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Cardiac arrhythmias constitute a tremendous burden on healthcare and are the leading
cause of mortality worldwide. An alarming number of people have been reported
to manifest sudden cardiac death as the first symptom of cardiac arrhythmias,
accounting for about 20% of all deaths annually. Furthermore, patients prone to atrial
tachyarrhythmias such as atrial flutter and fibrillation often have associated comorbidities
including hypertension, ischemic heart disease, valvular cardiomyopathy and increased
risk of stroke. Technological advances in electrical stimulation and sensing modalities
have led to the proliferation of medical devices including pacemakers and implantable
defibrillators, aiming to restore normal cardiac rhythm. However, given the complex
spatiotemporal dynamics and non-linearity of the human heart, predicting the onset
of arrhythmias and preventing the transition from steady state to unstable rhythms has
been an extremely challenging task. Defibrillatory shocks still remain the primary clinical
intervention for lethal ventricular arrhythmias, yet patients with implantable cardioverter
defibrillators often suffer from inappropriate shocks due to false positives and reduced
quality of life. Here, we aim to present a comprehensive review of the current advances
in cardiac arrhythmia prediction, prevention and control strategies. We provide an
overview of traditional clinical arrhythmia management methods and describe promising
potential pacing techniques for predicting the onset of abnormal rhythms and effectively
suppressing cardiac arrhythmias. We also offer a clinical perspective on bridging the
gap between basic and clinical science that would aid in the assimilation of promising
anti-arrhythmic pacing strategies.
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INTRODUCTION

Sudden cardiac death (SCD) instigated by cardiac arrhythmias
is one of the leading causes of mortality worldwide, accounting
for about 300,000 deaths annually in the United States alone
(Srinivasan and Schilling, 2018). Atrial tachyarrhythmias
(abnormally faster atrial activation rates) such as atrial flutter and
atrial fibrillation (AF), although non-fatal are associated with
substantial complications, most commonly thromboembolic
(cerebral, extremities, or visceral) leading to increased risk
of strokes, limb ischemia, organ infarctions and hence,
hospitalizations (Petersen, 1990). Bradyarrhythmias (abnormally
slower heart rates) originating due to disorders of the atrial
conduction pathways may either lead to morbidity or progress
to SCD by instigating ventricular tachycardia (VT) or asystole
(Khurshid et al., 2018). Ventricular tachyarrhythmias (VT/VF)
on the other hand can be lethal and are the primary cause of
SCD, mandating immediate clinical intervention. About 1.5–5%
of the general population is currently afflicted by arrhythmias,
either atrial or ventricular (Desai and Hajouli, 2021).

The past decade has seen an abundance of medical
devices aiming to restore normal cardiac rhythm with new
pacing strategies being designed to apply electrical stimulations
for the prevention and suppression of arrhythmias. From
anti-tachycardia pacing and novel pacemaker algorithms, to
cardiac resynchronization therapy and implantable defibrillators,
multiple electrical stimulation modalities have been proposed
and implemented for arrhythmia management (Trohman et al.,
2004). Conventional non-physiological pacing from the right
ventricular apex has shown reliable results in the treatment
of bradyarrhythmias, however, its adverse hemodynamics of
dyssynchronous ventricular contraction predisposes the patients
to develop AF, cardiomyopathy, heart failure (HF) or death
(Vijayaraman et al., 2017; Arora and Suri, 2021; Perla et al., 2021).
An alternative approach is physiological cardiac pacing, which
transmits electrical impulses via the normal conduction pathway
(Arora and Suri, 2021) and has shown a relative risk reduction
of 27% for new onset chronic AF compared to ventricular
pacing (Skanes et al., 2001; Trohman et al., 2004), yet technical
challenges hinder its application (Arora and Suri, 2021).

Technological advances in pacing have enabled rate responsive
or adaptive pacing which successfully tackle chronotropic
incompetence wherein the sino-atrial node is unable to increase
the heart rate to meet the changing metabolic demands
(Trohman et al., 2004, 2020). Most modern devices with adaptive
pacing have sensors to detect physiological or physical indices
of activity and simulate normal sino-atrial nodal response
(Trohman et al., 2004, 2020). Yet, despite the advances in cardiac
arrhythmia treatment modalities, given the spatiotemporal
and structural complexity of the human heart, designing
algorithms to effectively control the heart rate and prevent fatal
rhythms has been challenging. In addition, although implantable
cardioverter defibrillator (ICD) shocks and anti-tachycardia
pacing techniques can protect individuals from life threatening
arrhythmias, excessive and inappropriate pacing or shocks
have detrimental effect, ranging from impaired myocardial
contraction leading to systolic dysfunction, progressive HF,

unnecessary drug treatment, proarrhythmogenicity, reduced
quality of life and psychological impacts on the patient (Germano
et al., 2006; Bhavnani et al., 2010).

Thus, there is a pressing need to better understand cardiac
dynamics, the initiation of unstable rhythms in the heart,
and subsequently, their prevention to minimize unnecessary
shock and drug treatments. Here, we present a systematic
review of the state-of-the-art cardiac pacing methodologies
aimed at predicting and controlling cardiac arrhythmias. We
present a clinical perspective on the current arrhythmia
prevention strategies and discuss the efforts to bridge the gap
between translational and clinical science that would enable the
assimilation of novel pacing modalities.

