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Abstract: Introduction: Dementia is a group of disorders that causes dysfunctions in human cognitive
and operating functions. Currently, it is not possible to conduct a fast, low-invasive dementia
diagnostic process with the use of peripheral blood biomarkers, however, there is a great deal of
research in progress covering this subject. Research on dementia biomarkers in serum validates
anticipated health and economic benefits from early screening tests. Biomarkers are also essential for
improving the process of developing new drugs. Methods: The result analysis, of current studies
on selected biomarker concentrations (Aβ40, Aβ42, t-tau, and YKL-40) and their combination in
the serum of patients with dementia and mild cognitive disorders, involved a search for papers
available in Medline, PubMed, and Web of Science databases published from 2000 to 2020. Results:
The results of conducted cross-sectional studies comparing Aβ40, Aβ42, and Aβ42/Aβ40 among
people with cognitive disorders and a control group are incoherent. Most of the analyzed papers
showed an increase in t-tau concentration in diagnosed Alzheimer’s disease (AD) patients’ serum,
whereas results of mild cognitive impairment (MCI) groups did not differ from the control groups.
In several papers on the concentration of YKL-40 and t-tau/Aβ42 ratio, the results were promising.
To date, several studies have only covered the field of biomarker concentrations in dementia disorders
other than AD. Conclusions: Insufficient amyloid marker test repeatability may result either from
imperfection of the used laboratorial techniques or inadequate selection of control groups with
their comorbidities. On the basis of current knowledge, t-tau, t-tau/Aβ42, and YKL-40 seem to be
promising candidates as biomarkers of cognitive disorders in serum. YKL-40 seems to be a more
useful biomarker in early MCI diagnostics, whereas t-tau can be used as a marker of progress of
prodromal states in mild AD. Due to the insignificant number of studies conducted to date among
patients with dementia disorders other than AD, it is not possible to make a sound assessment of
their usefulness in dementia differential diagnostics.

Keywords: Alzheimer’s disease; vascular dementia; mixed dementia; serum; biomarkers; amyloid
beta; tau protein; YKL-40

1. Introduction

1.1. Dementia

Dementia is a group of multiple etiology cognitive disorders that result in daily life impediments.
The most common cause of dementia is Alzheimer’s disease (AD) which is chronic, progressive,
and leads to death of the neurodegenerative process [1].

There are two main groups of pathologies that cause dementia, i.e., neurodegenerative diseases and
secondary dementias [1]. The cause of neurodegenerative diseases (proteinopathies) is accumulation
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and aggregation of proteins with abnormal conformation [2], which results in death of neurons and
supporting cells, leading to cognitive and motor dysfunctions [3]. Death of cells results in activation of
glial cells and secretion of cytokine and chemokine by them, which leads to the chronic inflammatory
process interfering with brain tissue homeostasis. Moreover, neurotoxicity of some inflammatory
response products intensifies the neurodegenerative process [4]. Neurodegenerative dementia includes
the following: dementia in Alzheimer’s disease, dementia with Lewy bodies (DLB), frontotemporal
dementia (FTD), dementia in Parkinson’s disease (PDD), Huntington’s disease (HD), and dementia in
prion diseases.

The most common secondary dementia is vascular dementia. Approximately 10–15% of patients
are only diagnosed with vascular-only dementia (VD). VD consists of subtypes of different etiology
and clinical features, such as multi-infarct dementia, small vessel disease, strategic infarct dementia,
hypoperfusion dementia, haemorrhagic dementia, hereditary cerebral autosomal dominant arteriopathy
with subcortical infarction, and leukoencephalopathy (CADASIL) [1,5].

The observed symptoms of dementia such as depression, delirium, thyroid hormone abnormalities,
vitamin deficiencies, or normotensive hydrocephalus are in potentially reversible states [1]. Chronic
alcohol use is also a very common cause of dementia. In contrast to Wernicke–Korsakoff syndrome
associated primarily with memory impairment, in alcoholic dementia, there are disorders in many
other cognitive functions. Alcoholic dementia constitutes approximately 10% of early-onset cases and
slightly more than 1% of late-onset dementia cases [6].

Dementia can be of mixed etiology, in up to half of patients, especially in senior age groups [1].
Vascular lesions occur in 40% of demented patients and usually coexist with other dementia causes.
Changes caused by microinfarcts were found in around half of the patients with AD [7]. Contrary to
previous diagnostic recommendations considering cerebral vascular lesions as an exclusion criterion
of AD, the American Alzheimer’s Association currently takes the view that dementia often results
from both neurodegenerative and vascular pathologies and suggests classifying such conditions as
mixed dementias [1]. An autopsy study by Schneider et al. revealed that subjects with multifactorial
etiology of dementia found in the autopsy were more frequently diagnosed with dementia during
life as compared to those with only one type of neuropathological change [8]. It suggests that mixed
dementia (despite its heterogeneous etiology) may be a category for underdiagnosed cases, and it also
has an important clinical and prognostic value. Other relatively common forms of mixed dementia
include the coexistence of AD and DLB or PDD [8].

1.2. Amyloid Beta and Its Role in Dementia Process

Amyloid is a group of insoluble beta-sheet proteins that form filamentous structures. They may
play a role in the pathogenesis of various diseases when accumulating as deposits in the extracellular
space. Each amyloid type is formed from its specific precursor protein-like amylin, derived from
the precursor islet amyloid polypeptide (IAPP), involved in the pathogenesis of insulin-dependent
diabetes, or AL and AH proteins composed of light and heavy chains of immunoglobulin, resulting in
primary systemic amyloidosis [9]. Except for brain tissue, the amyloid precursor protein (APP) has
been identified in the thymus, heart, lungs, kidneys, muscles, adipose tissue, liver, spleen, skin, and the
intestine [10].

Amyloid beta (Aβ) refers to oligopeptides composed of 40–42 amino acid residues, originating
from the amyloid precursor protein (APP). The APP protein family includes two similar peptides,
i.e., amyloid precursor-like proteins 1 and 2 (APLP1 and APLP2) [11]. The APP protein encoding gene
is located on chromosome 21q21. Most of the many APP mutations exist around sequences encoding
secretase splitting sites and they are responsible for early-onset, familial forms of the disease [12].
The amyloid precursor protein is transformed to oligopeptides by three enzymes, i.e., α-, β- and
γ-secretase. The C-terminal fragment of APP is always cut off by γ-secretase, but the forming of Aβ
is determined by enzyme activity cutting off the N-terminus of either α- or β-secretase precursor
peptides. Formation of Aβ happens when an N-terminus fragment is cleaved by β-secretase, while the
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activity of secretase α results in making a so-called secreted form of APP (s-AAPα) [13], a signal protein
which is a neuron growth factor that promotes synaptogenesis and has a positive role in memory and
learning processes [10]. Another factor contributing to Aβ formation are mutations of the γ-secretase
subunits, i.e., presenilins. On the one hand, presenilins of correct structure regulate intracellular
calcium balance, lysosome, and proteasome activity and counteract the effects of oxidative stress.
On the other hand, presenilin mutations contribute to the formation of longer Aβ chains, which are
more prone to aggregate into insoluble Aβ forms [14].

Aβ oligopeptides vary in the number of amino acids in the molecule. Most scientific research has
focused on the fragment with 42 amino acid residues, i.e., Aβ42. It is the main component of amyloid
plaques found in the brain of patients with AD. A second dominant isoform of Aβ is peptide with a
length of 40 amino acid residues. Aβ40 is a less amyloidogenic form. Researchers have also suggested
their role in preventing formation of Aβ deposits. Calculation of the Aβ42/Aβ40 ratio can be found in
many scientific papers. A high value of this ratio is used as a predictor of cerebral amyloidopathy.
Other forms of Aβwere also considered to be potential biomarkers, mainly Aβ38 [15].

In addition to previously described overproduction, accumulation, and aggregation of Aβ in the
brain tissue, the impaired pathological protein degradation also contributes to dementia pathogenesis.
Peroxidation of the cell membrane lipids under oxidative stress results in 4-hydroxynonenal (HNE)
secretion, which has an ability to modify protein structure and function. HNE lowers the catalytic
activity of neprilysin, a metallopeptidase preventing the deposition of Aβ through degradation of
mono- and oligomeric Aβ forms [16]. Apolipoproteins E2 and E3 (but not E4 which is one of the main
AD risk factors) are capable of binding HNE through cysteine, lysine, and histidine residue, preventing
the damage of other proteins [17]. HNE also increases the synthesis of Aβ by its binding with nicastrin,
part of the gamma-secretase complex, increasing activity of this enzyme [18].

