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Abstract

Background: The medical imaging to differentiate World Health Organization (WHO) grade Il (ODG2) from Il
(ODG3) oligodendrogliomas still remains a challenge. We investigated whether combination of machine leaning
with radiomics from conventional T1 contrast-enhanced (T1 CE) and fluid attenuated inversion recovery (FLAIR)
magnetic resonance imaging (MRI) offered superior efficacy.

Methods: Thirty-six patients with histologically confirmed ODGs underwent T1 CE and 33 of them underwent FLAIR
MR examination before any intervention from January 2015 to July 2017 were retrospectively recruited in the
current study. The volume of interest (VOI) covering the whole tumor enhancement were manually drawn on the
T1 CE and FLAIR slice by slice using ITK-SNAP and a total of 1072 features were extracted from the VOI using 3-D
slicer software. Random forest (RF) algorithm was applied to differentiate ODG2 from ODG3 and the efficacy was
tested with 5-fold cross validation. The diagnostic efficacy of radiomics-based machine learning and radiologist’s
assessment were also compared.

Results: Nineteen ODG2 and 17 ODG3 were included in this study and ODG3 tended to present with prominent
necrosis and nodular/ring-like enhancement (P < 0.05). The AUC, ACC, sensitivity, and specificity of radiomics were
0.798, 0.735, 0.672, 0.789 for T1 CE, 0.774, 0.689, 0.700, 0.683 for FLAIR, as well as 0.861, 0.781, 0.778, 0.783 for the
combination, respectively. The AUCs of radiologists 1, 2 and 3 were 0.700, 0.687, and 0.714, respectively. The efficacy
of machine learning based on radiomics was superior to the radiologists’ assessment.

Conclusions: Machine-learning based on radiomics of T1 CE and FLAIR offered superior efficacy to that of
radiologists in differentiating ODG2 from ODG3.
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Background

Oligodendrogliomas (ODGs), predominantly occur in
adults with a peak between 40 and 60 years of age, consti-
tute 5-20% of all gliomas [1]. Patients with low-grade
(ODQ@2) are slightly younger than those with high-grade,
anaplastic tumors (ODG3) [2]. The co-deletion of the short
arm of chromosome 1 (1p) and the long arm of chromo-
some 19 (19q) [3] occursin about 60-90% of ODGs, thus
making it the molecular hallmark for ODGs [1].

Calcification [4, 5] and the cortical-subcortical location
[5, 6], most commonly in the frontal lobe [4], are regarded
as the characteristic features of ODGs. In contrast to other
low-grade gliomas (LGG), minimal to moderate enhance-
ment and moderately increased perfusion are commonly
seen in ODGs, making the differentiation of OGD2 from
OGD3 difficult. Besides, ODG3 often shares the imaging
features with ODG2 on conventional MRI, leading to unre-
liable tumor grade prediction. Edema, haemorrhage, cystic
degeneration and contrast enhancement are more com-
monly seen in ODG3, but may also be seen in ODG2 [4].
Thus, a new medical imaging diagnostic strategy for differ-
entiation of ODG2 from ODGS3 needs to be developed.

Advanced imaging techniques, including DWI, perfu-
sion imaging, MR spectroscopy and PET, are employed to
obtain more sensitive diagnostic markers, however with
unsatisfying efficacy. Diffusion restriction is seldom ob-
served in ODG2 [6]. Averaged ADC values are reported to
be lower in high grade glioma (HGG) than in LGG, how-
ever, ADC values of ODG3 are overlapped with that of
ODG2, making DWTI unreliable maker to distinguish them
[7]. Using the cut-off value of 1.75 for relative cerebral
blood volume (rCBV) ratio, HGG can be differentiated
from LGG with a sensitivity of 95% [8]. Unfortunately,
these findings may not be suitable for differentiating
ODGs, because markedly elevated rCBV can also be ob-
served in ODG2, thus, a reliable distinction can’t be easily
achieved [7, 9, 10]. This is due to the presence of the short
capillary segments in ODGs [5] which may contribute to
the relatively low specificity (70%) reported by Law et al.
[8]. Therefore, focally elevated rCBV does not necessarily
indicate ODG3. Besides, correlation of K™ with tumor
grade is even poorer than that of rCBV, and it is more
commonly used to assess the treatment effects [11]. Tak-
ing together, the efficacies of advanced MRI techniques in
differentiating ODG2 from ODGS3 are limited.

