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Abstract

Metabolic chambers are powerful tools for assessing human energy expenditure, providing

flexibility and comfort for the subjects in a near free-living environment. However, the flexibil-

ity offered by the large living room size creates challenges in the assessment of dynamic

human metabolic signals—such as those generated during high-intensity interval training

and short-term involuntary physical activities—with sufficient temporal accuracy. Therefore,

this paper presents methods to improve the temporal accuracy of metabolic chambers. The

proposed methods include 1) adopting a shortest possible step size, here one minute, to

compute the finite derivative terms for the metabolic rate calculation, and 2) applying a

robust noise reduction method—total variation denoising—to minimize the large noise

generated by the short derivative term whilst preserving the transient edges of the dynamic

metabolic signals. Validated against 24-hour gas infusion tests, the proposed method recon-

structs dynamic metabolic signals with the best temporal accuracy among state-of-the-art

approaches, achieving a root mean square error of 0.27 kcal/min (18.8 J/s), while maintain-

ing a low cumulative error in 24-hour total energy expenditure of less than 45 kcal/day

(188280 J/day). When applied to a human exercise session, the proposed methods also

show the best performance in terms of recovering the dynamics of exercise energy expendi-

ture. Overall, the proposed methods improve the temporal resolution of the chamber sys-

tem, enabling metabolic studies involving dynamic signals such as short interval exercises

to carry out the metabolic chambers.

1 Introduction

Human metabolic chambers are essential tools for metabolic studies that require overnight

stays, environmental control (e.g. ambient temperature, humidity, light and sound), and long

duration resting [1]. Dietitians use them to study the effects of food and diet induced thermo-

genesis on human metabolism [2]. Endocrinologists and physiologists use them to study the

effects of environmental changes and medical interventions on human metabolism [3]. Such
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studies often require long-term, continuous monitoring with environmental control to capture

the response to intervention, and metabolic chambers are perfect tools for this.

While this near free-living environment provides comfort to the human subjects and the

flexibility to enable various types of studies, it also presents challenges in measuring energy

expenditure (EE) with high temporal resolution. In essence, the chamber system detects the

subtle gas concentration changes in the chamber air caused by the respiration of the human

subject housed in it, whereas the goal of the system is to detect the volume of O2 consumption

(VO2) and the volume of CO2 production (VCO2) of the subject, and extrapolate energy expen-

diture (EE) and metabolic rate (MR, i.e. EE per unit time) from VO2 and VCO2 [4]. This cre-

ates an inverse system, where the inputs (i.e. VO2 and VCO2) to the system are the desired but

hidden variables, and the outputs (O2 and CO2 concentration in the chamber air) are the direct

measurements carrying little information of interest. This inverse problem (i.e. finding the

input given the output of the system) is challenging in itself when the analytical transfer func-

tion of the system is unknown [5]. Moreover, the chamber system also functions as a low pass

filter [6]. The large room can be considered as a big gas tank that dilutes subtle input signals

(small amounts of VO2 and VCO2 generated by the subject), or equivalently, attenuates the

high frequency portion of the signals, preventing the recovery of the input signals with suffi-

cient temporal resolution.

Although this temporal resolution loss does not affect daily resting MR assessment in the

typical metabolic studies designed to use the chamber, it can prevent the metabolic chamber

from being a versatile tool for dynamic metabolic studies. For example, in sports medicine,

where exercise is concerned, the time to reach a metabolic steady state and the recovery time

to baseline of a subject are important metrics for assessing the subject’s physique. Moreover,

traditional metabolic studies done in chambers usually impose sedentary activities on the sub-

jects, which do not reflect real-world metabolic profiles, where physical activities are inevitable.

Last but not least, a faster chamber response can shorten the waiting time when measuring

resting energy expenditure as well.

This paper aims to improve the temporal accuracy of the chamber system in order to facili-

tate dynamic metabolic studies. To provide sufficient accuracy, step-by-step methods are used

to estimate chamber volume, calibrate gas analyzers, and solve a site-specific problem. To

improve temporal resolution, the paper proposes using a step size of one minute to compute

the finite derivative terms, and applying a robust noise reduction method—total variation

denoising—to minimize the large noise caused by the short derivative term.