The role of Aβ in AD pathogenesis is described in the so-called amyloid cascade hypothesis.
This theory suggests that the disease process begins with overproduction and accumulation of Aβ
as amyloid plaques. Their presence leads to mitochondrial and synaptic damage, disrupting the
homeostasis of brain tissue. This process is accompanied by microglia and astrocytes activation,
which results in inflammation and oxidative stress, eventually causing the death of neurons.
Furthermore, Aβ is considered to be a factor that activates hyperphosphorylation of tau proteins.
In addition to the amyloid cascade hypothesis, there are other possible explanations of the AD
pathogenesis, such as the “prion-like” action of the Aβ hypothesis [19]. More and more reports have
shown that the amyloid cascade hypothesis has not fully explained the pathogenesis of AD. It has
recently been demonstrated that amyloid-dependent memory and synaptic plasticity impairments
could occur without tau [20].

On the basis of current knowledge, pathologies tied with Aβ are not specific for AD dementia.
The existence of amyloid deposits have also been identified by PET scan in dementias other than AD,
especially among seniors who have been carriers of the APOE4 allele. Ossenkoppele et al. obtained
positive amyloid-PET results in as many as 83% of 80-year-old APOE4 gene carriers with DLB, 43% with
FTD and 64% with VD. Among a younger group of people (around 60 years old), who were not
carriers of APOE4, those percentages were respectively 29%, 5%, and 7% [21]. It is not easy to state
whether those observations might result from incorrectly established clinical diagnosis or rather
amyloid deposition is secondary to neuropathology of other dementia types [22]. Among non-AD
dementias, the clearest relationship occurs between Aβ and VD. It is known that apart from the
predominant atherosclerotic etiology, other angiopathies such as congophilic amyloid angiopathy
(CAA) can initiate the disease process [5]. Contrary to AD, where amyloid deposits locate mainly
(but not exclusively) into intercellular space, in CAA subjects, the lesions are predominately in the
blood vessel walls [3]. It has been proven that the density of congophilic vascular lesions increased with
the severity of cognitive impairment [7]. On the one hand, overproduction or impaired elimination of
Aβ can also occur in other diseases. Increased amyloid peptide concentrations were found in patients
diagnosed with liver tumors [23], kidney [24] and liver [25] failure, Parkinson’s disease [26], obesity
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and insulin resistance [27], or Down Syndrome [28]. On the other hand, a decrease in Aβ42 levels in
the serum has been observed in depression [29]. An increased level of Aβ in many conditions results in
serious limitations of its use as a biomarker, especially in a multimorbid old age group. Meta-analysis
published by Zhang et al. indicated that the lack of proper screening for comorbidities among the
control group resulted in minor differences in the amyloid marker concentrations among groups in
studies [30].

1.3. Tau Protein and Its Role in Dementia

Tau protein is a product of the MAPT gene, located on chromosome 17. It is expressed
predominantly in the central nervous system [31]. This protein is found mainly inside neurons
(especially in microtubule-rich axons), but also, to a lesser extent, in glial cells (astocytes and
oligodendrocytes) [32], as well as in extracellular space [33]. It locates primarily in the cytoskeletal
structures of the cell, but it has also been identified in the nuclei and centrosomes [32]. The MAPT gene
product undergoes alternative splicing into six different, tissue-specific tau proteins. Depending on the
number of 29-amino acid inserts (0, 1 or 2), there are three isoforms, i.e., 0 N, 1 N, and 2 N. Each isoform
contains three or four microglobulin binding domain repeats (3R or 4R) [32,33]. In normal conditions,
the tau protein is soluble and unfolded [33].

The physiological functions of the tau protein include stabilization and polymerization of
microtubules, regulation of axonal transport, neuron polarization, axon growth and elongation,
protection of DNA and RNA integrity, formation of cytoskeleton actin filaments, regulation of synaptic
plasticity (dendritic tau protein), as well as cell cycle regulation via tyrosine kinase, membrane
interactions, synaptic transmission, and regulation of NMDA transmission through interactions
with the Fyn protein [32–34]. The tau protein undergoes post-translational modifications such as
phosphorylation, O-glycosylation, advanced glycation, Maillard reaction, ubiquitination, nitration,
sumoylation, proline isomerization, acetylation, and truncation. The most important one of the above
is the kinase-induced phosphorylation process regulating tau distribution within the cell, the transport
of organelles to the somatodendritic compartment, and enabling interactions with neurotransmitters
and enzymes. Under physiological conditions, tau phosphorylation occurs in response to stressors
such as insulin imbalance, hunger, hypothermia, anesthesia, glucocorticoids, opiates, or alcohol [32].

Phosphorylation also enables the tau protein to aggregate [31]. Excessive aggregation of the
tau protein leads to formation of neurofibrillary tangles and it occurs in medical conditions called
tauopathies and in the physiological aging process [32]. The presence of tau protein inclusions
in neurons or glia causes tauopathies-progressive diseases associated with cognitive, behavioral,
and motor impairment. Hyperphosphorylated tau protein and its isoforms, such as p-tau-217,
measured in the peripheral blood are also promising AD biomarker candidates [35].

The pathological changes caused by the hyperphosphorylated tau protein (p-tau) can be divided
into the following:

1. Resulting from the loss of its physiological properties:

a. Axonal transport disturbance;
b. Actin cytoskeleton abnormalities leading to increased susceptibility of the cell to oxidative stress;
c. Disturbed structure and function of mitochondria, disrupting their metabolism and

increasing susceptibility to oxidative stress, which leads to the death of the cell.

2. Resulting from the toxic effect of the abnormal isoform:

a. Activation of astrocytes and microglia to secrete proinflammatory mediators;
b. Disruption of synaptic transmission through the accumulation of pathological tau in

postsynaptic spines;
c. Disturbances in proteasome degradation and autophagy [30,32].
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Formation of tau protein deposits is the key pathophysiological process in primary tauopathies,
while in secondary tauopathies, its origin is from other pathologies. Primary tauopathies include
the subtypes of frontotemporal dementia, atypical parkinsonian syndromes, argyrophilic grain
disease, and globular glial tauopathy. Considering complex (dependent also from amyloid beta)
aetiopathogenesis, AD is qualified as a secondary tauopathy [36]. Other conditions, secondary to the tau
protein pathology are the aging process (primary tauopathy related to age, astriogliopathy related to age),
Down syndrome, prion diseases, post-traumatic encephalopathy (dementia pugilistica), amyotrophic
lateral sclerosis, parkinsonism-dementia complex, postencephalitic parkinsonism, and some rare
diseases such as progressive subcortical gliosis, diffuse neurofibrillary tangles with calcification,
“tangle-only dementia”, Hallervorden–Spatz disease, Niemann–Pick type C disease, subacute sclerosing
panencephalitis, myotonic dystrophy, non-guanamian motor neuron disease with neurofibrillary
tangles, meningioangiomatosis, and tuberous sclerosis [32]. Neurofibrillary changes have also been
identified post mortem in subjects without any dementia characteristics. There is an assumption that
in such cases the disease was present in an asymptomatic state [7].

It is believed that the concentration of tau protein in CSF relates to the degree of brain cells
damage [37]. Tau protein is secreted from neurons to the cerebrospinal fluid, where it penetrates
through the blood-brain barrier and the arachnoid granules to the bloodstream, which is why it can be
identified in peripheral blood [38]. Results of studies show the correlation between total tau protein
(t-tau) concentration in serum and its brain tissue levels assessed by PET scan [39,40].

1.4. YKL-40: An Inflammatory Marker in Dementia

More and more data show the key role of the inflammatory process (neuroinflammation) in AD
pathogenesis. Most of all, microglia cells and astrocytes are present in the CNS inflammatory response.
These cells are activated by proinflammatory cytokines, as well as Aβ and APP, causing the release of
neurotoxic proinflammatory cytokines and reactive oxygen forms, and resulting in intensification of
the inflammatory process and oxidative stress [41]. This knowledge resulted in taking the interest of
inflammatory mediators as potential AD biomarkers.