Combining quantitative image features extracted from
conventional T1-weighted contrast-enhanced (T1 CE) and
fluid attenuated inversion recovery (FLAIR) images with
machine learning algorithms, radiomics can provide com-
prehensive information that is difficult to perceive with vis-
ual inspection [12, 13] and is commonly used in tumor
diagnosis, staging and prognosis of tumors [14—20]. How-
ever, most previous studies were mainly focused on ad-
vanced MR techniques, the varied post-processing models,
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varied interpretation and evaluation criteria restricted their
clinical applications. Except for their limited diagnostic
powers, these advanced MRI techniques are not commonly
available in some rural areas. However, the T1CE and
FLAIR are widely-used in almost all hospitals as the image
routine sequences for glioma diagnosis and staging. It is
thus feasible to combine radiomics with T1 CE and FLAIR
to establish a practical and economical imaging solution for
differentiating ODG2 from ODGS3.

In this study, we aimed to evaluate the diagnostic
power of machine-learning based on T1CE and FLAIR
imaging radiomics in comparison with the radiologists’
performance in differentiating ODG2 from ODGS3.

Methods

Patients

This study was approved by our institutional review
board and the requirement for informed consent was
waived based on its retrospective nature. From January
2015 to July 2017, patients with confirmed ODGs were
retrospectively and consecutively recruited. Tumors
were classified according to 2007 WHO classification or
2016 WHO guidelines when enough information was
available. The including criteria were, 1. patients under-
went preoperative conventional MRI scan. 2. patients
underwent gross total or subtotal tumor resection and a
confirmative pathological diagnosis was made. Thirty-six
patients with T1CE were included (19 men, 17 women;
mean age = 45 years; age range = 9-65 years) and classi-
fied into two groups: ODG2 (n =19; mean age =46
years, age range = 10—65 years) and ODG3 (n = 17; mean
age = 44 years, age range = 9—65 years). Thirty-three out
of the above 36 patients with FLAIR were enrolled (18
men, 15 women; mean age = 45 years; age range = 9-65
years) and classified into two groups: ODG2 (n=17;
mean age = 45 years, age range = 10—65 years) and ODG3
(n =16; mean age =45 years, age range = 9-65 years).
The patient selection is summarized in Fig. 1.

MRI data acquisition

All patients underwent 3-T MR scanning (Discovery
MR750, General Electric Medical System, Milwaukee,
WI, USA) with an 8-channel head coil (General Electric
Medical System). The initial routine scan sequences for
each patient included T1-weighted imaging (T1WI) per-
formed before and after contrast enhancement, an axial
T2-weighted imaging (T2WI), and a transverse FLAIR to
assist with diagnosis.

The parameters of the conventional MRI sequences
were as the follows: T1IWI with gradient echo (TR/TE,
1750 ms/24 ms; matrix size, 256 x 256; FOV, 24 x 24 cm;
number of excitation, 1; slice thickness, 5 mm; gap, 1.5
mm), T2WI with turbo spin-echo (TR/TE, 4247 ms/93
ms; matrix size, 512 x 512; FOV, 24 x 24 cm; number of
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Fig. 1 Flow diagram of the study design

excitation, 1; slice thickness, 5 mm; gap, 1.5 mm) and sa-
gittal T2WI (TR/TE, 10,639 ms/96 ms; matrix size,
384 x 384; FOV, 24 x 24 cm; number of excitation, 2;
slice thickness, 5 mm; gap, 1.0 mm). We obtained axial
FLAIR with the following parameters: TR/TE, 8000 ms/
165 ms; matrix size, 256 x 256; FOV, 24 x 24 cm; number
of excitations, 1; slice thickness, 5 mm; gap, 1.5 mm.

Finally, T1 CE were performed after intravenous bolus
injection of gadodiamide (Omniscan; GE Healthcare, Co.
Cork, Ireland), at a dose of 0.1 mmol/kg body weight.
The parameters of T1 CE with volumetric interpolated
breath-hold examination (VIBE) were as the follows:
TR/TE, 8.2 ms/3.2 ms; T1, 450 ms; flip angle 12° section
thickness, 1.2 mm; FOV, 24 x 24 cm; matrix size, 256 x
256; number of excitations, 1; image number, 140.