SEARCH STRATEGY

Multiple databases including Google Scholar and PubMed, were
comprehensively searched without language and time restriction.
For prediction techniques, the literature search was focused on
traditionally used clinical methods as well as novel techniques
incorporating non-linear dynamical and artificial intelligence
(AI) models. The following keywords were used as search criteria:
“(clinical markers OR deep learning OR artificial intelligence OR
machine learning OR EP study OR non-linear dynamics OR
clinical diagnosis OR prediction) AND cardiac arrhythmias.” For
arrhythmia prevention and control methods, the literature search
was focused on clinical and translational pacing modalities for
suppressing abnormal cardiac rhythms. The following keywords
were used as search criteria: “(prevention OR control OR
suppression OR overdrive pacing OR biventricular pacing OR
autonomic control OR stochastic pacing OR diastolic interval
pacing OR novel pacing method) AND cardiac arrhythmias”.

MANAGEMENT OF ATRIAL
ARRHYTHMIAS

Prediction Modalities
Traditional Clinical Methods
Various clinical tests and devices are traditionally used
to diagnose/predict arrhythmias including ambulatory
electrocardiogram (ECG) monitors and event recorders,
trans-telephonic transmitters, stress tests, echocardiography,
electrophysiology (EP) studies, or tilt table tests (Clinic, 2018).
ECGs remain the predominant clinical tool for monitoring
cardiac electrical activity and predicting the onset of cardiac
arrhythmias (Castro-Torres et al., 2015).

Holter monitoring is a prominent diagnostic method used to
monitor the heart continuously for 24–72 h (Clinic, 2021). This
technique was introduced in the 1960’s and has been used since as
an integral tool in cardiac arrhythmia prediction (De Asmundis
et al., 2014). There are limitations of Holter monitoring if the
arrhythmias only occur sporadically; however, it remains the
most frequently used method to monitor individuals for cardiac
arrhythmias (De Asmundis et al., 2014). An event monitor,
similar to a Holter, is routinely recommended to be worn for
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a longer period of time and used for rarer arrhythmias (Clinic,
2019). These are user friendly devices that start recording cardiac
electrical activity when the patient has onset of arrhythmic
symptoms (Clinic, 2019). Multiple ambulatory devices are now
in practice that enable monitoring vital signs both in-hospital and
in remote populations (Kulkarni et al., 2021a). Trans-telephonic
transmitters on the other hand are a slight variation from other
ambulatory devices and are not worn throughout the day but
rather only during phone monitoring sessions (Clinic, 2019).

Non-invasive cardiac mapping is now extensively used
in clinical practice (Dubois et al., 2015) to identify the
sources of electrical disorders and guide catheter ablation
of atrial arrhythmias (premature atrial beat, atrial tachycardia,
AF), ventricular arrhythmias and ventricular pre-excitation
(Wolff–Parkinson–White syndrome) (Dubois et al., 2015). In
conjunction, echocardiography is often used when managing
patients with congenital heart disease and supraventricular
arrhythmias (Papadopoulos et al., 2018). It aids clinicians
in making decisions about therapies for rhythm/rate
control, cardiac ablations, and left atrial appendage closures
(Papadopoulos et al., 2018).

Tilt table tests are another useful clinical modality for
arrhythmia diagnosis in specific subgroups of patients presenting
with syncope. Studies have demonstrated that patients with a
positive head-up tilt table test are likely to exhibit arrhythmias
(Hermosillo et al., 1999; Lj et al., 2010; Teodorovich and Swissa,
2016) and in particular sinus bradycardia, junctional escape
rhythm or sinus arrest (Lj et al., 2010). A retrospective study
of patients with a history of syncope, who had undergone
head-up tilt table test with nitroglycerin or isoprenaline
demonstrated a higher yield of a positive response, lower
incidence of unwanted arrhythmias and better tolerability with
nitroglycerin provocation compared to isoprenaline in patients
with suspected neuro cardiogenic syncope (Prabhu et al., 2017).
Yet, in recent years, the clinical applicability of this test has
been questioned given the high false positive rates and the
failure to establish an explicit cause of syncope making it
incapable of guiding treatment (García-Civera et al., 2005;
Kulkarni et al., 2020).

Novel Non-linear Dynamical Methods
Advances in data science techniques and the use of machine
learning (ML) and deep learning (DL) have enabled the
development of accurate models that can analyze large amounts
of clinical data to classify cardiac rhythms and predict the
onset of cardiac arrhythmias (Table 1). AI has shown its
presence in cardiac electrophysiology since the 1970s in
the form of automated ECGs (Krittanawong et al., 2020).
Nonetheless, recent developments of expertly labeled data in large
electronic databases have increased the value of AI in cardiac
imaging and electrophysiology and has been put to use for
enhanced prediction, response to therapy and characterization of
health and diseases.

