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Turn-on Luminescent Probe for 
Hydrogen Peroxide Sensing and 
Imaging in Living Cells based on 
an Iridium(III) Complex–Silver 
Nanoparticle Platform
Jinshui Liu  1,2, Zhen-Zhen Dong2, Chao Yang3, Guodong Li3, Chun Wu2, Fu-Wa Lee4, Chung-
Hang Leung  3 & Dik-Lung Ma2

A sensitive turn-on luminescent sensor for H2O2 based on the silver nanoparticle (AgNP)-mediated 
quenching of an luminescent Ir(III) complex (Ir-1) has been designed. In the absence of H2O2, the 
luminescence intensity of Ir-1 can be quenched by AgNPs via non-radiative energy transfer. However, 
H2O2 can oxidize AgNPs to soluble Ag+ cations, which restores the luminescence of Ir-1. The sensing 
platform displayed a sensitive response to H2O2 in the range of 0−17 μM, with a detection limit of 
0.3 μM. Importantly, the probe was successfully applied to monitor intracellular H2O2 in living cells, and 
it also showed high selectivity for H2O2 over other interfering substances.

H2O2 is widely used in industry and households for rinsing, bleaching and disinfection. For example, in the food 
industry, H2O2 is used to replace chlorine-containing bleaching and sterilizing agents1. It also plays an important 
role in many biological processes and enzymatic reactions, particularly those related to intracellular oxidative 
stress2. In fact, escalated levels of H2O2 can cause irreversible cellular damage through the oxidation of biomole-
cules, leading to cell death3. Moreover, oxidative damage to cellular proteins, nucleic acids, and lipid molecules are 
associated with aging and age-related disorder ranging from neurodegeneration to diabetes3, 4. Therefore, a rapid 
and reliable detection of H2O2 is important in pharmaceutical, clinical, and food industries.

Multiple methods such as spectrophotometry5, 6, chemiluminescence7 and electrocatalysis8 have been devel-
oped for the detection of H2O2. Specifically, biosensors have been developed on the basis of electrocatalysis of 
immobilized enzymes arising from H2O2 reduction9. However, the enzyme-based biosensors are limited by sen-
sitivity to environmental conditions, high cost, short shelf-life and complicated immobilization procedures10–12. 
Meanwhile, fluorescent strategies have lots of advantages, particularly rapid response, high sensitivity, and simple 
manipulation13, 14. Various fluorescence probes such as organic molecules15, carbon dots16, 17, metal nanoclusters18, 
and nanoparticles19–21, have good performance on the determination of H2O2. However, there are still some draw-
backs for these reported probes, including poor sensitivity and selectivity, low stability in biological environment, 
or complicated operation17, 18, 22. Fluorescence turn-on sensors are generally more desirable than fluorescence 
quenching sensors as the former is less susceptible to false positive signals23, 24.

Luminescent Ir(III) complexes have been employed to detect a variety of analytes25–27. Compared with organic 
molecules, Ir(III) complexes generally exhibit large Stokes shifts, ease in synthesis and long-lived luminescence 
which could be distinguished from fluorescence noise in biological matrices26, 27. Meanwhile, silver nanopar-
ticles (AgNPs) form a promising nanomaterial that has been developed in many applications because of their 
remarkable properties, such as high extinction coefficient and surface plasmon resonance absorption28–30. It has 
been reported that AgNPs can be oxidized by traces of H2O2, to form Ag+31

. In addition, AgNPs can function as 
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excellent quenchers for fluorescent materials, such as organic dyes and quantum dots (QDs)32–35. However, as far 
as we know, the application of the Ir(III) complexes combined with AgNPs has not yet been reported in the litera-
ture for H2O2 sensing. Consequently, taking advantages of the Ir(III) complex (Ir-1, [Ir(tfppy)2(pyphen)]+, where 
tfppy = 2-[4-(trifluoromethyl)phenyl]pyridine, pyphen = pyrazino[2,3-f][1,10]phenanthroline) and AgNPs, we 
designed a novel turn-on luminescent probe for rapid and sensitive detection of intracellular H2O2.

