. elegans55. KlN-20 
works with lin-42 to regulate the seam cell development56. The role of daf-16 and kin-20 in DTC migration is 
unknown.

The duration of current simulations is 20 hr, where 0 to 8, 8 to 16, 16 to 20 hr represents L2, L3, early L4 devel-
opmental molt stages respectively. Among the three inputs, daf-12 is turned ON from the 8th hour and dre-1 from 
the 12th hour. lin-42 has a dynamic, oscillatory expression pattern, and it is in an ON-state from 0.5 to 5 hr and 8.5 
to 12 hr in the present work. In the wild type, UNC-5, the key regulator of DTC turning, should start expressing in 
the mid to late L3 stage, or between 12 and 14 hr. In testing for mutant phenotypes, precocious phenotype should 
have UNC-5 expressed before 12 hr. For retarded phenotype, UNC-5 should express in L4 stage, which is after 
16 hr. If the UNC-5 is not expressed even at 20 hr, we also consider it as a retarded phenotype. The experimental 
data show that single mutants with lin-29, daf-12 show a wild-type phenotype, and blmp-1 shows a precocious 
phenotype. Double mutants including lin-29;daf-12, lin-29;dre-1, dre-1;daf-12 show a homogeneous retarded phe-
notype. Double mutant blmp-1;daf-12 shows a mixture of precocious and wild-type phenotypes. The complete list 
of genotypes and their phenotype of DTC turning that we use in this computational study is given in Table 1 37.
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We first screen for parameters that can generate UNC-5, LIN-29 and BLMP-1 expression in the wild 
type by solving the deterministic ordinary differential equations (ODEs). Since we aim to draw general con-
clusions for noise-filtering properties from the structure of the network, we chose not to further screen for 
further properties and tested for most of the noise-filtering properties with different network structures with 
those that can generate wild-type dynamics. A randomly chosen collection of 1000 parameter sets was used 
in these tests. We further screened for parameter sets that passed the UNC-5 expression in six homogeneous 
mutants, for testing the dynamics and noises of the mutant. We also screened for parameters with stochastic 
simulation for homogeneous and heterogeneous phenotypes and tested for the behavior of heterogeneous 
phenotypes. The details of the deterministic and stochastic stimulation are given in the following sections. 
All simulations were performed with both Matlab 2010b (The MathWorks Inc. (Natick, MA)) and Octave 
version 3.8.157.

Deterministic simulations. Three input genes (daf-12, lin-42, dre-1) are regulated by simple activation and 
degradation effect as follows.

θ γ= −
dx
dt

k t x( ) (1)p c

where x represents the protein concentration, or the amount of protein per cell (particle numbers in this work), 
which can be [DAF-12], [LIN-42] or [DRE-1], kp is the maximum production rate, γc is the degradation rate, and 
θ(t) describes the regulatory activity for the gene, with 1 indicating that the gene is turned on and 1/4 means it is 
turned off, or,

θ =





≥
.‐

t1, if 8,
1/4, otherwise (2)daf 12

with daf-12 as an example. For lin-42, it is active when t =  0.5–5 and t =  8.5–12. For dre-1 it is active when t ≥  12.
In the present work, all components except for blmp-1 are assumed to degrade at the same rate, γc. Another 

simplification we used is to keep a fixed ratio for kp/γ at 272, which is the steady-state amount for the gene expres-
sion. In the current simulation, we searched for the degradation rates, and then derive kp from it.

For genes that are regulated by other components in the system, θ(t) is replaced by by the sum of a basal tran-
scription α and a regulated term that varied according to its upstream amount. For example, for lin-29, which is 
regulated by LIN-42 and BLMP-1, is described as follows:

∩α α γ= + − −
‐ ‐ ‐ ‐‐ ‐

d
dt

k g g[LIN 29] [ (1 ){ ([LIN 42]) ([BLMP 1])}] [LIN 29], (3)p clin 29 lin 29

where α represents the basal expression which is set to 10% of kp. We used the Hill function for gene regulation, 
with the activation function being

=
+

→

→

f u u K
u K

( ) ( / )
1 ( / )

,
(4)d

u d
H

u d
H

and the repression function as,



=
+

.g u
u K

( ) 1
1 ( / ) (5)d

u d
H

Parameter H controls the steepness, which is fixed to 3 throughout the present work. K defines the expres-
sion of an upstream gene required to half-activate or repress the downstream gene. With more than one signal 
regulating the expression of a downstream gene, the two signals integrated with a specific regulatory logic58,59. 
We use symbol ∩  to represent the combination of two inputs that is similar to an “AND” gate in Boolean 
algebra:

∩ ≡ .f u f u f u f u( ) ( ) ( ) ( ) (6)d d d d1 2 1 2

As will be seen below, the combination similar to the “OR” logic gate is denoted with symbol ∪ , which is 
defined as

∪ ≡ + − .f u f u f u f u f u f u( ) ( ) ( ) ( ) ( ) ( ) (7)d d d d d d1 2 1 2 1 2

unc-5 is regulated by DAF-12, LIN-29 and BLMP-1. Its expression is described as,

∪
∩

α α

γ

= + −

−

‐ ‐

‐ ‐ ‐
‐ ‐

‐

d
dt

k f f

g

[UNC 5] [ (1 ){[ ([DAF 12])

([LIN 29])] ([BLMP 1])}] [UNC 5] (8)

p

c

unc 5 unc 5

unc 5

BLMP-1 has post-transnational regulation by DRE-142. Therefore there are two different degradation rates for 
BLMP-1: a basal rate and an additional rate from DRE-1. The DRE-1 degradation effect is through a Hill function. 
The ODE of BLMP-1 is as follows:
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∩
∩ ∪
α α

γ γ

= + −

− + −

‐ ‐ ‐

‐ ‐

‐ ‐

‐ ‐

‐ ‐

‐ ‐ ‐ ‐

d
dt

k g f

g f

g

[BLMP 1] [ (1 ){[( ([DAF 12]) ([LIN 42]))

([LIN 29])] ([BLMP 1])}]

[ (1 ([DRE 1]))][BLMP 1] (9)

p blmp 1 blmp 1

blmp 1 blmp 1

BLMP 1 DRE 1 BLMP 1 BLMP 1

where γBLMP-1 is basal degradation rate of BLMP-1, γDRE-1-|BLMP-1 is the degradation rate of BLMP-1 by DRE-1.
For BLMP-1, LIN-29 and UNC-5, the relative basal expression strength α is kept at 10% of the maximum 

expression rate. For the input genes the corresponding basal expression was set at 25% in the present work. 
Without upstream components, input genes are not under the propagated noise, and thus we believe that increas-
ing the basal expression is a convenient way to include propagated noise, especially for the OFF-state.

We adopted the Euler method to numerically propagate the ODEs60. This is for consistency with the stochastic 
simulation, where the Euler-Maruyama method is used61–63.

The regulatory logic combination and their robustness. In the DTC-turning network, the three 
downstream genes (lin-29, unc-5 and blmp-1) are controlled by more than one upstream regulator. Exactly how 
the upstream signals combine and control these genes are unknown. In setting up the mathematical model, the 
only requirement is to generate results that are similar to experimental data.

lin-29 is regulated by LIN-42 and BLMP-1. The combination may be either the AND- or the OR-gates. Since 
LIN-42 is periodic in expression, and LIN-29 was shown to be expressed only at L3 stage37, it is reasonable to 
assume the AND-logic as,

‐ ‐(NOT LIN 42)AND(NOT BLMP 1), (10)

as seen in Equation (3).
unc-5 is activated by DAF-12, LIN-29 and repressed by BLMP-1. Experimental evidence shows that UNC-5 is 

expressed in daf-12 and lin-29 single mutants. As well BLMP-1 represses UNC-5 expression in early stages. So we 
can assume that UNC-5 is expressed when DAF-12 or LIN-29 exists, and at the same time BLMP-1 has to be low. 
In our notation, the logic combination is

‐ ‐ ‐(DAF 12 OR LIN 29)AND(NOT BLMP 1), (11)

which best fits the experimental evidence. (Equation (8))
blmp-1 is regulated by four regulatory inputs, DAF-12, LIN-42, LIN-29 and itself. Single mutant blmp-1 

shows a homogeneous phenotype, whereas the blmp-1;daf-12 double mutant shows a heterogeneous phenotype 
(Table 1). From these experimental observations, it is not straightforward to conclude with one logic combina-
tion. So we further analyzed eight different combinations of logic gates at BLMP-1 (Supplementary Table S1). 
We choose the eight logic combination based on our understanding of the experimental system. All eight logic 
combinations were scanned using 1.48 ×  1010 parameters for generating the wild type and 6 homogeneous pheno-
types as we described previously. Among all logic gates tested, we found the following combination has the largest 
number of parameters that can reproduce both wild type and six homogeneous mutants,

.‐ ‐ ‐ ‐((NOT DAF 12)AND LIN 42)AND(NOT LIN 29))OR(BLMP 1) (12)

This result means that the network with this logic combination is the most robust in terms of tolerating differ-
ent parameter values, and it is the one we used for the present study.