Many studies have shown ML methods to be superior
over statistical-based models in predicting cardiovascular events
(Patel and Sengupta, 2020; Bazoukis et al., 2021). Shakibfar
et al. (2019) used a random forest ML model to analyze daily

summaries of ICDs monitoring to predict electrical storms
(arrhythmic syndrome). Using data from 19,935 patients, they
demonstrated that short risk of arrhythmic syndrome could be
successfully predicted using a ML model with an accuracy of
96%, significantly outperforming traditional logistic regression
analysis. Another recent study found that after training a deep
neural network with >1 million 12-lead resting EKGs, the model
was able to predict new-onset AF within 1 year in patients with
no history of AF with an area under the receiver operating
characteristic curve of 0.85 (Raghunath et al., 2021). The DL
model significantly outperformed both the extreme gradient
boosting (XGBoost) (Chen and Guestrin, 2016) model using only
age and sex as inputs and the CHARGE-AF (Cohorts for Aging
and Research in Genomic Epidemiology) 5-year risk prediction
model (Alonso et al., 2013). These promising studies demonstrate
the utility of AI models to predict cardiac arrhythmias, while
also highlighting the importance of labeling clinical data
and outcomes, and harmonizing data across institutions for
improved diagnostics.

Prevention and Control of Atrial
Arrhythmias
Traditional Clinical Methods
Clinical management of arrhythmia begins by formulating a
definitive diagnosis. A goal directed treatment approach for the
specific type of arrhythmia is mandatory. Management strategies
have been structured based on the use of antiarrhythmic drugs
or ICDs or both. Even with recent advances, pharmacological
therapy has remained as mainstay unless contraindicated.
Traditionally, many studies conducted to study the risks and
benefits of the currently available antiarrhythmic drugs have
shown that except for Amiodarone and Sotalol, other classes of
antiarrhythmic medications are not sufficiently effective (Auer
et al., 2002). Amiodarone and Sotalol are primarily classified
as class III antiarrhythmic drugs which act by blocking the
outward potassium channels responsible for the repolarization
of the heart. Both are known to reduce the risk of ICD shock
from ventricular as well as atrial arrhythmia (Auer et al., 2002;
John et al., 2012). Though Amiodarone is known to be better
tolerated in comparison to the other drugs, its use and overall
efficacy is limited due to its known side effects affecting the
cardiac, ophthalmologic, thyroid, and hepatic systems (Auer
et al., 2002; Florek and Girzadas, 2018; Lantz and Agarwal, 2021).
Thus, ongoing pharmacological interventional studies are now
focused on the selective ion channels [e.g., atrial I(Na), I(Kur)
and I(K, ACh)], pathology-selective ion channels [constitutively
active I(K, ACh), TRP channels], ischemia-uncoupled gap
junctions, proteins related to malfunctioning intracellular
Ca(2+) homeostasis [e.g., “leaky” ryanodine receptors, overactive
Na(+), Ca(2+) exchanger] or risk factors for arrhythmias
(“upstream” therapies) (Ravens, 2010).

In addition, catheter ablation is considered the mainstay
therapy for drug-refractory AF and flutter (Hindricks et al.,
2021). It has been an important part of the treatment protocol
for a wide spectrum of atrial arrhythmias (Lee et al., 2012). Focal
atrial tachycardia and typical atrial flutter is treated with catheter
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TABLE 1 | Prediction of cardiac arrhythmias: summary of recent non-linear dynamical and artificial intelligence (AI) algorithms for arrhythmia classification and prediction.

Author/study Year Aim Method Efficacy

Jeong et al., 2021 2021 Prediction of VF ANN, Feature extraction from HRV signals Prediction accuracies of 88.18 and 88.64% at
HRV data lengths of 10 and 20 s

Taye et al., 2019 2019 Prediction of VF ANN, Feature extraction from HRV and QRS
complex

72% (HRV) and 98.6% (QRS)

Shakibfar et al.,
2019

2019 Prediction of short term risk of
electrical storm

Random forest analysis of daily ICD summaries Accuracy of 0.96 and AUC 0.80

Raghunath et al.,
2021

2021 Identify patients at high-risk for
new-onset AF

Deep neural network-based analysis of 12-lead
ECGs

AUC 0.85, sensitivity of 69% and specificity of
81%

Vassilikos et al.,
2011

2011 Prediction of PAF in patients with no
history of structural heart disease.

Orthogonal ECG-based wavelet analyses of P
waves

Larger energies of P-wave at X lead and larger
left atrium were associated independently with
>5 PAF episodes

Namarvar and
Shahidi, 2004

2004 Prediction of arrhythmias Wavelet analysis and SVM application to ECGs
of 35 patients

Sensitivity of 92% and specificity of 75%

Bertsimas et al.,
2021

2021 Arrhythmia classification XGBoost machine learning algorithm F1 scores (measure of test’s accuracy) in the
range 0.93–0.99

Bundy et al., 2020 2020 Predict 5-year AF risk Clinical variables in CHARGE-AF and variables
extracted using random forest ML algorithm

C-statistic of 0.806

Heo et al., 2019 2019 Predict long-term outcomes in
ischemic stroke patients

Deep neural network AUC 0.88

Boon et al., 2016 2016 Predict PAF using short HRV
segments and genetic algorithm