Chitinase 3-like protein 1 (CHI3L1), also named YKL-40, human cartilage glycoprotein-39 (hcgp-39),
or breast regression protein (BRP-39), is ranked among the chitinase family (glycosidic hydrolases). It is
an acute-phase protein secreted into extracellular matrix through connective tissue cells (neutrophils,
monocytes, macrophages, coming from monocytes, dendritic cells, osteoclasts, chondrocytes, synovial
cells), vascular smooth muscle cells, glandular epithelium, and also thru other cells within an
inflammatory state in response to inflammatory cytokines such as TNF-alpha, INF-gamma, IL-1beta,
and IL-6 [42,43]. Some cancerous cells also have the ability of YKL-40 secretion [44].

In the inflammatory process, YKL-40 acts as an acute-phase protein that regulate proliferation,
adhesion, migration, and cells differentiation. To date, the known functions of YKL-40 are the following:

• connective tissue repair process, i.e., connective tissue growth stimulation, bonding and
fibrillogenesis of collagen, modulating of inflammatory cytokines impact on fibroblasts;

• stimulation of epithelial cells migration;
• modulation, adhesion, and migration of vascular smooth muscle cells;
• stimulation of alveoli macrophages to metalloproteinases and chemokines secretion;
• increase in auxiliary lymphocytes Th2 response caused by antigens;
• regulation of oxidative stress response;
• regulation of apoptosis process (i.e., prevention of epithelial cells apoptosis);
• stimulation of M2 macrophages differentiation;
• suppression of mammary gland epithelial cells differentiation [42,43,45].

Studies have described the relationship between YKL-40 and AD (occurrence of increased YKL-40
expression areas, concentrating mainly on astrocytes surface, around amyloid plaques and blood
vessels, with amyloid angiopathy in patients with AD brain [46]), and the relationship between APOE4
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genotype and YKL-40 concentration in cerebrospinal fluid (CSF) [47]. This was also supported by an
experiment conducted by Choi et al., who found, in mice disease model, decreased APP expression
and an improvement of rodents’ cognitive functions after administration of substance suppressing
CHI3L1 activity [48]. The relationship between neuroinflammation and described biomarkers in AD
are shown on Figure 1.J. Clin. Med. 2020, 9, x FOR PEER REVIEW 6 of 27 
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Figure 1. The role of neuroinflammation and neurodegeneration processes in the formation of dementia
protein biomarkers, i.e., amyloid, tau, and YKL-40. IL-1b, interleukin 1 beta; IL-6, interleukin 6; TNF-a,
tumor necrosis factor alpha.

YKL-40 diagnostic utility is limited by its non-specificity. An increased concentration of this
protein was found in various types of cancer, inflammatory and autoimmune diseases [43], bacterial,
viral, and parasitic infections [44]. An increase in serum YKL-40 concentration was also documented
in VD and mixed dementia with vascular risk factors, such as metabolic syndrome [49], coronary
heart disease [50], atrial fibrillation [51], and obstructive sleep apnea [52]. Xu et al. concluded, in a
group of patients with prehypertensive state, that the disease could be preceded by an increase in
YKL-40 concentration [53]. In the first days after an ischaemic stroke, an increase in this marker was
proportional to the volume of the stroke site and the severity of symptoms [54].

An increase in YKL-40 expression was observed in tissues and bodily fluids other than
serum, for example, in motor cortex and spinal cord of patients with atrophic lateral sclerosis [55],
in hippocampus of schizophrenia patients [56], or in CSF of elderly woman with suicidal thoughts [57].
On the one hand, increased YKL-40 immunoreactivity in brain, correlating with tau protein,
was observed in tauopathies other than AD [58]. On the other hand, studies conducted by Isgren et al.
have shown that decreased concentration of YKL-40 in CSF of patients with bipolar disorders was
preceded by episodes of mania or hypomania [59].



J. Clin. Med. 2020, 9, 3452 7 of 26

1.5. Practical Aspects of Using Dementia Biomarkers

Many studies conducted, to date, have proven that brain lesions precede the occurrence of clinical
symptoms of disease even by 20 years [1], which gives hope to use these observations for development
of early detection and prevention methods. Efforts that have been undertaken to use proteins involved
in disease pathogenesis as biomarkers have proven that they can inform about disease existence even
in the asymptomatic stage and they also correlate with disease intensification when neuropathological
changes buildup [60].

Considering potential application, the following can be singled out:

• predictive biomarkers for estimating disease in the preclinical stage, and for estimating
clinical prognosis;

• diagnostic biomarkers in precise differential diagnosis;
• biomarkers for healing response and assessing the effectiveness of therapy;
• surrogate markers for estimating the influence of therapeutic intervention on selected

pathophysiological processes;
• trait markers, strictly tied to disease characteristics (e.g., mutations);
• condition markers (e.g., enzymes) for monitoring progression of disease [22].

Diagnosis and monitoring of dementia are carried out mainly by clinical assessment and
neuropsychological tests. It is only possible to diagnose the disease in the symptomatic stage,
and the given diagnosis is considered to be probable [22]. Regular neuropsychological assessment,
which is recommended as an early dementia diagnosis tool, is not fulfilling its role. The main
causes of this situation are (among others) the long waiting time for an appointment and very short
duration of visits. In standard healthcare, a common problem is also inaccurate screening performance
and interpretation of cognitive functioning of patients. This results from insufficient training and
experience of primary care staff. The key step is the referral of a patient to a specialist by a general
medical practitioner. Adequate biochemical markers could be an inestimable tool in the hands of
family physicians, facilitating selection of patients in need of specialist treatment [61]. Regardless of
health benefits, early AD diagnosis could significantly reduce treatment and care costs generated by
patients [1].

Usage of biomarkers in dementia diagnostics could aid early diagnosis, monitoring of disease
severity, and recovery prognosis. It could also help in the development of more personalized
pharmacotherapy by adequate recruiting and grouping of subjects, as well as assessment, in clinical
trials, of test drug effectiveness and dosage [15]. The role of biomarkers in the development process of
new drugs is crucial because of verification of patients included in clinical trials, for example, the PET
amyloid test showed that many of the patients were falsely classified as AD patients [62]. In the future,
proper selection and use of biomarkers may enable the development of personalized therapy for every
individual patient, such as in modern oncological treatment standards [15,61]. However, the current
goal, in studies on AD biomarkers, is to achieve a cost-efficient screening test with high negative
(not necessarily high positive) predictive value, which should have the ability to identify AD cases on
a large scale [61].

An ideal diagnostic marker should be characterized by at least moderate sensitivity and high
specificity (>85% [22]), ease of obtaining research material, easy determination method, repeatability,
and low cost [60]. It should also have the ability to identify disease in the early stage and differentiate
it from other dementias, reflecting the neuropathology of the examined disease. Another important
characteristic of a valuable biomarker is the absence of concentration changes due to the influence of the
used symptomatic treatment [22]. Currently, on the one hand, biomarker identification in cerebrospinal
fluid (Aβ42, t-tau, p-tau) requires qualified personnel that can use a more invasive, expensive, and often
non-refundable procedure for material extraction [60,63]. Use of the CSF extraction procedure is
limited to a wide-range population and its repeatability, which calls in to question its usability in
standard healthcare or in clinical trials [15]. Survival assessment of the occurrence of Aβ deposits
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with the PET method is very costly and often non-refundable, moreover it is associated with exposure
to a radioactive substance [63]. On the other hand, collecting a blood sample and its analysis is a
routine procedure that does not require additional personnel training and it is repeatable and possible
to perform in various conditions [61].

Imprecise measurement of the concentration of marker in peripheral blood due to its low
blood-brain barrier (BBB) permeability [60], possible proteolysis of tested protein in peripheral blood,
and its fast elimination by liver or kidneys are the main elements that limit the capability of using
biomarkers from peripheral blood. Moreover, blood is a fluid with a high concentration of various
proteins, posing a risk of obtaining false-positive results with insufficient specificity of applied
tests [61,64]. Therefore, imperfections of available markers may be minimalized by application of
several different test panels [60].

The aim of this review is to gather and summarize studies conducted to date, on using selected
proteins that can act as dementia biomarkers in blood material, for example, Aβ40 and Aβ42 amyloids,
tau protein, as well as its phosphorylation products (p-tau) and YKL-40 protein.