Stochastic simulations. Typical stochastic simulations can be performed with the Gillespie’s algorithm64,65 
or the Langevin’s equation66. By setting a large leaping time that allows many fundamental reaction steps, the 
Langevin’s equation propagates with the expected progress and a Gaussian noise to account for the fluctuations. 
For typical reactions that do not involve gene expression, such as protein degradation or protein-protein inter-
actions, the statistics follows Poisson statistics, and therefore, the variance of the fluctuation equals the mean 
propagation in each leap66:

∑ ∑τ ν τ ν τ+ = + +
= =

X t X t a a NX X( ) ( ) ( ) ( ) (0, 1),
(13)

i i
j

M

ji j
j

M

ji j
1 1

where vji is the stoichiometry number for species Xi in reaction j. In other words, it is the number of molecules 
consumed (negative) or created (positive) when reaction j happens. aj(X) is the reaction propensity, or the reac-
tion rates, when the systems has {X} particle number combination. N(0, 1) is the Gaussian random number with 
zero mean and unit variance.

Genes are expressed in bursts6,67. In each expression event, the number of mRNA or protein transcripts pro-
duced is not one, but a number that is fluctuating in each burst. The Poisson statistics behind the Langevin equa-
tion as in Equation (13) is no longer valid, and it should be modified for gene expression channels. In ref. 43, it 
is shown that the FF in gene expression becomes 2b +  1 where b is the mean burst size, or 2b if b ≫  1. For a step 
size τ in propagation, with the mean burst frequency as kb, the mean protein production is kbbτ. The variance for 
protein burst production becomes 2b times the mean, 2kbb2τ. Thus, the following terms are used in the Langevin 
equation for gene expression,
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θ τ θ τ+k t b b k t N( ) 2 ( ) (0, 1), (14)b b

for the input genes. For the three regulated genes, θ(t) is replaced by [α +  (1 −  α)(Hill regulation functions)]. We 
note the term kbb is the maximum production rate, which is equivalent to kp. In our simulation, we fixed the value 
of b (as 16), and set

γ= .k 17 (15)b

The maximum protein production rate k p becomes

γ= × =k k b 272 , (16)p b

leading to the maximum steady-state protein number as

γ = .k / 272 (17)p

Search for parameter sets with wild type and homogeneous phenotypes. In searching for suita-
ble parameters, we determined a set of parameter values and systematically scanned through all the combina-
tions. In the scanning, we test for UNC-5, LIN-29 and BLMP-1 expression that can mimic the wild type and 
UNC-5 expression in various mutant phenotypes. In this stage, we propagated the expression dynamics without 
any noise. All regulatory interactions such as activation and inhibitions in gene expression are described with Hill 
functions. Since we kept the maximum steady-state value for all genes, kp was derived once the degradation rates 
(γ’s) are known. We systematically scanned the degradation rates and activation/repression threshold values over 
a range of parameters. For threshold (K) values, 6 different values were roughly equally spaced between the lower 
and upper values in Table 2, which were chosen to be similar or lower than the maximum protein level (272 copies 
per cell). The first-order degradation rates of DAF-12, LIN-42, LIN-29, DRE-1, UNC-5 are assumed to be the 
same, but separate from that of BLMP-1. BLMP-1 has a post-translational regulation by DRE-142. Therefore, two 
degradation rates for BLMP-1, a basal rate and an additional rate from DRE-1 were separately chosen. As listed in 
Table 2, values of degradation rates were equally spaced by a factor of 103 . I.e. there are three scanned values in 
every order of magnitude scanned. For genes other than blmp-1, one of the five values listed in Table 2 was chosen 
first such that the time it takes to change from steady-state to another, when the upstream regulation is varied, is 
similar to or faster than 1 hour, as they have to be shorter than developmental time scales, with each larva stage 
being 8 hours. The maintenance of BLMP-1 activity even in late L2 stage, when its activator lin-42 is low, implies 
that the degradation of BLMP-1 may be slow. Therefore, we scanned γBLMP−1 relative to γc with a factor that is 
smaller or equal to 1, i.e.,

γ
γ γ≤ ≤‐100

, (18)
c

cBLMP 1

with the factors relative to γc scanned (as listed in Table 2). For BLMP-1 degradation due to DRE-1, we assume 
that it is similar to γc in their orders of magnitude. Thus we set