SVM to evaluate ECG signals Prediction accuracy of 83.9%

Mohebbi and
Ghassemian, 2012

2010 Prediction of PAF HRV signal extraction and SVM-based
classification

Sensitivity, specificity, and positive predictive
value of 96.30, 93.10, and 92.86%, respectively

Costin et al., 2013 2013 Prediction of PAF HRV analysis and morphologic variability of
QRS complex

Prediction accuracy of 90% when using the
methods in combination

Tiwari et al., 2020 2020 Identify patients at risk of 6-month
incident AF

Analysis of electronic health records using
Naïve Bayesian system

Optimal prediction of 6-month incident AF with
AUC of 0.800 and F1 score of 0.110

Jin et al., 2009 2009 Detection of abnormal CVD
conditions through a phone app

ECG recording and analysis to classify the
patient in one of the arrhythmias

Prediction accuracy of 90%

Patel and
Sengupta, 2020

2020 Machine learning applied on ECG HRV segment analysis to predict SCD Model predicted SCD with an accuracy of 84%,
4 min before the event

Golińska et al.,
2020

2020 Prediction of the onset of
arrhythmias in patients with ICDs

RR intervals from ICD patients and analyzed by
random forest ML model

AUC 0.82

Lai et al., 2019 2019 Prediction of sudden cardiac death Analysis of repolarization intervals and
conduction-repolarization markers from 12
-lead ECGs using ML classifiers

Accuracy of 98.91% k-nearest neighbor,
98.70% (SVM), 98.99% decision tree, 97.46%
Naïve Bayes, and 99.49% random forest in
predicting sudden cardiac death 30 min before
occurrence

Hill et al., 2020 2019 Assess cost effectiveness of
targeted screening to identify
patients with AF

Use of Markov AF disease progression model
and hybrid screening decision tree

Patients needed to screen reduced from 534
per 1,000 to 61 per 1,000 patients using ML

Ong et al., 2012 2012 Risk stratification for cardiac arrest Prospective observational study conducted on
critically ill patients by analyzing the HRV
segments in combination with age and vital
signs and generating a ML score for risk
stratification

AUC for ML scores in predicting cardiac arrest
within 72 h was 0.781

DL, deep learning; HF, heart failure; ANN, artificial neural network; SVM, support vector machine; ML, machine learning; AUC, area under curve; ICD,
implantable cardioverter defibrillator; PAF, paroxysmal atrial fibrillation; HRV, heart rate variability; AF, atrial fibrillation; CVD, cardiovascular disease; CRT, cardiac
resynchronization therapy.

ablation as a first line with an efficacy of over 90%. Furthermore,
ablation is sought to provide highly effective palliation and
improved quality of life in patients who have had previous atrial
surgery or complex congenital heart conditions and are hence,
prone to developing late flutter recurrence or AF (Lee et al.,
2012). In patients with persistent AF, the role of catheter ablation
continues to evolve, as does our understanding of the crucial
underlying mechanisms (Lee et al., 2012).

Atrial arrhythmias are also often controlled traditionally by
overdrive pacing. The Pacemaker Atrial Fibrillation Suppression
study performed a randomized, multicentre investigation of the
effects of the third generation anti-atrial fibrillation pacemaker
algorithms in patients with paroxysmal AF and demonstrated
that the rate-soothing algorithm by atrial overdrive pacing
decreased premature atrial contractions-initiated AF (Sulke et al.,
2007). Similarly the ADOPT (Atrial Dynamic Overdrive Pacing
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Trial) study, conducted in patients with symptomatic paroxysmal
or persistent AF and sinus node dysfunction demonstrated that
overdrive atrial pacing with the AF Suppression Algorithm
(St. Jude Medical Cardiac Rhythm Management Division,
Sylmar, CA, United States) decreased symptomatic AF burden
significantly in patients with sick sinus syndrome and AF
(Carlson et al., 2003).

Implantable pacemakers have been a breakthrough in
preventing atrial arrhythmias by using specific atrial pacing
algorithms (Dimmer et al., 2003). Various studies have been done
in the past which have shown that majority of the paroxysmal
AF episodes are initiated by bradycardias, premature atrial
complexes (PAC) or immediate reinitiation of AF, and multiple
pacing modalities have been developed to prevent AF recurrences
(Hoffmann et al., 2000; Attuel et al., 2003; Yang et al., 2003). These
algorithms primarily rely on the classification of atrial events by
the pacemakers and work either by responding to triggers or by
continuous overdrive atrial pacing.

Commonly utilized arrhythmia control algorithms currently
in clinical practice include pace conditioning, PAC suppression,
post-PAC response, post-exercise response, post-AF response and
rate soothing (Mitchell and Sulke, 2004). The post AF response
algorithm is shown to prevent tachyarrhythmias which occur
soon after termination of the previous episode due to immediate
reinitiation of AF. After confirming the termination of an atrial
tachycardia episode, the algorithm increases the pacing rate to
the programmed response rate of 70–100 bpms for the next
600 beats and decays slowly until sinus rhythm is detected or
a lower rate limit is achieved. Pace conditioning works similar
to the dynamic atrial overdrive algorithm in St. Jude Medical
(Sylmar, CA, United States) pacemakers, atrial preference pacing
in Guidant (St. Paul, MN, United States) pacemakers, the
DDD+ algorithm in Biotronik (Berlin, Germany) pacemakers
and atrial preference pacing in Medtronic (Minneapolis, MN,
United States) pacemakers. It works by adjusting the atrial pacing
rate to just above the underlying intrinsic rhythm in a way that
the atrium is paced for almost 95% of time. PAC suppression
works by increasing the heart rate on detection of PACs in order
to reduce incidence of PACs. The pacing rate is increased by
15 bpm above the physiological rate of 600 beats on detection
of PACs. This increased rate is kept stable for a period of time
and any PAC detected in this stable phase does not lead to further
increase in the rate. After the stable period, the atrial rate decays
by 1 bpm every 16 beats.