2. Experimental Section

For the analysis of acquired studies and their results on concentrations of selected biomarkers
in the blood of dementia patients, the search for works about human research published in English
scientific journals in Medline, Pubmed, and Web of Science databases was conducted with the use
of keywords such as “amyloid beta”, ”tau protein”, ”YKL-40 OR CHI3L1” AND ”dementia OR
alzheimer*” AND ”plasma OR serum or blood”. Considering the possibility of outdated laboratory
techniques influencing results, the search was limited only to studies from 2000 to 2020. Among
the acquired search results, only cross-sectional studies with a control group and a test group with
dementia and mild cognitive impairments (MCI) were qualified for comparison. Review articles and
prospective studies were excluded. Studies on biomarkers in other than plasma or serum biological
material, as well as studies on specific isoforms of the markers, were excluded. We also did not
qualify research made on specific groups, i.e., corpses, children, patients with concomitant diseases
(e.g., Down syndrome), or patients with undefined dementia etiology. Some groups of patients were
investigated in more than one article, in such cases, only one methodologically best study was taken
into account. Papers with no significance level “p” value for comparison among groups and in which
test or control groups consisted of less than 10 people were also excluded. The results obtained in
groups other than dementia and MCI were not included in the tables. The number of search results in
each database is listed in the Table 1.

Table 1. Search results in each database.

Biomarker Database Found Qualified Qualified Total

Amyloid beta

Medline 1698 41

50PubMed 1709 40

Web of Science 7133 48

T-tau

Medline 405 15

20PubMed 397 16

Web of Science 1547 14

YKL-40

Medline 14 4

5PubMed 11 3

Web of Science 38 5

Amyloid beta and
t-tau combination

Medline 281 5

4PubMed 255 5

Web of Science 960 5
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3. Results

3.1. Amyloid Markers Aβ40, Aβ42, and Aβ40/42 Ratio

According to the adopted criteria, 50 studies comparing concentrations of Aβ40, Aβ42, and their
ratio were selected from the search results. A total number of 7303 patients with dementia or MCI
and people from control groups without any cognitive disorders were examined in these studies.
In 31 studies, the ELISA method was used for identification; in eight studies, the immunomagnetic
reduction method (IMR) was used; in six studies, the fluorescence in multiplex immunology test
method (xMAP) was used; and in two studies, the single molecular array method (Simoa) was used.
In one study, identification was made using the immunoblot method [65]. The most recent from the
covered studies [66] was conducted by carbon nanotubes array (CNT).

The Aβ40 concentration was tested in 43 trials, listed in Table 2. The obtained results are highly
incoherent. Statistically significant differences among groups were found in only 24 trials, whereas,
in 10 of the trails, the concentrations of Aβ40 were (contrary to general trend) higher in the control
group. In 39 trials, AD patients were investigated. Twenty trials compared MCI subjects to cognitively
normal controls. The inconsistency of results did not depend on the method used. A large part of
research gave statistically not significant results (12 out of 20 for ELISA, three out of eight for IMR,
two out of five for xMAP).

In 48 of the selected studies, there was a comparison of Aβ42 among groups. In 32 of them,
the results were statistically significant. In most of the comparisons, the Aβ42 concentrations were
higher in control groups, but in as many as 13 cases higher concentrations of Aβ42 were identified
in patients with dementia or MCI rather than in the control group. Among the methods repeated in
several studies, it was noteworthy that, in all seven studies conducted using the IMR method, the Aβ42
levels were significantly higher in the AD or MCI groups than in the controls. In addition, studies
based on ELISA or xMAP method gave very inconsistent results.
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Table 2. Studies on Aβ40, Aβ42, and Aβ40/Aβ42 in serum.

Study N Groups (n) Aβ40 Concentration
[pg/mL] (SD or CI) p Aβ42 Concentration

[pg/mL] (SD or CI) p Aβ42/Aβ40 (SD or CI) p Method

Mehta et al., 2000 [67] 65 AD (36), HC (29) AD 272 (100–770)
HC 219 (35–490) 0.005 AD 73 (25–880)

HC 81 (25–905) >0.05 - - ELISA

Sobów et al., 2005 [68] 158 AD (54), MCI (39), HC (35)
AD 168.7 (32.2)
MCI 160.1 (20.2)
HC 160.1 (15.2)

>0.05
AD 37.8 (10.3)
MCI 56.8 (9.3)
HC 36.3 (6.3)

<0.001 (MCI vs.
AD + HC)

AD 4.6 (0.9)
MCI 2.9 (0.6)
HC 4.5 (0.6)

<0.001
(MCI vs.

AD + HC)
ELISA

Pesaresi et al., 2006 [69] 324 AD (146), MCI (89), HC (89) - -
AD 38
MCI 52
HC 54

<0.01 (AD vs.
MCI + HC) - - ELISA

Fagan et al., 2007 [70] 114
AD CDR1 (16),

AD CDR0.5 (33),
HC-CDR0 (65)

AD CDR 1
AD CDR 0.5

CDR 0 191 (61.3)
0.51

AD CDR1 36 (37.2)
AD CDR0.5 41 (38.9)

CDR0 36 (29.4)
0.76

Aβ40/42
AD CDR1 9.25 (7.0)

AD CDR0.5 7.78 (6.5)
CDR0 8.64 (8.9)

0.82 ELISA

Abdullah et al.,
2007 [71] 213 AD (67), HC (146)

Serum
AD 183.01 (6.23)
HC 134.33 (2.79)

Plasma
AD 103.38 (4.27)
HC 80.66 ± 1.86

<0.05

<0.01

Serum
AD 9.87 (0.82)
HC 9.02 (0.40)

Plasma
AD 4.53 (0.52)
HC 5.66 (0.31)

>0.05

>0.05

Serum
AD 0.064 (0.011)
HC 0.076 (0.005)

Plasma
AD 0.053 (0.008)
HC 0.061 (0.006)

<0.05

>0.05
ELISA

Baranowska-Bik et al.,
2008 [72] 124 mildAD (29), m-sAD (28),

HC (67) - - HC > mildAD >
mod-sevAD

<0.05 (mild vs. m-sAD)
<0.01 (HC vs. mildAD) - - ELISA

Xu et al., 2008 [73] 268 AD (113), HC (155) AD 112 (39.51) pmol/L
HC 95.38 (32.30) <0.0002 AD 10.29 (13.80) pmol/L

HC 12.13 (12.29) <0.0001
Aβ40/42

AD 14.42 (10.00)
HC 8.34 (3.83)

<0.0001 ELISA

Ait-ghezala et al.,
2008 [74] 175 AD (73), HC (102) AD 91.99 (5.02)

HC 81.04 (2.94) <0.05 AD 1.91 (0.14, 6.84)
HC 2.82 (0.59, 5.38) >0.05 AD 0.015 (0.002, 0.097)

HC 0.032 (0.008, 0.065) >0.05 ELISA

Roher et al., 2009 [75] 38 AD (17, HC (21) AD 424.06 (147.73)
HC 344.41 (132.43) 0.088 AD 139.91 (77.82)

HC 124.71 (42.34) 0.448 AD 0.35 (0.16)
HC 0.44 (0.30) 0.292 ELISA

Sedaghat et al.,
2009 [76] 35 AD (29), HC (16) - - AD 16.2 (2.6)

HC 13.4 (1.4) >0.05 - - ELISA

Luis et al., 2009 [77] 78 AD (25), MCI (13), HC (40)
AD 181 (13.78)
MCI 158 (17.55)
HC 158 (7.65)

>0.05
AD 13.89 (2.00)

MCI 23 (5.93 pg/mL)
HC 10 (1.84)

0.015
0.02 (MCI vs. HC)

AD 0.086 (0.013)
MCI 0.161 (0.045)
HC 0.071 (0.014)

0.021 ELISA

Cammarata et al.,
2009 [78] 293 MCI (191), HC (102) MCI 294.7 (20.86)

HC 315.6 (23.64) >0.05 MCI 26.62 (2.68)
HC 16.46 (1.46) <0.01 MCI 0.12 (0.02)

HC 0.09 (0.01) <0.01 ELISA

Lui et al., 2010 [79] 1032 AD (186), MCI (122),
HC (724)

AD 155.1 (44.2)
MCI 152.9 (51.5)
HC 153.4 (40.2)

0.877
AD 30.0 (10.2)
MCI 30.2 (11.9)
HC 32.4 (9.7)

<0.001
AD 0.199 (0.056)
MCI 0.216 (0.120)
HC 0.221 (0.097)

0.001 ELISA



J. Clin. Med. 2020, 9, 3452 11 of 26

Table 2. Cont.