The sensing mechanism of the Ir-1–AgNP probe for H2O2 is illustrated in Fig. 1. In the initial system, the 
luminescence of Ir-1 was significantly quenched by AgNPs. However, this AgNPs-induced quenching effect can 
be reversed by H2O2 due to oxidation of AgNPs to Ag+. To our knowledge, the Ir-1–AgNP is the first application 
of the combination of Ir(III) complexes and AgNPs for H2O2 sensing in both aqueous solutions and living cells.

Results and Discussion
Sensing Mechanism. Ir-1, carrying tfppy as its C^N ligand and pyphen as its N^N ligand (Fig. 2a), was 
characterized by1H-NMR,13C-NMR and HRMS (Figs S1–S3 and Table S1). Ir-1 emits strong luminescence 
at 545 nm under the excitation of 295 nm in aqueous buffer solution. As expected, the luminescence of Ir-1 
decreased gradually with increasing amounts of AgNPs in solution (Fig. 2b). This is because the positively charged 
Ir-1 could be adsorbed on the surface of the citrate-stabilized AgNPs through electrostatic interactions, which 
efficiently quenched the luminescence of Ir-1. However, the luminescence could be recovered in the presence of 
H2O2 attributed to oxidation of AgNPs into soluble Ag+ by H2O2. In order to study the kinetic behavior between 
the Ir-1–AgNP system and H2O2, the luminescence change was monitored as a function of time. As shown in 

Figure 1. Illustration of the design rationale for the detection of H2O2 using a luminescence sensor based on 
Ir-1–AgNPs system.

Figure 2. (a) Chemical structure of Ir-1. (b) Luminescence emission spectra 0.3 μM Ir-1 in Tris-HNO3 buffer 
solution (pH 7.0) containing different concentrations of AgNPs. The inset is the luminescence intensity at 
545 nm plotted against the AgNPs concentration.

http://S1
http://S3
http://S1
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Fig. S4, the luminescence intensity of the Ir-1–AgNP system increased with time and reached the plateau after 
10 min, indicating that the reaction between AgNPs and H2O2 at ambient temperature is rapid. In the absence 
of AgNPs, H2O2 showed no apparent effect on the luminescence of Ir-1 (Fig. S5). Therefore, the increase in the 
luminescence of the system should arise primarily from the decomposition of AgNPs by H2O2, which restores 
the emission of Ir-1.

The mechanism involved in the luminescence quenching and recovery process was also demonstrated by 
transmission electron microscopy (TEM) imaging. In the absence of the Ir-1, the AgNPs were well-dispersed 
(Fig. 3a). However, after the addition of Ir-1, slight aggregation of AgNPs was observed, suggesting that Ir-1 and 
AgNPs interacted on the surface of AgNPs (Fig. S6b). The identity of the Ir-1–AgNP complex was further con-
firmed by energy dispersive X-ray spectroscopy (EDX), which showed strong elemental signals for both Ir and 
Ag (Fig. S6c). Strikingly, after treatment of AgNPs with H2O2, no AgNPs could be observed in the TEM images 
(Fig. 3b). This suggests that the AgNPs were decomposed and transformed to Ag+, which is consistent with pre-
viously reported36–38. The UV–vis absorbance spectra of AgNPs in the absence and presence of H2O2 are shown 
in Fig. S7. AgNPs alone showed a strong characteristic surface plasmon resonance peak at around 390 nm39. 
However, the absorption band of AgNPs gradually decreased upon increasing concentration of H2O2. These phe-
nomena were ascribed to the oxidation of AgNPs to Ag+ by H2O2, leading the decomposition of the AgNPs.

Sensitivity. To explore the applicability of the proposed luminescence sensor for H2O2 detection, we studied 
the luminescence response of the Ir-1–AgNP system toward varying concentrations of H2O2. The luminescence 
intensity of the system was gradually restored with increasing concentration of H2O2 (Fig. 4a). Meanwhile, a 
good linear relationship over the range from 0 to 17 μmol L−1 with a correlation coefficient of 0.998 was obtained 
(Fig. S8). The limit of detection (LOD) was calculated to 0.3 μM according to the signal-to-noise method 

Figure 3. Transmission electron microscopy images of (a) AgNPs and (b) AgNPs in the presence of H2O2.