The rest of the paper is organized as follows. Section 2 details the system design of the

chamber system from which our experimental data were collected. Section 3 summarizes

related work and the precursory approaches our proposed methods are based on. Section 4

proposes a noise reduction method to improve temporal resolution. Section 5 presents the

results, showing improvement in both temporal resolution and accuracy using the proposed

method on 24-hour infusion validation tests and a human exercise study. Section 6 summa-

rizes the analysis and concludes the paper.

2 System design

The metabolic chambers described in this paper were constructed and integrated by MEI

Research (Edina, MN), are located in the North Hospital on the medical campus of Virginia

Commonwealth University (VCU, Richmond, VA). One chamber is the size of a living room

(3m x 4m x 2.4m, “big chamber”) and can house a treadmill, a bike, a small desk, a toilet, and a

wash basin at the same time. The other chamber is smaller (1.2 x 2.1 x 2.3 m, “small chamber”),

with its volume further reduced by fitting in a set of bed boxes and a mattress, for a faster and
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more accurate response in energy expenditure readings. Both chambers are sealed and main-

tain positive pressure during data collection. Blood ports are also installed in the glass doors

for in vivo blood sampling without the subject leaving the chamber. The chambers also have

climate control, with an air conditioning (HVAC) system utilizing chilled water pipelines and

electric heating coils, equipping the chambers for temperature-sensitive metabolic studies [3].

The settings of the two chambers are shown in Fig 1.

The big chamber has both “push” and “pull” modes for the fresh air to flow through. The

small chamber has only the “push” capability, replenishing the room air by constantly flowing

fresh air and passive ventilation. The fresh air for both chambers is directly sourced from the

medical air system operated by the plant facility at VCU. The medical air system draws ambi-

ent air, filters, dries and compresses it, and sends the clean medical air to each hospital room

via medical air pipelines. The inflow rates of the input medical air can be set from 20 liters per

minute (l/min) to 100 l/min for both chambers, regulated by mass flow controllers (MFCs,

manufactured by Porter Instrument, Hatfield, PA). Since the low pass filtering effect is propor-

tional to the chamber volume, the small chamber’s temporal resolution will surpass the big

chamber’s, given the same conditions and post-processing method. Therefore, in the rest of

this paper, we will use the big chamber’s data to illustrate our method.

The concept of the chamber system is illustrated in Fig 2, revealing an inverse system where

the inputs of the system are the desired variables (VO2 and VCO2). In general, the chamber sys-

tem monitors critical variables such as inflow air rate, O2 concentration in inflow air (OIn
2

) and

room air (OOut
2

), CO2 concentration in inflow (COIn
2

) and room air (COOut
2

), room temperature,

room pressure, and room humidity. All these variables are logged by a computer in the control

lab via integrated software developed in LabVIEW for post-processing in Matlab1.

To measure the changes in gas concentration levels in the chambers, the gas concentrations

of the inflow air and the outflow air are constantly monitored at a sampling rate of once per

minute. This is done by first drawing air at a rate of 2 l/min from the inflow air and outflow

air, drying the air samples to a level below 1000ppm using a gas sample dryer (manufactured

by Perma Pure LLC, Lakewood, NJ), and then measuring the air samples’ gas concentrations

using gas analyzers (manufactured by Siemens, model: Ultramat/Oxymat 6). In order to maxi-

mize the resolution of the gas analyzers, the range of the O2 gas analyzers is set to 20% * 21%,

and the range of the CO2 gas analyzers is set to 0% * 1%, which are the normal ranges of

room air concentration with a human subject in it.

Fig 1. VCU metabolic chambers. Left: big chamber as a living room; right: small chamber (flex room) for single activities. Boxes can be added to the

small chamber for resting energy expenditure studies.

https://doi.org/10.1371/journal.pone.0193467.g001
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3 Related work

Three schools of approach were developed to solve the inverse problem mentioned in Section

1. The first school resorted to trend identification and exponential curve fitting with time slid-

ing windows (approximately 20–30 minutes long) [7] [8]. Although it can recover steady-state

MR signals with a long duration, it performs poorly during the dynamic phase due to the limi-

tation of the long window size. The second school considered the chamber as a linear time-

invariant system, and set up the inverse problem as a ill-conditioned deconvolution problem.