Tumor segmentation or delineation
Two neuroradiologists (S.S.Z with 8 years of experience
and L.E.Y, with 12 years of experience in neuro-oncology
imaging) independently reviewed all images. A third se-
nior neuroradiologist (G.B.C, with 25 years of experience
in euro-oncology imaging) re-examined the images and
determined the final imaging diagnoses when inconsist-
ency occurred. The preoperative conventional image fea-
tures of tumor were retrieved based on the criteria
outlined in Additional file 1: Table S1 (online).

The volumes of interest (VOIs) were semi-automatically
segmented using ITK-SNAP (version3.6, http://www.itk-
snap.org) by two neuroradiologists (S.S. Z and L.F.Y). The

VOIs covering the enhanced lesion were drawn slice by
slice on T1CE and co-registered to and FLAIR images,
avoiding the regions of macroscopic necrosis, cyst, edema
and non-tumor macrovessels [21].

Radiomics strategy

Feature extraction

Texture features include 162 first-order logic features,
216 Gy level co-occurrence matrix (GLCM) features,
144 Gy level run length matrix (GLRLM) features, 144
Gy level size zone matrix (GLSZM) features, 126 grey
level difference matrix (GLDM) features, 45 neighbor-
hood grey-tone difference matrix (NGTDM) features
and 14 shape Features. A total of 1072 features were ex-
tracted from the T1CE and FLAIR images using 3D-
slicer software. We used the aforementioned features be-
cause these features were found to be relevant for distin-
guishing ODG2 from ODG3 in our previous studies by
using MR imaging [16].

Feature selection

After being centered and scaled, the highly redundant
and correlated features were subjected to a two-step fea-
ture selection procedure. First, highly correlated features
were eliminated using Pearson correlation analysis, with
the r threshold of 0.75. Then, a random forest (RF) clas-
sifier consisting of a number of decision trees was used
to rank the feature importance. Every node in the deci-
sion trees is a condition on a single feature, designed to
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split the dataset into two so that similar response values
end up in the same set. The measurement based on
which optimal condition is chosen is called impurity.
For classification, it is typically either Gini impurity or
information gain/entropy. Thus, when training a tree, it
can be computed how much each feature decreases the
weighted impurity in a tree. To build the RF, the impur-
ity decrease from each feature can be averaged and the
features are ranked according to this measurement. In
our study, Gini impurity decrease was used as the criter-
ion to indicate the feature importance.
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Radiomics model building

The 30 most important features were fed into a Condi-
tional Inference RF classifier to build model [22]. Five-fold
cross validation was employed for tuning hyper-parameter
number of RF trees. Five-fold cross validation including
pre-processing, feature selection and model construction
were performed 3 times in order to avoid bias and overfit-
ting as much as possible. The final results were the aver-
age from 3 performances. There was no feature selection
in the combination of T1 CE and FLAIR throughout the
model building. Accuracy, sensitivity and specificity were
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Fig. 2 The main procedure of the radiomic strategy for preoperative ODGs grading. Based on T1 CE and FLAIR data (a) and tumor volume of
interest (VOI) manually drawn on resampled T1 CE and FLAIR images (b), a group of parametric images are derived and the corresponding

parametric maps of the whole tumor region are extracted (c). Utilizing radiomic features analysis; a big collection of tumor parameter attributes
was acquired for the following machine learning process (d). Feature selection methods were implemented and compared using random forest
(RF) classifier with additional discussion on model parameters to construct the optimal ODG grading model (e)
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computed to evaluate the classifying performance. The re-
ceiver operating characteristic (ROC) curve was also built
to provide the area under the ROC curve (AUC). The lar-
ger the AUC, the better the classification [23]. The whole
procedure of feature extraction and machine learning was
described in Fig. 2.

Radiologist’s assessment

To compare the efficacies of neuroradiologist and ma-
chine learning in differentiating ODG2 from ODG3, the
images were also independently assess by three junior
neuroradiologists (X.L.F, G. X and Y. H with 6, 7 and 7
years of neuroradiology experience, respectively). The
neuroradiologists were blinded to the clinical informa-
tion, but were aware that the tumors were either ODG2
or ODG3, without knowing the exact number of patients
with each entity. The three readers assessed only con-
ventional MR images (T1WI, T2WI, FLAIR and T1 CE),
and recorded the final diagnosis using a 4-point scale
(1 = definite ODG2; 2 =likely ODG2; 3 =likely ODG3;
and 4 = definite ODG3) [24].