Figure 4. (a) Luminescence emission spectra of 1 μM Ir-1 in Tris-HNO3 buffer solution (pH 7.0) containing 
2.8 μM AgNPs and different concentrations of H2O2 (0 μM to 35 μM). The inset is the luminescence intensity 
plotted against the H2O2 concentration. (b) Luminescence intensity of the Ir-1-AgNP system (0.3 μM Ir-1 and 
2.8 μM AgNPs in Tris-HNO3 at pH 7.0) in the presence of interfering species (HSA and BSA 50 μg/L, other 
interfering species 50 μM) or H2O2 (9 μM) (from 1 to 17: blank, threonine, serine, glycine, ascorbic acid, HSA, 
BSA, Zn2+, Co2+, Ni2+, Cd2+, Fe3+, Mg2+, Cu2+, K+, Na+, and H2O2).
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(S/N = 3). The sensitivity of this method is comparable to other reported methods for H2O2 detection as summa-
rized in Table S24, 10–16, 20, 36, 40–44.

Selectivity. To assess the selectivity of Ir-1–AgNPs system for H2O2, the influences of metal ions and amino 
acids were studied. As shown in Fig. 4b, nearly no luminescence changes could be observed with the other 
substances (Fig. 4b), which demonstrates that the Ir-1–AgNP system is highly selective for H2O2 over other 
non-target substances.

Cell imaging. Given the promising capability of Ir-1 for sensing H2O2 in aqueous solution, we then investi-
gated the ability of Ir-1 for monitoring H2O2 in living human cells. Ir-1 showed cytotoxicity against HeLa (human 
cervical cancer) cells with an IC50 value of 5.12 μM (Fig. S9).

In the cell imaging study, the luminescence intensity of HeLa cells was enhanced with increasing concentra-
tion of Ir-1 (Fig. 5a), showing that Ir-1 could effectively penetrate into cells. A concentration of 0.3 μM of Ir-1 
was chosen for subsequent cell experiments as this concentration was over 10-fold lower than the IC50 value for 
cytotoxicity, while it still gave a good luminescence signal.

Next, HeLa cells were pretreated with Ir-1 (0.3 μM) for 1 h before incubation with different concentration 
of AgNPs. The luminescence intensity of HeLa cells was remarkably reduced with increasing concentration of 
AgNPs (Fig. S10), which was attributed to AgNPs-mediated quenching of an luminescent Ir-1 as described pre-
viously. However, when H2O2 was added into the growth medium for another 1 h, the luminescence of HeLa cells 
was recovered in a dose-dependent manner (Fig. 5b). Collectively, these results suggest that Ir-1–AgNP can be 
developed for the monitoring of H2O2 levels in living cells.

Figure 5. Confocal luminescence microscopy imaging of HeLa cells. (a) HeLa cells were incubated with the 
indicated concentration of Ir-1 for 1 h. (b) HeLa cells were pretreated with Ir-1 (0.3 μM) and AgNPs (2.8 μM) 
for 1 h before incubation with different concentration of H2O2. The upper row is luminescence imaging, and the 
lower row is bright field imaging. Excitation wavelength = 405 nm.
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Conclusion
Consequently, we have proposed a turn-on luminescence assay for H2O2 detection employing the Ir-1–AgNP 
system. In this nano-composite system, Ir-1 functioned as a luminescence reporter, while AgNPs were employed 
both as a luminescence quencher and as a recognition unit for H2O2. Based on the luminescence recovery of the 
Ir-1–AgNP system triggered by H2O2, this nanoprobe was successfully applied to detect H2O2 at the intracellular 
level in living cells. In addition, the Ir-1–AgNP probe possesses some superior properties, including label-free, 
good sensitivity and selectivity, low cost, easy manipulation, low cytotoxicity, and turn-on luminescent response. 
To our knowledge, the probe is the first combination of Ir(III) and AgNPs applied for the detection of H2O2 in 
living cells reported in the literature.