Study N Groups (n) Aβ40 Concentration
[pg/mL] (SD or CI) p Aβ42 Concentration

[pg/mL] (SD or CI) p Aβ42/Aβ40 (SD or CI) p Method

Konno et al., 2011 [80] 49 AD (39), HC (21) AD 378 (113)
HC 254 (63) <0.0001 - - - - ELISA

Han et al., 2012 [81] 343
AD (112), VD (85), other

dementias—OD (30),
HC (116)

AD 90.7 (8.7)
VD 93.6 (12.3)
OD 93.1 (11.0)
HC 92.4 (13.0)

>0.05

AD 32.1 (3.0)
VD 37.3 (7.5)
OD 37.2 (5.5)
HC 37.7 (7.6)

<0.001

AD 0.29 (0.07)
VD 0.4 (0.09)
OD 0.4 (0.08)

HC 0.41 (0.09)

<0.001 ELISA

Zhang et al., 2013 [82] 326 AD (153), VD (53), HC (120)
AD 97.7 (30.6)
VD 98.2 (20.5)
HC 92.6 (26.7)

>0.05
AD 11.5 (2.9)
VD 13.2 (3.1)
HC 13.3 (3.7)

<0.001 (AD vs. HC)
<0.01 (AD vs. VD)

AD 0.12 (0.03)
VD 0.14 (0.02)
HC 0.14 (0.01)

<0.001
(AD vs. HC,
AD vs. VD)

ELISA

Huang et al., 2013 [83] 34 AD (18), MCI + HC (16) - - AD 17.19 (21.9)
MCI + HC 7.31 (5.3) 0.079 - - ELISA

Ruiz et al., 2013 [84] 140 AD (51), MCI (36), HC (53)
AD 51 (16)

MCI 58.9 (16)
HC 44.4 (14)

<0.002
AD 10.8 (7.5)
MCI 14 (18)
HC 13 (12)

<0.002 (n/s) - - ELISA

Wang et al., 2014 [85] 273
AD 97
MCI 54
HC 122

AD 59.10 (20.30)
MCI 51.66 (26.03)
HC 43.14 (22.57)

MCI vs. HC
0.027

MCI vs. AD
0.063

AD vs. HC
<0.001

AD 47.10 (2.29)
MCI 47.49 (0.93)
HC 47.53 (1.97)

0.944 MCI vs. HC
0.474 MCI vs. AD
0.468 AD vs. HC

- - ELISA

Tzikas et al., 2014 [86] 55 AD (28), HC (27) AD 39.65 (8.08)
HC 36.30 (6.68) 0.171 AD 3.38 (2.34)

HC 3.39 (2.64) 0.849 - - ELISA

Krishnan et al.,
2014 [87] 105 AD (30), VD (35), HC (40) - -

AD 164.66 (66.76)
VD 148.17 (60.24)
HC 86.10 (43.75)

<0.001 (AD vs. HC, VD
vs. HC)

>0.05 (AD vs. VD)
- - ELISA

Kleinschmidt et al.,
2015 [88] 94

AD (15), MCI (14), HC
18–30 years (13), HC 40–65

(13), HC 66–85 (19)

HC 66–85 > AD > HC
40–65 > MCI > HC

18–30

<0.05 for AD
vs. MCI

<0.01 for MCI
vs. HC 66–85

HC 66–85 > HC
18-30 > HC

40–65 > AD > MCI

<0.05 for AD vs. HC
66-85 and MCI vs. HC

66-85

HC 18-30 > HC
40–65 > HC 66–85 >

MCI > AD

<0.01 (AD vs.
HC 66–85)

<0.05 (MCI vs.
HC 66–85)

ELISA

Jiao et al., 2015 [89] 285 AD (156), HC (129) AD 86.2 (55.5)
HC 60.2 (34.7) <0.001 AD 68.4 (61.9)

HC 49.3 (27.7) 0.001 - - ELISA
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Table 2. Cont.

Study N Groups (n) Aβ40 Concentration
[pg/mL] (SD or CI) p Aβ42 Concentration

[pg/mL] (SD or CI) p Aβ42/Aβ40 (SD or CI) p Method

Igarashi et al., 2015 [90] 153 AD (70), MCI (50), HC (33)

Median
AD 51.0 pmol/L

MCI 50.0
HC 51.4

>0.05

Median
AD 6.4 pmol/L

MCI 6.2
HC 6.9

>0.05

Median Aβ40/42
AD 8.2
MCI 7.8
HC 6.9

0.01 (AD vs.
HC)

<0.05 (MCI vs.
HC)

ELISA

Kim et al., 2015 [91] 146 AD (100), HC (46) AD 58.7 (20.2)
HC 54.2(25.0) 0.371 AD 9.0 (4.0)

HC 10.4 (3.5) 0.003
Aβ40/42

AD 6.8 (2.1)
HC 5.0 (1.7)

0.000 ELISA

Poljak et al., 2016 [92] 251 AD (39), MCI (93), HC (129)
AD 155.82 (75.11)

MCI 233.64 (100.56)
HC 254.85 (145.72)

AD vs. HC p
< 0.001

MCI vs. HC p
= 0.14

AD 18.34 (32.10)
MCI 37.58 (74.38)
HC 65.63 (217.04)

<0.001 (AD vs. HC)
0.005 (MCI vs. HC)

AD 0.20 (0.64)
MCI 0.23 (0.49)
HC 0.26 (0.59)

<0.001 (AD vs.
HC)

0.019 (MCI vs.
HC)

ELISA

Grewal et al., 2016 [93] 75
3 groups of 15 (aMCI) and

10 (HC) women of
different races

LA aMCI 127.63 (23.76)
CA aMCI 160.51 (25.91)
AA aMCI 106.28 (9.57)
LA HC 104.81 (18.66)
CA HC 96.02 (20.24)

AA HC 103.33 (14.77)

LA p < 0.05
CA p = 0.0001
all groups p =

0.0001

LA aMCI 40.38 (4.76)
CA aMCI 33.21 (2.81)
AA aMCI 26.48 (2.61)

LA HC 23.69 (2.34)
C HC 34.82 (4.00)

AA HC 26.95 (4.05)

<0.005 (LA)
>0.05 (CA, AA)

LA aMCI 0.3 (0.05)
C aMCI 0.16 (0.01)

AA aMCI 0.41 (0.19)
LA HC 0.4 (0.31)
C HC 0.46 (0.09)
AA HC 0.3 (0.05)

>0.05 ELISA

Yamashita et al.,
2016 [94] 36 AD (18), HC (18)

AD 103.6 (11.8)
fmol/mL

HC 81.2 (9.8)
>0.05 AD 25.0 (5.3)

HC 18.5 (2.8) >0.05 AD 0.3 (0.1)
HC 0.3 (0.0) >0.05 ELISA

Rani et al., 2017 [95] 90 AD (45), HC (45) - - AD 174.87 (62.15)
HC 90.62 (42.35) <0.001 - - ELISA

Sun et al., 2018 [96] 137 AD (76), HC (61) AD 215.25 (54.26)
HC 144.62 (47.20) <0.001 AD 123.48 (45.89)

HC 91.35 (36.39) <0.001 - - ELISA

Chen et al., 2018 [97] 126 AD (96), HC (30) AD 649.68 (132.21)
HC 423.52 (100.99) <0.001 AD 322.25 (76.04)

HC 219.21 (62.51) <0.001
Aβ40/42

AD 2.13 (0.66)
HC 2.15 (0.95)

>0.05 ELISA

Bibl et al., 2007 [65] 85 AD (15), AD-CVD (20), VD
(15), PD/PDD (20), HC (15)

AD 0.199 (0.099)
AD-CVD 0.197 (0.083)

VD 0.270 (0.103)
PD/PDD 0.185 (0.069)

HC 0.209 (0.087)

<0.05 (VD vs.
HC)

remaining
p > 0.05

AD 0.022 (0.007)
AD-CVD 0.023 (0.013)

VD 0.022 (0.008)
PD/PDD 0.023 (0.007)

HC 0.025 (0.007)

>0.05 - - immunoblot
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Table 2. Cont.