Statistical analysis

Fisher exact test or the Chi-square test were used for the
categorical variables and unpaired Student ¢ test was
used for continuous variable between ODG2 and ODG3
groups. The statistical analyses of clinical characteristics
were performed by using SPSS 20.0 software (SPSS Inc.,
Chicago, IL, USA).

The statistical analyses of machine-learning were per-
formed using R version 3. 4. 2 (R Foundation for Statistical
Computing). A RF analysis was performed to train the
machine-learning classifier. The goal of machine learning
was to build the model to differentiate ODG2 from ODG3
based on radiomics features of T1 CE and FLAIR images.
The following R packages were used: the random forest
package was used for feature ranking; the caret and unbal-
anced packages were used for RF classification. Classifier
performance was determined by using accuracy, sensitivity
and specificity. The AUC values were also calculated for
three readers and compared with that of the radiomics clas-
sifier. P value <005 was considered as statistical
significance.

Results

Patient characteristics

The main clinical characteristics and conventional MRI fea-
tures of the 36 patients (ODG2 and ODG3) were summa-
rized in Table 1. Tumor necrosis was more frequent in
ODG3 than in ODG2 groups (P = 0.044), reflecting the hyp-
oxia as a result of the rapid tumor growth. In addition,
ODG3 were related to the nodular/ring-like enhancement
patterns (P =0.002). Besides, 10/19 (52.6%) of ODG2 and
10/17 (58.8%) of ODG3 situated in the frontal lobe,

Page 5 of 10

Table 1 Clinical characteristics and MRI features of patients

Variable ODG2 ODG3 Total P value
No. of patients, n 19 17 36 NA
Location, n (%) 0.378

Frontal 10/19 (52.6) 10/17 (58.8)  20/36 (55.6)

Temporal 3/19 (15.8)  5/17 (294) 8/36 (22.2)

Parietal 3/19 (158)  1/17(59) 4/36 (11.1)

Insular 1/19 (5.3) 1/17 (5.9) 2/36 (5.6)

Occipital 0/19 (0) 0/17 (0) 0/36 (0)

Others 2/19(105)  0/17 (0) 2/36 (5.6)

Gender, n (%) 0.202
Male 8/19 (42.1)  11/17 (64.7)  19/36 (52.8)
Female 11719 (579) 6/17 (353) 17/36 (47.2)

Age ? 0.788
Mean +SD 456+137 443 +£151 450+ 144

Signal, n (%) 0.092
Homogeneous 6/19 316) 1/17 (5.9) 7/36 (19.4)
Heterogeneous 13/19 (684) 16/17 (94.1)  29/36 (80.6)

Tumor cross midline, n (%) 1.000
No 16/19 (84.2) 14/17 (824)  30/36 (83.3)

Yes 3/19 (15.8)  3/17 (17.6) 6/36 (16.7)

Multiple foci, n (%) 0.736
No 12/19 (63.2) 9/17 (52.9) 21/36 (58.3)

Yes 7/19 36.8)  8/17 (47.1) 15/36 (41.7)

Necrosis, n (%) 0.044*
No 13/19 (684) 5/17 (294) 18/36 (50.0)

Yes 6/19 (31.6) 12/17 (70.6)  18/36 (50.0)

Cyst, n (%) 0.255
No 16/19 (84.2) 11/17 (64.7)  27/36 (75.0)

Yes 3/19 (15.8)  6/17 (35.3) 9/36 (25.0)

Edema, n (%) 0.106
No 4/19 21.1)  0/17 (0) 4/36 (11.0)

Yes 15/19 (789) 17/17 (100.0) 32/36 (88.9)

Border, n (%) 1.000
Sharp/smooth 2/19 (105)  1/17 (5.9) 3/36 (8.3)
Indistinct/irregular  17/19 (89.5) 16/17 (94.1)  33/36 (91.7)

Enhancement, n (%) 0.002*
No/blurry 15/19 (789) 4/17 (235) 19/36 (52.8)
Nodular/ring-like  4/19 (21.1)  13/17 (76.5)  17/36 (47.2)

Cognitive dysfunction, n (%) 0274
No 7/19 (36.8)  3/17 (17.6) 10/36 (27.8)

Yes 12/19 (63.2) 14/17 (824)  26/36 (72.2)

Epileptic seizures, n (%) 1.000
No 10/19 (52.6) 9/17 (52.9) 19/36 (52.8)

Yes 9/19 (474)  8/17 (47.1) 17/36 (47.2)
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indicating no significant group difference. No significant dif-
ference of other clinical characteristics (gender, age) or im-
aging paradigms was observed between ODG2 and ODG3
patients.