Materials and Methods
Chemicals and materials. Iridium chloride hydrate (IrCl3·xH2O) was purchased from Precious Metals 
Online (Australia). Other reagents were purchased from Sigma Aldrich (St. Louis, MO) and used as received. All 
of the reagents were of analytical grade and were used as received without further purification. All solutions were 
prepared in Milli-Q water under ambient conditions. HeLa cell lines were obtained from ATCC (Manassas, VA, 
USA). Dulbecco’s Modified Eagle’s medium, fetal bovine serum, penicillin and streptomycin were obtained from 
Sigma-Aldrich Co. LLC (St. Louis, MO, USA).

Synthesis of AgNPs. AgNPs were fabricated according to reported methods with slight modifications28, 45.  
In a typical procedure, 0.08 mL AgNO3 (0.1 M) and 0.1 mL trisodium citrate (0.1 M) were mixed into 100 mL 
pure water and stirred under the condition of ice bath. Then, freshly prepared NaBH4 solution was added drop-
wise into the mixture until it turned yellow. The resulting yellow solution was stirred for another 30 min to form 
AgNPs quantitatively, which was stored at 4 °C for subsequent use. The diameter of AgNPs prepared was meas-
ured to be 8–9 nm by transmission electron microscopy (TEM).

Synthesis of Ir-1. Ir-1 was synthesized based on a reported literature method46–49. [Ir2(tfppy)4Cl2] (0.2 mmol) 
and pyppy (0.42 mmol) in a mixed solvent of DCM:methanol (1:1.2 (v/v), 36 mL) was refluxed overnight. The 
reaction mixture was allowed to cool to ambient temperature, and unreacted cyclometallated dimer was removed 
by filtration. Excess ammonium hexafluorophosphate was then added into the filtrate, and the resulting mixture 
was stirred for another 30 min. Afterwards, the solution was evaporated under reduced pressure until precip-
itation was initiated. The precipitate was filtered, and washed by several portions of water and diethyl ether. 
The crude product was then recrystallized by the acetonitrile/diethyl ether vapor diffusion to obtain the desired 
compound, which was characterized by1H-NMR,13C-NMR, high resolution mass spectrometry (HRMS) and 
elemental analysis.

Luminescence response of Ir-1 towards AgNPs. Ir-1 (0.3 μM) was added to varying concentrations of 
AgNPs in Tris-HNO3 buffer (5 mM Tris-HNO3, pH 7.0), then their emission intensity were measured.

Detection of H2O2. A series of sample solutions of same composition was prepared by mixing Ir-1 (0.3 μM) 
with AgNPs (2.8 μM) in Tris-HNO3 buffer (5 mM Tris-HNO3, pH 7.0). Upon individual addition of varying 
concentrations of stock H2O2 solution, the sample solutions were incubated for 10 min at room temperature. 
Emission spectra were collected in the range of 450–700 nm at the excitation wavelength of 295 nm.

Cell imaging. HeLa cells were pretreated with Ir-1 (0.3 μM) for 1 h at 37 °C, then AgNPs of different concen-
trations (0 μM, 0.1 μM, 0.3 μM, 1 μM, 3 μM and 5 μM) was added before further incubation for 1 h. After washing 
with PBS three times, the luminescence intensity of HeLa cells was imaged by a Leica SP8 laser scanning confocal 
microscope upon excitation at 405 nm.

For H2O2 detection, the experiment was performed as above except that after incubation in the presence of 
AgNPs (2.8 μM), cells were further treated with H2O2 ranging from 0 to 20 μM for 1 h. After washing with PBS 
three times, the luminescence intensity of HeLa cells was then imaged as above.

Statistics analysis. One-way analysis of variance (ANOVA) followed by the Dunnett’s method for multiple 
comparisons by using GraphPad Prism 6.0 was used to analyse the data.
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