Increased vagal tone and consequent bradycardia in athletes
can precipitate AF. The post-exercise pacing algorithm works by
preventing rapid drop in heart-rate after exercise by enabling
a post-exercise rate. During exercise, the post-exercise pacing
rate slowly rises to 90% of the physiological rate which is
dependent on the difference between the two rates. When the
heart rate suddenly decreases after exercise, the pacemaker paces
at the post-exercise pacing rate. The Medtronic “atrial rate
stabilization” works using the principle of post PAC response.
Post PAC response prevents pauses after PACs by controlling
the atrial rate in the two beats after a PAC. Finally, the rate
soothing technique works similar to pace conditioning except
that the heart rate is not substantially increased but rather atrial

tachycardias are prevented by overdrive pacing the atrium at a
rate that is only just above the sinus rate.

Despite these promising advances in arrhythmia control
algorithms, the clinical efficacy of the current conventional
methods including overdrive pacing remain questionable due
to false positives and adverse effects on device battery life
(Camm et al., 2007; de Voogt et al., 2007; Hohnloser
et al., 2012), warranting the need for novel approaches
to suppress abnormal cardiac rhythms. Furthermore, though
pharmacological treatment along with interventional techniques
is the mainstay of cardiac arrhythmia management, studies
conducted consistently demonstrated a strong association
between lifestyle interventions and arrhythmia prevention.
Obesity (defined as BMI ≥ 30 kg/m2) is documented to be a
strong risk factor and associated with the incidence of AF (Chung
et al., 2020). It has been demonstrated that a patient who lost
and maintained the loss of ≥10% of their body weight enjoyed
a sixfold arrhythmia-free likelihood compared with those who
lost <3% or gained weight (Chung et al., 2020). Regular aerobic
exercise as well as moderate intensity of physical activity is highly
recommended (Chung et al., 2020). A randomized control trial
of 28 patients with persistent AF compared a non-exercise control
with 2 months of moderate-intensity continuous training (Chung
et al., 2020). The study demonstrated the latter subjects showed
reduced AF-related symptoms along with improved quality of life
and exercise capacity.

Autonomic Modulation of Cardiac Arrhythmias
The cardiovascular system is innervated by the central nervous
system, the extrinsic intrathoracic ganglia and the intrinsic
cardiac autonomic nervous system (CANS). Autonomic and
neurohormonal reflexes regulate the CANS. CANS balance
is maintained via baroreflex which maintains the blood
pressure and after load on the heart achieved through
sympathetic-parasympathetic balance (Benarroch, 2008) while
the neurohormonal feedback is achieved by the renin-angiotensin
aldosterone system (Goldsmith, 2004). For over 20 years
autonomic modulation has been used for neurological diseases
like epilepsy (Ben-Menachem, 2002) and psychiatric diseases like
depression (Bajbouj et al., 2010). In recent years, studies have
shown that autonomic modulation can play a role in treatment of
cardiovascular diseases like heart failure and arrhythmias (Florea
and Cohn, 2014; Goldberger et al., 2019; Stavrakis et al., 2020a;
Kulkarni et al., 2021b).

Autonomic modulation can be used for the treatment of
atrial as well as ventricular arrhythmias and can be achieved by
vagal nerve stimulation, tragus stimulation, renal denervation,
spinal cord stimulation, baroreceptor stimulation or left cardiac
sympathetic denervation (Stavrakis et al., 2020a). Even though
treatment of cardiac arrhythmias through automatic modulation
has proven results preclinically, large randomized clinical trials
have shown mixed results (Premchand et al., 2014; Zannad et al.,
2015; Gold et al., 2016; Stavrakis et al., 2020b), highlighting
the need for optimized biomarkers enabling appropriate patient
selection. Yet, recent studies have demonstrated that vagal
stimulation can modulate cardiac electrophysiological properties
(Kulkarni et al., 2018b; Lee et al., 2018) including both atrial and
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ventricular alternans (Kulkarni et al., 2021b,c) as well as reduce
AF burden (Qin and Singh, 2020; Stavrakis et al., 2020b).