Study N Groups (n) Aβ40 Concentration
[pg/mL] (SD or CI) p Aβ42 Concentration

[pg/mL] (SD or CI) p Aβ42/Aβ40 (SD or CI) p Method

Le Bastard et al.,
2009 [98] 162 AD (48), non-AD (46), MCI

(39), HC (29) - -

AD 40.5 (32.8–50.9)
non-AD 42.1 (33.1–48.6)

MCI 44.3 (38.3–55.8)
HC 38.9 (31.0–46.1)

0.174 - - xMAP

Le Bastard et al.,
2010 [99] 147 AD (50), non-AD (50),

HC (47)

AD 306.8 (268.7–336.8)
non-AD 292.7
(238.9–334.9)

HC 284.8 (240.6–333.6)

0.347
AD 40.4 (32.1–50.8)

non-AD 41.7 (33.4–48.0)
HC 39.4 (29.4–46.7)

0.506

AD 0.135 (0.110–0.160)
non-AD 0.152
(0.122–0.185)

HC 0.137 (0.111–0.153)

0.056 xMAP

Sundelöf et al.,
2010 [100] 213 AD (101), MCI (84), HC (28)

AD 145.9 (64.3)
MCI 166.8 (57.1)
HC 91.9 (28.5)

<0.05 (AD vs.
HC and MCI

vs. HC)

AD 28.5 (10.7
MCI 36.9 (11.7)
HC 22.0 (9.2)

<0.05 (AD vs. HC and
MCI vs. HC) - - xMAP

Chou et al., 2016 [101] 781 AD (592), MCI (119),
HC (170)

AD 173.1 (79.3)
MCI 178.7 (54.6)
HC 171.6 (64.3)

0.807 (AD vs.
MCI)

0.318 (AD vs.
HC)

AD 23.8 (15.1)
MCI 23.6 (12.5)
HC 23.7 (12.6)

0.899 (AD vs. MCI)
0.969 (MCI vs. HC)

AD 0.15 (0.25)
MCI 0.14 (0.07)
HC 0.15 (0.08)

0.904 (AD vs.
HC)

0.189 (MCI vs.
HC)

xMAP

Hsu et al., 2017 [102] 335 AD (177), MCI (60),
HC (108)

AD 170.3 (63.9)
MCI 171.1 (54.5)
HC 143.7 (34.9)

0.0001 (AD vs.
HC)

0.0013 (MCI
vs. HC)

AD 37.2 (14.1)
MCI 34.9 (9.5)
HC 33.6 (10.2)

0.025 (AD vs. HC)
0.38 (MCI vs. HC)

AD 0.232 (0.095)
MCI 0.210 (0.06)
HC 0.239 (0.064)

0.14 (AD vs.
HC)

0.0032 (MCI
vs. HC)

xMAP

Hanon et al., 2018 [103] 1040 AD (501), aMCI (417),
naMCI (122)

AD 263 (80)
aMCI 269 (68)

naMCI 272 (52)
0.04

AD 36.9 (11.7)
aMCI 38.2 (11.9)

naMCI 39.7 (10.5)
0.01 - - xMAP

Uslu et al., 2012 [104] 60 AD (18), MCI (16), HC (26)
AD 53.21 (34.69)
MCI 47.98 (16.20)
HC 65.84 (13.47)

>0.05
AD 34.22 (31.62)
MCI 22.66 (20.83)
HC 15.79 (0.56)

0.001 (AD vs. HC)
AD 0.6906 (0.3363)
MCI 0.4502 (0.1864)
HC 0.2464 (0.0370)

<0.001 (AD vs.
HC and MCI

vs. HC)
IMR

Chiu et al., 2012 [105] 60 AD (18), MCI (16), HC (26)
AD 53.21 (34.69)

MCI 47.98 ± 16.20
HC 65.84 (13.47)

>0.05
AD 34.22 (31.62)
MCI 22.66 (20.83)
HC 15.79 (0.56)

0.001 (AD vs. HC)
AD 0.6906 (0.3363)
MCI 0.4502 (0.1864)
HC 0.2464 (0.0370)

AD vs. MCI p
< 0.001

MCI vs. HC p
< 0.0001

IMR

Tzen et al., 2014 [106] 45 AD (14), MCI (11), HC (20)
AD 36.9 (1.6)
MCI 41.4 (1.8)
HC 60.9 (6.4)

<0.001
AD 18.9 (0.3)
MCI 17.2 (0.3)
HC 15.9 (0.3)

<0.001
AD 0.52 (0.07)
MCI 0.42 (0.07)
HC 0.26 (0.03)

<0.001 IMR

Lee et al., 2017 [107] 140 AD (62), HC (78)
AD 43.9 (22.1)

HC 61.1 (6.3) and
60.7 (6.9)

<0.001
AD 23.2 (18.4)

HC 15.8 (0.3) and
16.0 (0.5)

<0.001
AD 0.55 (0.23)

HC 0.26 (0.03) and
0.27 (0.04)

<0.001 IMR
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Table 2. Cont.

Study N Groups (n) Aβ40 Concentration
[pg/mL] (SD or CI) p Aβ42 Concentration

[pg/mL] (SD or CI) p Aβ42/Aβ40 (SD or CI) p Method

Teunissen et al.,
2018 [108] 106 AD 63

HC 43
AD 17.9 (4.3)
HC 15.5 (2.1) <0.001 - - - - IMR

Tang et al., 2018 [109] 79 AD (21), VD (34), HC (24) HC >VD >AD

0.01
(AD vs. HC)

<0.01
(VD vs. HC)

AD > VD > HC
<0.05 (AD vs. HC)
<0.01 (AD vs. VD)
<0.05 (VD vs. HC)

- - IMR

Fan et al., 2018 [110] 80 AD (16), MCI (25), HC (39)
AD 39.5 (5.8)
MCI 41.5 (3.9)
HC 59.2 (11.1)

<0.001
(AD vs. HC,
MCI vs. HC)

AD 19.0 (2.7)
MCI 17.0 (2.0)
HC 16.1 (1.8)

<0.001 (AD vs. MCI,
MCI vs. HC) - - IMR

Tsai et al., 2019 [111] 90 AD (37), MCI (40), HC (13)
AD 51.7 (3.7)
MCI 51.9 (4.9)
HC 51.8 (5.1)

>0.05
AD 17.4 (1.0)
MCI 17.0 (0.7)
HC 16.7 (0.7)

<0.05
(AD + MCI vs. HC)

AD 0.338 (0.032)
MCI 0.330 (0.035)
HC 0.326 (0.035)

>0.05 IMR

Startin et al., 2019 [28] 54 AD (27), HC (27)

AD 160.80
(43.60–420.00)

HC 144.40
(26.88–355.60)

0.506 AD 13.32 (4.28–18.84)
HC 14.76 (2.00–45.62) 0.710 AD 0.08 (0.04–0.11)

HC 0.10 (0.07–0.17) <0.001 Simoa

Janelidze et al.,
2016 [112]

AD (57), MCI (214),
HC (274)

AD 244.3 (105.8)
MCI 287.6 (77.0)
HC 276.7 (66.1)

<0.001
(AD vs. HC)

<0.0001
(AD vs. MCI)

AD 13.2 (7.3)
MCI 18.8 (6.1)
HC 19.6 (5.2)

<0.0001 (AD vs. HC)
<0.0001 (AD vs. MCI)

AD 0.057 (0.022)
MCI 0.066 (0.015)
HC 0.073 (0.023)

0.0001
(AD vs. HC)

0.002
(MCI vs. HC)

0.003
(AD vs. MCI)

Simoa

Shi et al., 2009 [113] 155 MCI (68), HC (87) MCI 157.65 (64.50)
HC 183.76 (61.87) 0.011 MCI 5.95 (2.60)

HC 8.14 (3.12) 0.000 - - Simoa

Kim et al., 2020 [66] 40 AD (20), HC (20) AD 184 (67.8)
HC 159 (78.0) 0.26 AD 6.49 (5.02)

HC 19.3 (15.5) <0.001
AD median approx. 0.1

HC median approx. 0.05
(from the graph)

<0.000001 CNT

SD, standard deviation; CI, confidence interval; AD, Alzheimer’s disease; MCI, mild cognitive impairments; HC, control group; CDR, clinical dementia rating; VD, vascular dementia; PD,
Parkinson’s disease; mildAD, AD in mild level; m-sAD, moderate and severe AD; non-AD, dementia of etiology other than AD; aMCI, amnestic MCI subtype; naMCI, non-amnestic MCI
subtype; ELISA, immunoenzymatic method; IMR, immunomagnetic reduction method; CNT, carbon nanotube array.
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The amyloid peptide concentration ratio was assessed in 29 studies. In nine cases, the results
were not statistically significant. Among the comparisons that were statistically significant, in 11 cases,
the Aβ42/Aβ40 concentration ratio was higher in the control groups and, in seven cases, it was higher
in the study groups. In two of the studies, the Aβ42/Aβ40 ratio was similar in the AD and control
groups and significantly higher than in the MCI groups [68,102]. The results varied depending on
laboratory methods use. None of the three studies using xMAP gave statistically significant results,
while, in four out of five IMR studies, the Aβ42/Aβ40 ratio was significantly higher in the AD or MCI
groups than in the controls. The results obtained in ELISA studies were highly inconsistent.