Quantitative MR histogram and texture features analysis
The relative importance of features computed by using
the Gini index to differentiate ODG2 from ODG3 was
depicted in Fig. 3. It can be seen that if all the high-
throughput features were put into the RF classifiers, the
classification performance could not be significantly im-
proved because of the feature redundancy.

The strong relationship between radiomic features to
differentiate ODG2 from ODG3 was also indicated in
the radiomic heat map (Fig. 4). The RF based feature se-
lection strategy improved the performance of RF classi-
fier. After RF feature selection, 30 optimal features were
selected to differentiate ODG2 from ODG3, with com-
parable efficacy to that of using all features.

Evaluation of principal components

When ODG2 and ODG3 were differentiated by using prin-
cipal components, similar tumor tissue formed characteris-
tic clusters. These clusters, although heterogeneous,
defined a specific VOI (eg, Fig. 5) and were separable from
other tumors (clusters). More important, the calculated

principal components of the VOIs from ODG2 and ODG3
allowed clear separation of these two important regions.

Diagnostic performance of radiomics and radiologists

The performance of radiomics and 3 radiologists in dif-
ferentiating ODG2 from ODG3 was also compared.
Table 2 and Fig. 6 summarized the diagnostic perform-
ance of the radiomic features derived by using MR im-
ages from T1CE, FLAIR and their combination to
distinguish ODG2 from ODG3. Radiomic features from
their combination showed significantly better diagnostic
performance than that of FLAIR or T1 CE. Violin plots
graphed for the first 9 radiomic features derived from
T1 CE, FLAIR and their combination were presented in
Fig. 6. The AUC, sensitivity, specificity and accuracy of
radiomics were 0.798 (95%CI 0.699-0.896), 0.672, 0.789,
0.735 for T1CE, 0.774 (95%CI 0.671-0.877), 0.700,
0.683, 0.689 for FLAIR, and 0.861 (95%CI 0.783-0.940),
0.778, 0.783, 0.781 for their combination, respectively.
The AUCs of the three radiologists were 0.700 (95%CI
0.519-0.880), 0.687 (95%CI 0.507-0.867) and 0.714
(95%CI 0.545-0.883) for readers 1, 2 and 3, respectively.
The radiomics classifier performed superior to the 3 jun-
ior radiologists. The representative cases of ODG2 and
ODG3 were presented in Fig. 7. The clinical application

Fig. 4 The radiomic heat map about the correlation analysis for feature selection: (a) T1 CE; (b) FLAIR; (c) T1 CE + FLAIR. Note: Red refers to
positive correlations and blue refers to negative correlations. Different color depth indicates different values of correlation coefficients
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of radiomics-based machine learning could be justified
based on our findings.

Discussion

Radiomics is an emerging field that treats images as data ra-
ther than pictures and analyzes a large number of features
extracted from 1 image in relation to clinical variables of
interest. A few studies on radiomics analyses of glioma have
been published over the last years and advocated for ma-
chine learning models in predicting tumor histology and
grade [25]. Radiomics has been suggested as a robust strat-
egy to noninvasively classify lesions [14, 26]. This work sug-
gested that radiomics from T1 CE and FLAIR can be useful
for differentiating ODG2 from ODG3, with the superior ef-
ficacy to that of radiologists, thus, its clinical application
could be justified based on the current study.

From the angle of experiment design, there are three as-
pects worthy noting in this study. First, the ‘real world’
data were used to test our scientific hypothesis. Second,
all images analyzed in the current study were taken exclu-
sively from routine clinical diagnostic scans. Third, based
on the social-economic consideration, the levels of accur-
acy were based on the radiomics of commonly available

T1 CE and FLAIR images, without an acquisition of spec-
troscopy, CBV or perfusion information, all of which
would prolong the scanning time and increase economic
burden to patients. Upon our expectation, the radiomic
strategy performed superior to that of radiologists.