Therefore, the inverse problem was transformed to identifying the transfer function of the sys-

tem and solving the deconvolution with regularization [9] [10]. Using a theoretical transfer

function, this method was able to achieve a 16-minute temporal resolution from a 16.6 m3

chamber with inflow rates of 50 −150 l/min. However, for dynamic MR signals during exer-

cise, a much higher temporal resolution (e.g. 5 mins) is often desired. The third school mod-

eled the instantaneous MR signal as a linear combination of recorded gas concentration data

and its derivative [11] using the Z-Transform method, hence transforming the inverse prob-

lem to a direct problem [12] [13] [14] [15]. The mathematical simplicity of this method is help-

ful for system diagnosis, and it also enables real-time computation of MR [13]. The temporal

accuracy of this approach greatly depends on the derivative terms, and also depends on the

estimation of the chamber volume, as well as the accuracy of the gas analyzers. Based on the

method proposed by [13], the delay in response comes from the step size of the derivative

term. However, the cost of shortening the derivative step is the noise introduced to the finite

difference computation [16]. [17] reduced this noise in the finite difference computation with

a central difference method and wavelet noise reduction, and the derivative step size can be

shortened to three minutes, effectively reducing the time lag to two minutes in comparison

with ground truth MR signals.

Fig 2. Concept diagram of the metabolic chamber. The chamber is configured as a push type of calorimeter with absolute gas analyzers measuring O2

and CO2 concentrations of both inflow air (medical grade air) and outflow air (expired air from human breath mixed with room air).

https://doi.org/10.1371/journal.pone.0193467.g002

Dynamic signal processing for human metabolic chamber studies

PLOS ONE | https://doi.org/10.1371/journal.pone.0193467 April 24, 2018 4 / 18

https://doi.org/10.1371/journal.pone.0193467.g002
https://doi.org/10.1371/journal.pone.0193467


In this paper, we base our work on the third school approach, and test the feasibility of

adopting the shortest possible step size for the derivative term, in order to maximize the

temporal resolution. Unlike the first and second school approaches, there is no system charac-

terization method (e.g. transfer function of the system is known) built into this approach.

Therefore, careful step-by-step corrections are required prior to studies to obtain accurate

measurements. For example, gas analyzer drift needs to be monitored on a daily basis and reg-

ularly calibrated; the offset between gas analyzers monitoring input air and output air also

needs to be determined and compensated for; the chamber volume needs to be re-assessed

every time the room furniture setting is changed. Even with these maintenance steps, errors

can still stem from the unstable incoming air source, noise introduced by the finite difference

term in the calculation, and the reduction in temporal accuracy when recovering high-fre-

quency metabolic signals. These issues are discussed in detail in Section 4. The rest of this sec-

tion describes the third school approaches on which our work is based.

3.1 Calculations of MR

The chamber system estimates VO2 (unit: l/min) and VCO2 (unit: l/min) by measuring the

changes in O2 (range: 0.20–0.21) and CO2 concentrations (range: 0–0.01) in the entire room.

The ways to derive VO2 and VCO2 from gas concentrations are captured in Eq 1, using the

methods detailed in [13, 18]:

(
VO2 ¼ � F � ðOOut

2
�H � OIn

2
Þ � V � _O2

Out

VCO2 ¼ F � ðCOOut
2
�H � COIn

2
Þ þ V � _CO2

Out
ð1Þ

In Eq 1, F is the flow rate of the fresh medical air going into the chamber; OIn
2

, COIn
2

, OOut
2

,

and COOut
2

are the O2 and CO2 levels in the incoming air and chamber air, respectively; _O2
Out

and _CO2
Out are the time derivatives of the O2 and CO2 concentration levels in the chamber air.