3.2. Tau Protein

Twenty cross-sectional tests, conducted to date, on t-tau concentration in patients with dementias
and MCI serum, and which meet the search criteria, are listed in Table 3. One work included
two separately examined cohorts [114]; 16 patients with AD and 12 patients with MCI were
examined. Single tests referred to FTD (t-tau significantly higher than in control group [115])
and VD (t-tau significantly lower than in AD and higher than control group [87,109]). The identification
of tau protein was conducted in seven studies by the Simoa method, in six studies by the ELISA
method, in six studies by the IMR method, and in one study by CNT. The absolute values of t-tau
concentration identified by the single molecule array (Simoa) method were lower by one to two orders
of magnitude than values acquired by other methods.

Table 3. Studies on t-tau concentration in serum.

Study N Groups (n) Tau Concentration in Serum
(SD or CI) [pg/mL] p Method

Chiu et al.,
2014 [116] 60 AD (10), MCI (20),

HC (30)

AD 53.9 (11.7)
MCI 32.7 (5.8)
HC 15.6 (6.9)

<0.01 (MCI vs. AD)
>0.05 (MCI vs. HC) IMR

Tzen et al.,
2014 [106] 45 AD (14), MCI (11),

HC (20)

AD 46.7 (2.0)
MCI 33.5 (2.2)
HC 13.5 (5.5)

<0.001 IMR

Lee et al.,
2017 [107] 140 AD (62), HC (78) AD 47.5 (18.9)

HC 15.0 (7.3) and 14.9 (5.5) <0.001 IMR

Tang et al.,
2018 [109] 79 AD (21), VD (34),

HC (24) AD > VD > HC
<0.001 (AD vs. HC)
<0.01 (AD vs. VD)
<0.05 (VD vs. HC)

IMR

Yang et al.,
2018 [117] 73 AD (21), MCI (29),

HC (23)

AD 37.54 (12.29)
MCI 32.98 (10.18)
HC 18.85 (10.16)

< 0.001 (AD vs.
HC + MCI)

>0.05 (MCI vs. HC)
IMR

Tsai et al.,
2019 [111] 90 AD (37), MCI (40),

HC (13)

AD 27.1 (4.8)
MCI 24.5 (4.0)
HC 22.5 (3.4)

<0.05 IMR

Wang et al.,
2014 [85] 273 AD (97), MCI (54),

HC (122)

AD 213.95 (44.57)
MCI 209.61 (39.65)
HC 214.94 (43.23)

0.457 (MCI vs. HC)
remaining

comparisons p > 0.05
ELISA

Krishnan et al.,
2014 [87] 105 AD (30), VD (35),

HC (40)

AD 458.62 (253.82)
VD 718.3 (326.24)

HC 879.19 (389.53)

<0.05 (AD vs. VD)
<0.001 (AD vs. HC) ELISA

Jiao et al.,
2015 [89] 285 AD (156), HC (129) AD 227.1 (102.2)

HC 181.0 (103.2) <0.001 ELISA

Shekhar et al.,
2016 [118] 113 AD (39), MCI (37),

HC (37)

AD 47.49 (9.00)
MCI 39.26 (7.78)
HC 34.92 (6.58)

<0.001 (AD vs. HC)
<0.001 (AD vs. MCI)
0.059 (MCI vs. HC)

ELISA

Rani et al.,
2017 [95] 90 AD (45), HC (45) AD 451.76 (240.82)

HC 836.93 (369.31) <0.001 ELISA
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Table 3. Cont.

Study N Groups (n) Tau Concentration in Serum
(SD or CI) [pg/mL] p Method

Jiang et al.,
2019 [119] 238 AD (110), HC (128) AD 26.14 (11.52)

HC 15.02 (9.04) <0.001 ELISA

Dage et al.,
2016 [120] 439 MCI (161),

HC (378)
MCI 4.34
HC 4.14 0.078 Simoa

Mattson et al.,
2016 [114]

563 + 547
(two cohorts)

I: AD (179), MCI
(195), HC (189),
II: AD (61), MCI
(212), HC (274)

AD 3.12 (1.50) and 5.37 (2.56)
MCI 2.71 (1.32) and 5.46 (2.71)
HC 2.58 (1.19) and 5.58 (2.51)

0.0017 and 0.58 (AD
vs. MCI + HC) Simoa

Mielke et al.,
2017 [121] 458 MCI (123) HC (335) MCI 4.5 (1.8)

HC 4.2 (1.5) 0.28 Simoa

Deters et al.,
2017 [122] 508 AD (168), MCI

(174), HC (166)

AD 3.13 (1.3)
MCI 2.81 (1.2)

HC 2.71 (1)

0.002 (AD vs.
MCI + HC) Simoa

Mielke et al.,
2018 [39] 267 AD (40), MCI (57),

HC (172)

AD 7.2 (2.8)
MCI 5.9 (2.8)
HC 5.9 (1.9)

0.029 (AD vs. MCI)
0.001 (AD vs. HC)

>0.05 (MCI vs. HC)
Simoa

Foiani et al.,
2018 [115] 176 BvFTD (71), PPA

(83), HC (22)

BvFTD 1.96 (1.07)
PPA 2.65 (2.15)
HC 1.67 (0.50)

<0.05 (FTD vs. HC) Simoa

Shi et al.,
2019 [113] 155 MCI (68), HC (87) MCI 3.71 (2.3)

HC 3.56 (1.84) 0.865 Simoa

Kim et al.,
2020 [66] 40 AD (20), HC (20) AD 32.2 (16.4)

HC 13.4 (13.2) <0.001 CNT

SD, standard deviation; CI, confidence interval; AD, Alzheimer’s disease; MCI, mild cognitive impairments; HC,
control group.

In 14 studies, t-tau concentration was higher as compared with a control group; in five studies,
there was no significant difference; and in two studies [87,95], t-tau concentration was higher in the
control group. A significantly higher concentration of t-tau protein in AD as compared with a control
group was identified in 13 out of 16 studies, and AD as comparing with MCI in eight of nine studies.
In addition, in studies comparing t-tau concentration between MCI and the control group, results
indicating diagnostic usability of this marker were achieved in only two out of 12 comparisons.

In all six studies using the IMR method and in five out of six studies performed with
ELISA determination, tau levels were significantly higher in AD/MCI patients. Simoa gave less
consistent results, i.e., in three out of eight cohorts the differences among groups did not reach the
statistical significance.

3.3. Amyloid Markers and Total Tau Protein Combinations

In database searches, there were four studies on t-tau/Aβ42 ratio as a dementia biomarker in serum.
The results are listed in Table 4. In three studies, the t-tau/Aβ42 concentration ratio was higher in the
control group than in the AD group, but, in one of them, this difference was not statistically relevant.
The age gap between the AD groups and control groups could have influenced the obtained results
from this study [28]. In the Krishnan et al. study, the combination of both markers was characterized
by significantly higher diagnostic sensitivity in differentiation of AD from healthy subjects (90.3%,
AUC 0.991), than each separate marker (80.6%), but specificity for t-tau, Aβ42, and markers ratio
hovered around 67% [87]. Kim et al. acquired a higher t-tau to Aβ42 concentration ratio level in
the test group, using a new identification technique [66]. Assessment of t-tau/Aβ42 in serum was
also conducted by Park et al. Authors of this study did not provide a comparison among groups
(AD, MCI, HC), but they were searching for a correlation of acquired biomarkers ratio to existence or
non-existence of tau protein deposits by the use of PET. The researchers managed to show a relation
between biomarkers concentration ratio and occurrence of tauopathy within cingulate gyrus, temporal,
prefrontal, and orbitofrontal cortex [40].
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Table 4. T-tau/Aβ42 diagnostic usability studies.