γ

γ γ≤ ≤‐ ‐10
10 , (19)

c
cDRE 1 BLMP 1

with the factors relative to γc scanned (as listed in Table 2). Using a deterministic approach, we scanned approx-
imately 1.48 ×  1010 parameters to check whether they can reproduce the wild type and six homogeneous mutant 
phenotypes (i.e. wild type or precocious or retarded). During parameter selection, in the wild-type setting, we first 
require that UNC-5, LIN-29 should be turned ON, and BLMP-1 should be turned OFF in late L3 (t =  12 −  14 hr), 
Second, the expression of UNC-5 should be >  66% of the maximum steady-state level. Third, the difference in 
the OFF-state and the ON-state expression of UNC-5, LIN-29 and BLMP-1 should be at least 66% of its ON-state 
steady state. We obtained 3.08 ×  107 parameter sets with this criteria, and 1000 of them were randomly chosen for 
our study on network structure and their noise-filtering properties.

For parameter sets that reproduce six mutant phenotypes (blmp-1, lin-29, daf-12, lin-29;dre-1, lin-29;daf-12, 
dre-1;daf-12), further looked for an early (t <  12 hr), normal, or late (t >  16 hr) switch in UNC-5 expression 

Parameter unit Parameter values

Ka Particle numbers 80 125 170 215 260 300

γc
b hour−1 0.775 1.67 3.6 7.75 16.7

γBLMP-1
c γc

c 0.01 0.04642 0.02154 0.1 0.4642 0.2354 1

γ ‐ ‐DRE 1 BLMP 1
d γc

d 0.1 0.4642 0.2354 1 4.642 2.354 10

Table 2.  Range of parameters scanned. aFor all threshold values, including KDAF-12→UNC-5, ‐ ‐KDAF 12 BLMP 1 , 
‐ ‐KLIN 42 LIN 29 , KLIN-42→BLMP-1, ‐ ‐KDRE 1 BLMP 1 , ‐ ‐KLIN 29 BLMP 1, KLIN-29→UNC-5, KBLMP-1→BLMP-1, ‐ ‐KBLMP 1 LIN 29 , and 

‐ ‐KBLMP 1 UNC 5 . bDegradation rate for all proteins except BLMP-1. cBasal degradation rate of BLMP-1, scanned 
relative to the γc value chosen. dDegradation rate of BLMP-1 by DRE-1, scanned relative to the γc value chosen.
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according to the mutant phenotypes. In simulating mutants, the gene that is loss-of-function is simply set to zero 
in the mathematical model, and the propagation of dynamics proceeds without any other change in the model 
setting. We have obtained 5.35 ×  106 parameter sets at this stage, and 1000 of these were used in the study of 
homogeneous mutants lin-29 and daf-12.

To support the generality related to noise-filtering properties of the system, we have also performed an alter-
nate parameter selection strategy using random search (Monte Carlo simulation). Here we set independent pro-
duction and degradation rates for each gene within a parameter range as shown in supplementary Table S2, that 
include the parameters used in systematic scan mentioned above. Again we screen for parameter sets that can 
reproduce the wild type using deterministic ODE as in systematic parameter scanning. We confirm that the 
noise filtering capacity of subnetworks through IFFL and PFLs, built from this more general random sampling 
of parameters (Supplementary Fig. S6–8) is similar to the results derived from the complete systematic scan-
ning. Detailed discussion on justifying the model setting used in the present work, is included in the supporting 
information.

Simulation for heterogeneous phenotypes. After obtaining parameter sets that can reproduce the wild 
type and six homogeneous mutant phenotypes in the deterministic simulation, stochastic simulation were used to 
further narrow down the parameters that can reproduce the wild type, six homogeneous and one heterogeneous 
mutant phenotypes (blmp-1;daf-12) observed in experiments. Since now the UNC-5 expression is stochastically 
fluctuating, one cannot directly set a threshold for UNC-5 for DTC turning. Instead we assume that the DTC 
turning requires downstream effects that may be propagated or accumulated in a slow time scale, and we inte-
grated UNC-5 level for 3.5 hr and obtained the cumulative UNC-5 signals. The threshold value for the cumulative 
signals was determined as the integrated value of the wild-type model in the deterministic condition, the “stand-
ard” condition, at the desirable DTC turning time (14 hour). The time when the integrated value from stochastic 
simulation passing this threshold is modelled as the DTC turning time.
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