These derivative terms in discrete form are:

_O2
Out½n� ¼

O2
Out½n� � O2

Out½n � k�
k

_CO2
Out½n� ¼

CO2
Out½n� � CO2

Out½n � k�
k

8
>><

>>:

ð2Þ

where n is the time index of the discrete signals, and k is the step size of the backward deriva-

tive term. V is the volume of the chamber, which is determined prior to validation tests, using

the methods detailed in Section 3.2. H is the Haldane coefficient [13]:

NIn
2
¼ 1 � ðOIn

2
þ COIn

2
Þ

NOut
2
¼ 1 � ðOOut

2
þ COOut

2
Þ

H ¼
NIn

2
� _NOut

2
� V=F

NOut
2

8
>>>><

>>>>:

ð3Þ

Lastly, given VO2 and VCO2, EE (unit: kcal, in our paper, we follow the convention of using

“small calorie”, kcal is thus equivalent to one Calorie, or “big calorie”, 1 kcal = 4184 J), or MR

(unit: kcal/min) can be derived using Weir’s equation, ignoring the urinary nitrogen term [4]:

MR ¼ 3:941� VO2 þ 1:106� VCO2 ð4Þ
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3.2 Determining chamber volume

Although one can roughly estimate the chamber volume by measuring the dimensions of the

chamber and the equipment in the chamber, the estimation error can be large due to the irreg-

ular shapes of the furniture and the room layout. Common practice for determining the cham-

ber volume is through a “washout” test, in which fresh air is sent into an empty chamber

which has a higher CO2 concentration after a human study. The CO2 concentration signal in

the empty chamber is then captured until it approaches the CO2 level in the fresh air. This sig-

nal represents the zero-input response of the chamber system. Therefore, the chamber volume

as a parameter of Eq 1 can be determined by solving a series of zero-input differential equa-

tions. The zero-input response equation can be derived from Eq 1:

V
F

_CO2
Out þ CO2

Out � CO2
In ¼ 0 ð5Þ

where CO2
In is known. The discrete form of the general solution to this zero-input response

differential equation is [19]:

COOut
2
½n� ¼ A� e

�

F½n�
V þ C;

ð6Þ

By recording COOut
2

and F over an extended period, the coefficient A, offset C, and the

chamber volume V can be found by fitting an exponential curve. Similarly, this method can be

applied by recording the OOut
2

curve as well. Fig 3 shows the recorded OOut
2

and COOut
2

curves

over 16 hours for the big chamber under the zero-input condition, and the fitted curves after

finding A, C, and V in Eq 6. The big chamber volume, V, was then found to be 26000 Liters.

3.3 Calibration

Due to the drift in gas analyzers, it is necessary to calibrate the gas analyzer prior to human

subject studies. Reference points for calibration can be obtained by mixing gases onsite to

known concentration levels. The gas mixing is done using a gas blender which is comprised of

MFCs and developed by MEI Research. Each MFC is pre-validated by a primary flow standard

(Mesa Labs, ML-800). During the calibration stage, three MFCs will be used to regulate the

flow rates of N2, O2, and CO2 gases. These three gases then flow into a manifold that mixes

them at a known combination of flow rates. The flow rates are pre-determined to generate O2

levels from 20% * 21%, and CO2 levels from 0% * 1%. The reference points of O2 and CO2

concentrations can be calculated using Eq 7.

O2% ¼
MFCO2

MFCO2
þMFCCO2

þMFCN2

� 100%

CO2% ¼
MFCCO2

MFCO2
þMFCCO2

þMFCN2

� 100%

8
>>>><

>>>>:

ð7Þ

whereMFCO2
,MFCCO2

, andMFCN2
are the flow rates (units: l/min) of O2, CO2, and N2 being

mixed in the blender respectively. The results of the calibration are shown in the supporting

information S1 File: Calibration Results, Figs A-B.

3.4 Infusion validation

For validation, the ground truth input and output of the system are obtained by infusing N2

and CO2 into an empty chamber with known flow rates controlled by the MFCs, mimicking

Dynamic signal processing for human metabolic chamber studies
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the effect of the consumption of O2 and production of CO2 during human respiration. Thus,

the ground truth input of the system can be found by:

VOExp2 ¼
F � OIn

2
�MFCN2

MFCN2
þ F � NIn

2

VCOExp2 ¼
F � ðMFCCO2

� NIn
2
� MFCN2

� COIn
2
Þ

MFCN2
þ F � NIn

2

8
>>>><

>>>>:

ð8Þ

where NIn
2

is the estimated N2 concentration in the inflow air,MFCCO2
andMFCN2

are the

infusion flow rates of CO2 and N2 respectively; VOExp2 , VCOExp2 (units: l/min) are the expected

values of VO2 and VCO2 respectively; the expected MR valuesMRExp (unit: kcal/min) can be

found using Weir’s equation. To obtain the ground truth output of the system, a recursive

method to transform VOExp2 to OOutExp2 was adapted from [17] by rearranging Eq 1 and