Study N Groups (n) T-tau/Aβ42 (SD/CI) p Method

Krishnan et al.,
2014 [87] 105 AD (30), VD (35),

HC (40)

AD 3.42 (2.66)
VD 5.76 (3.84)

HC 15.06 (10.64)

<0.05 (AD vs. VD)
<0.001 (AD vs. HC

and VD vs. HC)
ELISA

Rani et al.,
2017 [95] 90 AD (45), HC (45) AD 3.08 (2.35)

HC 13.36 (4.42) <0.001 ELISA

Startin et al.,
2019 [28] 54 AD (27), HC (27) AD 10.23 (0.77-52)

HC 10.59 (1.14–82.25) >0.05 Simoa

Kim et al.,
2020 [66] 40 AD (20), HC (20)

AD median about 5.5
HC median 2 (read

from the figure)
<0.000001 CNT

SD, standard deviation; CI, confidence interval; AD, Alzheimer’s disease; MCI, mild cognitive impairments; HC,
control group.

Moreover, diagnostic usability of the t-tau/Aβ42 ratio identified by IMR method was assessed in
two other studies. The results obtained by Chiu et al. pointed to 80% sensitivity and 82% specificity of
the biomarker ratio in AD as compared with MCI, as well as 96% sensitivity and 97% specificity for the
cognitive impairments group (AD and MCI) as compared with healthy subjects. The authors did not
provide the p value for comparisons among groups [123]. In the Tsai et al. study, the difference between
a cognitively impaired group and a control group was statistically relevant (p < 0.05), but in the AD
and MCI groups the acquired values of the biomarker ratio overlapped (respectively 473.2 ± 107.4 and
418.3 ± 80.3) [111].

3.4. YKL-40

The adopted search criteria were met by five studies that focused on diagnostic and prognostic
usability assessment of YKL-40 in MCI and dementia in serum of patients. Their results are listed in
Table 5.

Table 5. YKL-40 concentration in serum studies.

Study N Groups (n) YKL-40 Concentration in
Serum (SD or CI) [ng/mL] p Method

Craig-Schapiro et al.,
2010 [45] 237 AD (CDR1 and

CDR0.5), HC

AD (CDR1): 91.9 (15)
AD (CDR 0.5): 81.1 (8)
HC (CDR 0): 62.5 (3.4)

0.031 (AD CDR1 vs. HC)
0.046 (AD CDR0.5 vs. AD) ELISA

Choi et al., 2011 [124] 141 AD (61), MCI (41),
HC (35)

AD: 376.86 (54.1)
MCI:176.49 (25.69)
HC: 96.91 (11.02)

0.014 (AD vs. HC)
0.008 (AD vs. MCI) ELISA

Grewal et al.,
2016 [93] 75

15 (aMCI) and 10
(HC) women of
white race (CA),
Afro-Americans

(AA) and people of
Latino origin (LA)

LA aMCI 114.08 (30.02)
CA aMCI 93.39 (12.70)
AA aMCI 54.26 (10.12)

LA HC 54.2 (8.37)
CA HC 70.92 (15.96)
AA HC 54.66 (14.42)

0.033 (LA)
0.418 (CA)
0.988 (AA) ELISA

Surendranatan et al.,
2018 [125] 35 DLB (19), HC (16) DLB 64.150 (46.616)

HC 43.034 (28.357) 0.115 ELISA

Villar-Pique et al.,
2019 [126] 315

CJD (78), AD (50),
DLB (34), FTD (17),
VD (22), ND (44),

HC (70)

DLB: 167 (157)
CJD: 189 (167)
FTD: 125 (108)
VD: 140 (150)
AD: 133 (110)
ND: 95 (61)
HC: 84 (84)

<0.001 (CJD vs. HC)
remaining p > 0.05 ELISA

SD, standard deviation; CI, confidence interval; AD, Alzheimer’s disease; MCI, mild cognitive impairments; HC,
control group; CDR, clinical dementia rating; CA, Caucasian race; AA, African American race; LA, Latino-American
race; aMCI, amnestic MCI subtype; VD, vascular dementia; CJD, Creutzfeld–Jakob disease; DLB, dementia with
Lewy bodies; FTD, frontotemporal dementia; ND, neurological diseases other than dementia.
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Briefly, the findings of these five studies were the following:

1. Craig-Schapiro et al. found a statistically relevant increase in YKL-40 concentration in serum
with disease progress which corresponded with results from CSF [45].

2. Choi et al. suggested that YKL-40 could be highly useful in the diagnostic of MCI progression
to mild AD. This was supported by the highest marker increase among these groups and the
correlation of acquired results with patient functioning, measured by the CDR scale at this stage
of disease progression diagnosis [127]. The results of this study do not clearly reinforce the
prognostic value of YKL-40 in serum, but they suggest its diagnostic usability in combination
with other markers (Aβ42, tau, and p-tau) [124].

3. Grewal et al. examined women with amnestic MCI subtype from various ethnicity groups.
Statistically significant concentration differences of YKL-40 among subgroups were identified only
in the Latin American group. In addition, other measured biomarkers showed the differences of
sensitivity among ethnic groups [93]. Amnestic type MCI is a state highly predisposing to AD,
contrary to non-amnestic types which are the bases for developing other dementias. The results
of prospective studies show that, every year, dementia is developed in 10–15% of patients with
MCI [128].

4. Surendranathan et al. did not shown any statistically significant YKL-40 concentration differences
between patients with DLB and a control group [125].

5. Villar-Pique et al. did not obtain any statistically relevant differences between AD patients and a
control group. The acquired results were significantly divergent across groups. Among the tested
groups, highly increased YKL-40 concentrations were observed in patients with CJD (p < 0.001)
and to a lesser degree in patients with LBD (p < 0.05). The authors hypothesized that the crucial
factor influencing the concentration of the marker in peripheral blood may be the damage level
of the blood-brain barrier in the course of primary disease [126].

4. Discussion

In dozens of studies, conducted to date, comparing the concentrations of Aβ40, Aβ42,
and Aβ42/Aβ40 in blood of dementia and MCI patients, the results have been incoherent.
This constitutes a fairly surprising observation regarding the crucial role of Aβ in AD pathogenesis and
proven diagnostic value of amyloid markers in CSF. The incoherence of the observed results suggest
that Aβ concentration in serum does not reflect its level in brain tissue and CSF. It is equally probable
that not enough restrictive selection of a control group regarding comorbidities or imprecision of used
laboratorial methods could have had an influence on these results.

Tau protein is characterized by higher specificity than other markers. In common, typically for the
elderly somatic disorders, there was no increase in its concentration. The concentration of tau protein
increases mainly in tauopathies, from which many of them are rare diseases. Therefore, t-tau may
be the preferred marker in patients with somatic ailments. The most common tauopathy, other than
AD, is FTD. The t-tau concentration in serum is increased in both of these diseases, however it seems
that regarding specific FTD symptoms (behavioral problems preceding dementia and distinctive
aphasia) differentiation of these diseases may not be a major diagnostic problem. According to many
experts, tau protein hyperphosphorylation and its accumulation in the form of neurofiber tangles is
secondary to amyloidopathy. The results of studies have highlighted that the lack of an increase in
t-tau, in patients with MCI, could possibly be confirmation of this theory. T-tau may, thus, serve as
a marker of progression from MCI to AD. However, it seems useless in asymptomatic stages and
MCI diagnostics.

The past failure to identify a single, sensitive, and specific dementia serum marker implies
attempts using combinations of more than one biomarker. In several studies, conducted to date,
comparing values of t-tau and Aβ indicator, the acquired results were promising, and therefore this
seems to be a good reason for further studies.
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There are not many works on using YKL-40 in dementia diagnostics. Studies by
Craig-Schapiro et al. [45], Choi et al. [124], and Grewal et al. [93] have given hope for its use in
diagnostics of early stage dementias (MCI and mild stage AD). Less promising results were acquired
by Villar-Pique et al. [126]. Due to the increase in this marker in many other diseases, there is an
assumption that its usage may be limited only to the patients without any somatic comorbidity.

Considering the results of amyloid markers separately for individual laboratory methods,
we noticed some differences. In the case of amyloid markers, on the one hand, almost all tests
performed with the IMR method gave consistent, statistically significant results, in contrast to the
determinations by ELISA or xMAP. On the other hand, the Simoa method, often used for the
determination of tau protein concentrations, in the analyzed works, gave much less consistent results
as compared with ELISA and IMR. Therefore, it seems that the laboratory method used may influence
the obtained results.
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