MANAGEMENT OF VENTRICULAR
ARRHYTHMIAS

Prediction Modalities
Traditional Clinical Methods
Various ECG ventricular repolarization markers (Tse and Yan,
2017) such as QT interval, the time interval from the start of
the QRS complex to the end of the T wave (Castro-Torres et al.,
2015), QTc, corrected QT interval normalized to the underlying
heart rate, QTd, the dispersion of the QT interval, Tp-e, the time
duration from the peak to the end of the T wave (Gürdal et al.,
2017), Tp-ed, the dispersion of the Tp-e interval (Castro-Torres
et al., 2015) and Tp-e/QT, the ratio between the Tp-e and QT
intervals, have been used to predict the prevalence of cardiac
arrhythmias. QTd is commonly used to denote the variability of
ventricular repolarization. It has been proposed that the higher
the QTd, the higher the risk for an individual to be predisposed
to ventricular arrhythmias (Castro-Torres et al., 2015). Similarly,
the Tp-e interval marks the transmural cardiac repolarization
and is an important risk indicator for ventricular arrhythmias
(Castro-Torres et al., 2015; Tse et al., 2017). It has been shown
to be a more accurate marker to predict cardiac arrhythmias than
QTc or QTd (Castro-Torres et al., 2015). Using the Tp-e marker,
individuals with Brugada syndrome were found to be at a greater
risk for ventricular arrhythmias than the healthy control group
(Castro-Torres et al., 2015; Maury et al., 2015), while a meta-
analysis of 155,856 patients demonstrated that prolonged Tp-e
interval was a significant predictor of arrhythmic or mortality
outcomes (Tse et al., 2017). The ratio between Tp-e and QT is
a novel method to detect cardiac arrhythmias and is suggested
to have greater accuracy than other markers as it has very
few to no variations between 60 and 100 beats/min and hence,
relatively independent of heart rate (Castro-Torres et al., 2015).
Studies have shown that reduced coronary flow is positively
correlated to the prolonged Tp-e interval and Tp-e/QT ratio
(Zehir et al., 2015). Furthermore, prolonged Tp–e interval and
increased Tp-e/QTc ratio have been shown to be independently
associated with ventricular arrhythmic events in hypertrophic
cardiomyopathy patients (Akboğa et al., 2017). Yet, while
ventricular repolarization markers have been found to be useful
in predicting malignant cardiac arrhythmias in many medical
conditions, comprehensive investigative studies focused on their
interpretation, reproducibility, robustness against interpatient
variability and clinical utility are still warranted (Castro-Torres
et al., 2015; Tse and Yan, 2017).

Another common clinical arrhythmia diagnostic method
are stress tests, typically performed on individuals whose
arrhythmias are adrenergically-driven and thus present or worsen
with exercise (Clinic, 2018). Exercise is a known arrhythmogenic
that may trigger ventricular premature beats, VT, VF or
extrasystoles in patients with coronary heart disease (Jelinek
and Lown, 1974). Similarly, they are an extremely important
modality to detect occult arrhythmias (Jelinek and Lown, 1974).

However, there are many limitations that make stress tests an
obsolete testing modality (Jelinek and Lown, 1974). Many studies
have shown that stress tests may present false positive results in
asymptomatic patients (Coplan and Fuster, 1990). Furthermore,
individuals with coronary artery disease are less likely to complete
the stress test due to stress angina, thus making it challenging to
detect the arrhythmia (Jelinek and Lown, 1974) and limiting the
use of stress tests in clinical diagnosis (Coplan and Fuster, 1990).
EP study, is a minimally invasive procedure that uses catheters to
record the electrical activity of the heart (Stouffer et al., 2001) and
is sometimes used to stratify arrhythmic risk and propensity for
SCD, especially in patients with a left ventricular ejection fraction
greater or equal to 35% (Hilfiker et al., 2015). More recently,
non-invasive cardiac mapping has been shown to be useful in
identifying sources of premature ventricular complexes and VT
(Dubois et al., 2015) and successfully guiding catheter ablation,
reducing the need for invasive mapping (Cakulev et al., 2013;
Jamil-Copley et al., 2014).

Novel Non-linear Dynamical Methods
Non-linear dynamical approaches have long been utilized
for predicting the onset of cardiac arrhythmias and the
transition from steady state to abnormal electrical activity.
Wenckebach phenomenon and parasystole were the first couple
of arrhythmias where non-linear dynamics were used for
systematic investigation (Krogh-Madsen and Christini, 2012).
Recently, using preclinical studies, it has been shown that
when the heart is perturbed from its steady state by electrical
stimulation, only a small number of dominant eigenvalues are
associated with it and principal component analysis enables
evaluating the dominant eigenvalues for prediction of alternans
(Jackson, 2005; Petrie and Zhao, 2012), a beat-to-beat alternation
in the action potential duration of cardiac myocytes which
manifests as oscillations in the T-wave morphology or duration
on the ECG. During alternans, the heart transitions from a
1:1 stable rhythm to a 2:2 alternating pattern by means of
a period doubling bifurcation, which occurs when a negative
eigenvalue approaches – 1 (Strogatz, 1994; Li and Otani, 2003;
Otani et al., 2005). Using ex vivo whole heart experiments, it
was demonstrated that the onset of localized spatial alternans
can be successfully predicted by applying principal component
analysis to 2-dimentional cardiac optical mapping data (Kakade
et al., 2013). Furthermore, the application of classical non-linear
dynamical theory to investigate the bifurcation to abnormal
cardiac rhythms, has enabled the classification of the transition
from steady state to alternans. Preclinical optical mapping
experiments on isolated whole rabbit hearts has demonstrated
that the onset of alternans predominantly occurs through a
smooth bifurcation (Kulkarni et al., 2015), which provides
insights into a systemic understanding of cardiac dynamics and
offers potential modalities for the prevention and control of the
cardiac system based on non-linear approaches.