Fig 3. Exponential curve fitting for chamber volume estimation. Exponential curves were fitted into measured O2 and CO2 gas concentrations from

a washout test. CO2 and O2 estimated volumes should be similar in a properly functioning and calibrated system.

https://doi.org/10.1371/journal.pone.0193467.g003
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substituting from Eq 2:

OOutExp2 ½n� ¼ OOut
2
½n�; for n ¼ 1;

OOutExp2 ½n� ¼
1

V þ F½n� �H½n�
� ð� VOExp2 ½n�

þ F½n� � OIn
2
½n� þ V � OOut

2
½n � 1�Þ; for n > 1

8
>>>><

>>>>:

ð9Þ

where OOutExp2 is the expected concentration level of OOut
2

, and step size k is chosen to be 1. Simi-

larly, COOutExp2 can also be obtained using this recursive method.

3.5 Run-time MR signals

The run-time MR signals during an empty chamber test and an infusion test are shown in Figs

4 and 5. In the empty chamber test, inflow air was sent into the chamber at 60 l/min as normal

Fig 4. Baseline MR (kcal/min) measured in an empty chamber. The expected MR (solid blue) signal for an empty chamber is constant zero, and the

run-time MR (solid magenta) shows there is spiky noise in the measured MR.

https://doi.org/10.1371/journal.pone.0193467.g004
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but the chamber had no subject in it. In this setting, the expected MR values should be constant

zero (baseline of the system), regardless of the inflow rates and the volume of the chamber.

The infusion session lasted for 24 hours, including a dynamic period to simulate high-fre-

quency metabolic signals during physical activities and a static period to simulate low-fre-

quency metabolic signals during sedentary activities and sleep. In the dynamic period, the

high-frequency metabolic signals were simulated using 8-minute, 5-minute, 3-minute, and

1-minute step input functions, with 3-minute or 5-minute resting intervals in between. The

raw signals were computed using Eq 1 with an 8-minute backward derivative term, imple-

mented in real-time in LabVIEW. Owing to the accurate estimation of chamber volume and

gas analyzer calibration, the raw signals measure the longer term resting MR accurately. How-

ever, when the MR signals are more dynamic (e.g. 1-minute high-level metabolic activities

Fig 5. MR measured during a gas infusion test session in the big chamber. The run-time MR signal is compared to the expected MR signal for a

dynamic period (top) simulating MR during physical activities and a static period (bottom) simulating MR during sedentary periods and sleep.

https://doi.org/10.1371/journal.pone.0193467.g005
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with only 3-minute intervals in between), the temporal resolution is lost in the raw signals dur-

ing the dynamic period.

Figs 4 and 5 also reveal the presence of artifact spikes in the raw MR signals. Based on our

observations over half a year, we identified that the error was caused by the varying O2 level in

the medical air. The CO2 level also varies in the medical air, but due to its negligible magni-

tude, we focused on removing the O2 spikes using a pre-processing algorithm. The reason

and remedy for the spikes are detailed in the supporting information S2 File: Spike Removal

Method, Figs A-D.

3.6 Human exercise data

We also collected data on one healthy female subject (age: 38, weight: 59kg, BMI: 22) during

treadmill exercise. The study protocol was approved by the Virginia Commonwealth Univer-

sity’s IRB and the written consent was obtained before the study. During the study, the subject

entered the chamber and rested for 25 minutes in order for the chamber to equilibrate as well

as to obtain the baseline of the subject, and then was cued to walk on the treadmill at three dif-

ferent speeds (3.4 miles/hour, 3 miles/hour and 5.2 miles/hour) for about 15 minutes and to

jog for a short time. The timestamps of the start and end of each bout of exercise were anno-

tated in the software recording the MR.