The reasons for the improved diagnostic performance of
radiomics are as the following. First, radiomic methods,
given their ability to discern patterns and combine informa-
tion in a way that humans cannot, showed substantial
promise for the future of radiology and precision medicine
[27]. However, radiologists distinguished ODG2 from
ODGS3 by visual diagnosis using rough information from
T1CE and FLAIR. Second, it has been reported that the
performance of an SVM classifier can be significantly re-
duced by the inclusion of redundant features and this effect
is more obvious for a small training set [28]. In this study, it
was found that the combination of conventional T1 CE and
FLAIR features provided lower classification error than fea-
tures of individual sequence, which may thus emphasize
the importance of using a multiparametric approach. In
addition, highly correlated features were eliminated using
Pearson correlation analysis, which was also further ranked
by using the random forest classifier consisting of a number
of decision trees. This indicated that redundant features

Table 2 Diagnostic performance of comparison of radiomics and human assessment

Sensitivity Specificity AUC ACC
Radiomics (T1 CE) 0.672 0.789 0.798 (95% Cl: 0.699, 0.896) 0.735
Radiomics (FLAIR) 0.700 0.683 0.774 (95% Cl: 0.671, 0.877) 0.689
Radiomics (T1 CE + FLAIR) 0.778 0.783 0.861 (95% Cl: 0.783, 0.940) 0.781
Reader1 0.824 0.632 0.700 (95% Cl: 0.519, 0.880) 0.722
Reader2 0.706 0.684 0.687 (95% Cl: 0.507, 0.867) 0.694
Reader3 0.647 0632 0.714 (95% Cl 0.545-0.883) 0.667
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40

removed can have a contribution to the classification of
ODG2 and ODG3.

Radiomic strategy not only performed superior to radi-
ologists, but also could be used as an auxiliary means to
overcome some problems attained to radiologists. First
of all, the frequency of interruptions during a reporting
session is associated with up to 13% increase in time for
reporting and an increased potential for errors [29].
Then, fatigue adversely impacts the visual system includ-
ing: worse accommodation, decreased saccadic velocity
and reduced gaze volume and coverage [30]. At last, a
number of cognitive biases may adversely affect the ac-
curacy of a radiologists report of a glioma [31]. In order
to reduce reporting time and cognitive biases, both of
which may lead to reporting and diagnostic errors,
radiomics offers a significant advantage [32], particularly
in the context of general radiologists who may lack

expertise in neuro-oncology. Nevertheless, the current
radiomic strategy involves too much pre- and post-
process before the suitable machine learning model is
established, more studies focusing on the efficacy-cost
balance of such a machine learning system should be
further conducted before its clinical application.
Furthermore, a few limitations of this study should be
noticed. In the first place, sample number of the patients
is relatively small. Although current results of 5-fold
cross validation showed that the evaluation of diagnostic
efficacy were robust despite the relatively small sample
size, which did not cause the classifier to be skewed to-
wards a particular class. It is desirable to verify the clas-
sifier on a larger data size in the future. Besides, this
radiomic method incorporated vessel removal in its
methodology, this method may fail for certain cases that
were non-tumor vessels intertwined with tumor vessels.

cell density and vascular proliferation

Fig. 7 Upper row: ODG2 in the left frontal lobe from 33-year-old man; lower row: ODG3 in the bilateral frontal lobe from 46-year-old man. a, e
T2-weighted image. b, f T1-weighted contrast-enhanced image. ¢, g The volume of interest of manually drawn. d, h Pathology slice images show
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Signal intensity curves of prominent vessels can be used
as a differentiating feature for such cases.. The last, a
continuous effort on enlarging the dataset so as to test
its external validation is required.

Conclusions

In conclusion, this study demonstrates our findings that
use of a machine learning algorithm, derived from ‘real
word’ T1 CE and FLAIR images, which can differentiate
ODG2 from ODG3 in newly diagnosed gliomas with a su-
perior efficacy to that of radiologists. The RF selected fea-
tures can reduce the labor in applying this strategy, and
the strategy can be applied clinic based on our findings.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512883-020-1613-y.
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