Another important biomarker that has shown to aid detection
and prediction of VT/VF is heart rate variability (HRV), an
inherent variation in the time interval between consecutive
heart beats. Clinically, low HRV is a prognostic marker of an
underlying cardiac functional abnormality (Jeong et al., 2021).
Application of non-linear systems theory based methods to
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HRV markers have provided additional prognostic information
compared to traditional HRV measures (Huikuri et al., 2003). In
a novel study combining the benefits of AI with clinical HRV
measures for cardiac arrhythmia diagnosis, Jeong et al. (2021)
predicted the occurrence of VF with high accuracies of 88.18%
and 88.68% using an artificial neural network which was trained
using features from HRV signals with optimal data lengths of 10 s
and 20 s and the forecast time period being 0 s.

Another study by Taye et al. (2019) compared the accuracy
of applying DL techniques and predicting cardiac arrhythmias
using HRV vs. QRS complex features. They trained two artificial
neural networks and tested one each with features derived
from either HRV measures or the QRS complex and found the
former had 72% prediction accuracy while the latter had 98.6%,
hence highlighting the QRS complex’s important role in accuracy
improvement of VF prediction. They were able to predict onset
of VF 30 s before occurrence using features extracted from
120 s long ECG and HRV signals. Prediction models dependent
on QRS complexes are based on the principle of reentrant
circuits. Electrical activity in the heart starts to change when the
ventricles begin making reentrant waves due to ectopic focus
hence changing the QRS complex and prompting the hypothesis
that QRS shape features alone could be efficient VF predictors
(Taye et al., 2019). In alignment with this theory, Bertsimas
et al. (2021) designed a prediction system based on the QRS
complex with the potential to be integrated in wearables that
could predict cardiac arrhythmias and distinguish between AF,
tachycardia, bradycardia or noise within 30 ms, from an ECG
signal shorter than a minute.

Prevention and Control of Ventricular
Arrhythmias
Traditional Clinical Methods
Overactivity of the sympathetic nervous system has been
associated to ventricular tachyarrhythmias and sudden death
(Singh, 2005). Beta-blockers can effectively suppress ventricular
ectopic beats and arrhythmias, can be used to control rapid
ventricular activation due to rapid and irregular atrial firing
during AF as well as to prevent SCD in a wide range
of cardiac diseases (Haverkamp et al., 1990; Poole-Wilson
et al., 2003; Grandi and Ripplinger, 2019). Beta-blockers,
as a class of compounds, have the essential pharmacologic
function of counteracting the actions of competitive adrenergic
receptors (Singh, 2005; Grandi and Ripplinger, 2019). The
net clinical effects of various beta-receptor blockers, however,
may differ quantitatively due to differences in related intrinsic
sympathomimetic agonism and intrinsic potency for binding to
beta-receptors (Grandi and Ripplinger, 2019). Evidence supports
the idea that the antiarrhythmic effects of certain beta-receptor
blockers, such as Carvedilol and Metoprolol, extend beyond the
ventricular tissue to encompass atrial cells and help maintain
sinus rhythm in patients with AF, particularly when combined
with potent antifibrillatory agents like Amiodarone (Haverkamp
et al., 1990). Side effects are typically dose-related; optimal
and lowest effective beta-blocker doses are critical in limiting
unwanted effects (Haverkamp et al., 1990). A larger use of

beta-blockers as antiarrhythmic medicines in the future, possibly
in combination with class I or III therapy, is feasible.

However, with the evolving advancements, the management
of cardiac arrhythmias has been changing significantly over
the years. ICDs are designed to monitor the heart constantly,
identify malignant ventricular tachyarrhythmias and deliver
anti-tachycardia pacing and/or an electrical countershock to
restore normal rhythm (Mirowski, 1985). A meta-analysis study
conducted showed that defibrillators when used as a primary
or secondary prevention strategy is highly effective (Lee et al.,
2003). The study demonstrated a relative risk reduction of
50% and 45% for arrhythmic death among the secondary and
primary prevention trials, respectively. In addition ICDs have
been shown to successfully terminate lethal arrhythmias and
enable substantial improvement in survival in high-risk patients
(Mirowski, 1985). Furthermore, ICDs have enabled a 20% relative
risk reduction in all-cause mortality and a 33% reduction
in arrhythmic mortality in comparison to pharmacological
treatment with Amiodarone (Connolly et al., 2000).

Low energy shocks have been proposed to be painless and
shown efficacy in terminating ventricular tachyarrhythmias in
large animal models (Jackman and Zipes, 1982; Moreno et al.,
2021). Furthermore, it has been postulated that autodecremental
overdrive pacing and low-energy cardioversion have similar
efficacy and acceleration rates (Bardy et al., 1993). In this
study comparing anti-tachycardia pacing with low-energy
cardioversion in 24 patients, VT was repeatedly terminated in
18 out of 24 patients by low-energy cardioversion, while 5
out of 24 patients saw VT accelerated to faster VT or VF,
overall demonstrating similar response as with over drive pacing
(Bardy et al., 1993). However, more recent human studies
have shown low-energy shocks to be less effective than and
more arrhythmogenic than high energy shocks (Strik et al.,
2020), warranting further investigation of the clinical utility
of this approach.