4 Proposed method

In this section, we present a noise-reduction method to reduce the noise created by 1-minute

derivative finite estimation to best improve the temporal accuracy. Besides the low pass filter

characteristic of the chamber system [6] that reduces its temporal accuracy, the accuracy

may be further decreased by finite difference calculations. The noise reduction process for

derivative terms usually involves numeric finite difference estimation methods (such as

Newton forward difference or weighted finite difference) combined with filtering tech-

niques, such as central difference methods. However, these methods usually require a

relatively long step size to smooth out the noise in the numeric derivatives, hindering the

recovery of MR signals with higher frequency. Therefore, in the proposed method, we use a

1-minute backward difference calculation, which provides the highest time resolution given

a sampling rate of once per minute. The numeric noise caused by this short-term derivative

estimation will be compensated for by other filtering techniques. To preserve the transitional

edges in the signal, we adopted a total variation denoising (TVD) technique. In comparison

to Tikhonov regularization, this ℓ1-norm regularization technique is superior in preserving

edges without over-penalizing the discontinuity of the signal, thus it does not have the edge

smoothing effect of Tikhonov regularization [20]. The TVD method minimizes the differ-

ence between a noisy signal y[n] and a true signal x[n] while trying to preserve the edge of

the noisy signal. The noisy signal y[n] can be considered as the true signal x[n] with additive

white noise w[n]:

y½n� ¼ x½n� þ w½n�; n ¼ 1; 2; 3 . . .N ð10Þ

The total variation, which measures the fluctuation of a signal x[n], is defined as the ℓ1-

norm of the derivative of the signal:

TV ¼
XN� 1

n¼1

jx½nþ 1� � x½n�j ð11Þ
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The goal of the TVD algorithm is to find an approximation to the true signal x[n] with

reduced TV. The closeness to x[n] is measured by the sum of squared errors:

1

2

XN

n¼1

jy½n� � x½n�j2 ð12Þ

Thus the TVD problem can be seen as minimizing the sum of squared errors between x[n]

and y[n] penalized by the TV of x[n]:

arg min
x2RN

ff ðxÞ ¼
1

2

XN

n¼1

jy½n� � x½n�j2 þ l
XN� 1

n¼1

jx½nþ 1� � x½n�jg ð13Þ

where λ is a positive regularization parameter. By tuning λ, the reduction of TV in the noisy sig-

nal can be adjusted. y[n] is _O2
Out½n� and x[n] is the true signal of _O2

Out½n�. Eq 13 poses a convex

but not smooth optimization problem [21] [22] because of the ℓ1-norm regularization term,

which can be difficult to solve. To solve this problem, a Majorization-Minimization (MM) algo-

rithm is adopted to reduce the computational complexity [23] [24]. In this algorithm, a sequence

of convex functions, Gs(x) (where s = 0, 1, 2, . . .), is used to approximate f(x), such that:

GsðxÞ � f ðxÞ; 8x ð14Þ

and GsðxsÞ ¼ f ðxsÞ ð15Þ

The optimization problem posed by Eq 13 then becomes:

xsþ1 ¼ arg min
x2RN

GsðxÞ ð16Þ

and the solution to this optimization problem then becomes:

xsþ1 ¼ y � DTð
1

l
Ls þ DD

TÞ
� 1Dy ð17Þ

where x is initialized first as x = y. D is the differential matrix, and DT is its transpose:

D ¼

� 1 1 0 . . . 0

0 � 1 1 . . . 0

..

. . .
. . .

. ..
. ..

.

0 . . . � 1 1 0

0 . . . 0 � 1 1

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

ð18Þ

and Λs is the diagonal matrix of difference vectors D xs:

L ¼

jx2 � x1j

jx3 � x2j

. .
.

jxkþ1 � xkj

. .
.

jxN � xN� 1j

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

ð19Þ
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The computational algorithm for this solution is implemented in Matlab as described in

[24]. The regularization parameter λ is empirically determined by comparing _O2
OutExp with

measured _O2
Out, and the λ that provides the minimum root mean square error (RMSE)

between _O2
OutExp and _O2

Out is used.

5 Results and discussion

22 infusion sessions were run to assess chamber performance. To evaluate the noise reduc-

tion technique’s performance, we also compared the TVD filtering method with three other

commonly used noise reduction methods: an 8-point moving average filter, a 6-minute

locally weighted scatterplot smoothing (Lowess) regression method, and a Wavelet correc-

tion method used in [17]. The results are presented below. The results of the 1-minute back-

ward derivative signal after noise reduction are shown in Fig 6. The theoretical derivative

was obtained by taking the 1-minute backward derivative terms of OOutExp2 computed using

Eq 9.

As shown in Figs 7 and 8, the proposed method recovers the simulated MR signals as well

as the signals of gas exchange rates with no delay in the step response. This is suitable for

Fig 6. 1-minute backward derivative signals filtered by TVD and Wavelet. Both methods were compared against the theoretical derivative data in a

24-hour infusion session.

https://doi.org/10.1371/journal.pone.0193467.g006
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evaluating exercise studies in which the time to reach a steady state is an important parameter

in evaluating the human subject’s physique.

Six error metrics—RMSE, mean absolute error (MAE), mean absolute percentage error

(MAPE), correlation coefficient, cumulative error in total EE (TEE) per day, and absolute

error in respiratory exchange ratio (RER) per day, are used to evaluate the performance of

the proposed system by comparing the measured MR against the expected MR obtained dur-

ing infusion validation. The results are presented in Fig 9 based on data from 22 infusion ses-

sions. Among the six error metrics, RMSE evaluates the measured MR with a severe penalty

on the outliers, MAE evaluates the measured MR without penalizing the outliers, MAPE is a

standard error metric to evaluate the accuracy of a system, and the cumulative error in TEE

is computed by summing the processed MR data using the trapezoid integration rule on the

24-hour infusion MR signals. Fig 9 shows that the proposed method best estimates dynamic

MR signals evaluated by RMSE, MAE and MAPE. Overall, all methods perform similarly

well in terms of the cumulative error in TEE per day (less than 45 kcal/day) and daily RER

(absolute error of 0.0051). However, on average, the TVD method shows the lowest error

when temporal resolution is considered, with an RMSE of 0.27 kcal/min (18.8 J/s), an MAE

Fig 7. MR signals recovered by TVD and Wavelet. Both methods were compared against expected MR for the dynamic period (top) and the static

period (bottom) in a 24-hour infusion session.

https://doi.org/10.1371/journal.pone.0193467.g007
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Fig 8. Gas exchange signals (VO2 and VCO2) recovered by TVD and Wavelet. Both methods were compared against

expected levels for the dynamic period (top) and the static period (bottom) in a 24-hour infusion session.

https://doi.org/10.1371/journal.pone.0193467.g008
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of less than 0.13 kcal/min (9 J/s), an MAPE of 6.3%, and the highest correlation coefficient

(0.99).

In Fig 10, we demonstrate that in one human subject exercise session, the proposed method

recovers the MR signals with sufficient temporal resolution and provides clear transition edges

and the flattest estimation in the steady states during exercise. The moving average method

and the Lowess method both over-smooth the MR signals, and do not recover the steady state

well. Although the Wavelet method is equally good at preserving the edges of the signal during

denoising, it can also create artifacts in the signals. Overall, the proposed method estimated

such temporal features accurately, by recovering the clear transition edges of MR signals dur-

ing exercise.

6 Conclusion

This paper proposed methods for improving the temporal accuracy in post-processing for

human metabolic chambers. Adopting a 1-minute backward derivative term and robust total

variation noise reduction techniques, the proposed methods enable the chamber system to

capture high-frequency metabolic signals with improved temporal accuracy. This improved

performance will allow researchers to incorporate exercise into metabolic chamber study pro-

tocols, where the dynamic patterns of metabolic rate signals are of interest.

Fig 9. Error metrics used to evaluate the performance of the filter methods. Error metrics include RMSE, MAE, MAPE, correlation coefficient,

cumulative error in TEE per day, and absolute error in respiratory exchange ratio per day. Measured MR is compared to the expected MR obtained

during infusion validation.

https://doi.org/10.1371/journal.pone.0193467.g009
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Supporting information

S1 File. Calibration results. A. Linearity of blender calibrated gas analyzers. B. Bland-Altman

analysis for blender calibration. Red circles are difference between true values and using un-

calibrated gas analyzer readings and blue diamonds are Bland-Altman plots using calibrated

gas analyzer readings.

(PDF)

S2 File. Spike removal method. A. Unstable gas concentration in medical air. B. Probability

plot of the O2 signals. C. Post-processing method to remove spikes of O2 in incoming air. D.

The baseline of a week-long incoming O2 signal is preserved after filtering.

(PDF)
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