For non-ischemic VTs, it has been evidenced that catheter
ablation is a reasonable first-line therapy as there has been a
recorded 80–90% success rate in an experienced clinical center
(Hall and Todd, 2006). With the advent of the modern non-
fluoroscopic mapping system, catheter ablation is now possible
in patients with or without structural heart disease. With the
use of catheter ablation becoming widely available, a study
demonstrated a curable rate of 90% for atrial flutter patients with
severe symptoms (Hall and Todd, 2006). Radiofrequency ablation
has evolved as a treatment of choice for idiopathic VT arising
from the right ventricular outflow tract, demonstrating success
rates between 75% and 100%, and for idiopathic left ventricular
(fascicular) VT success varies from 50% to 90% (Nakagawa et al.,
1993; Wellens and Smeets, 1993; O’donnell et al., 2003).

Another treatment modality for VT suppression is ventricular
overdrive pacing, wherein stimuli are applied from the right
ventricular apex during tachycardia at a rate that is little
faster than the tachycardia cycle length until the paced QRS
stabilizes (Kneller, 2015). The long-term overdrive suppression
of refractory ventricular arrhythmias is reported to be frequently
successful, more so if the heart rates are slow, but also in patients
with normal heart rates (Johnson et al., 1974).
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Novel Pacing Modalities
Besides the traditional methods of arrhythmia prevention, more
recently, novel pacing techniques have reported promising anti-
arrhythmic results in in silico and preclinical experimental
studies (Table 2). Given the intrinsic variability in cardiac
beat-to-beat intervals (HRV), many studies have investigated
the effect of incorporating stochasticity in pacing on cardiac
arrhythmogenesis (Dvir and Zlochiver, 2013; Kulkarni et al.,
2016; Prudat et al., 2016; Wilson and Ermentrout, 2017). Cardiac
alternans, which is suggested to be a precursor to fatal cardiac
arrhythmias such as VT and VF, is a complex dynamical
phenomenon originating at the cellular level as a result of
instabilities in ion current dynamics (voltage-driven alternans) or
intracellular calcium [Ca(2+)] cycling (Ca(2+)-driven alternans)
(Prudat et al., 2016; Kulkarni et al., 2019). In a recent study,
Prudat et al. (2016) demonstrated the utility of stochastic pacing
in discriminating between voltage-gated and Ca(2+)-driven
alternans, providing insights into the onset of cardiac rhythm
instabilities. The influence of stochastic pacing on cardiac
arrhythmogenicity was further illustrated by Dvir and Zlochiver
(2013) using one-dimensional and two-dimensional ventricular
models. They demonstrated that increased stochasticity in pacing

promoted anti-arrhythmic effects and eliminated discordant
action potential duration alternans (Dvir and Zlochiver, 2013).
Their results suggest that the stabilization of cardiac electrical
conduction can be improved by adding specific stochasticity to
the programmed pacing sequence which inhibits the initiation of
the arrhythmic events instigated by conduction blocks or wave
breaks (Dvir and Zlochiver, 2013).

Similar anti-arrhythmic effects of stochastic pacing were
demonstrated by Wilson and Ermentrout (2017) wherein the
formation of discordant alternans was inhibited in both one
and two dimensional models. However, contradictory effects
of stochastic pacing were reported in other studies wherein
the onset of alternans was still present despite incorporating
variability in pacing intervals (McIntyre et al., 2014; Kulkarni
et al., 2016, 2018a). These recent studies suggested that pacing,
with or without stochasticity can be pro-arrhythmic under
certain conditions especially when the mean duration between
consecutive stimuli is maintained constant, namely during
periodic pacing.

A novel pacing technique that eliminated the constraints
of periodic pacing by controlling the diastolic interval, was
investigated by Jordan and Christini (2004). Their adaptive

TABLE 2 | Prevention and control of cardiac arrhythmias: summary of novel pacing techniques for arrhythmia suppression.

Author/study Year Aim Method Inference

Prudat et al.,
2016

2016 Examine utility of stochastic pacing
to discriminate between
voltage-driven and Ca(2+)-driven
alternans

Stochastic pacing There is a possibility to discriminate between
voltage-driven and Ca(2+)-driven alternans with
a sensitivity and specificity >80%

Merchant et al.,
2020

2020 To develop a closed-loop system
capable of detecting T-wave
alternans in real-time and delivering
pacing stimuli

Real-time closed-loop suppression of
repolarization alternans using pacing during the
ARP

Suppressing alternans using R-wave triggered
pacing during the ARP reduces arrhythmia
susceptibility

Dvir and
Zlochiver, 2013

2013 Characterize the effects of
stochastic pacing on ventricular
tissue arrhythmogenic predictors of
restitution slopes and APD
alternans

Geometrical and biophysical model, stochastic
pacing

Stochastic pacing reduces the risk of cardiac
arrhythmias

Wilson and
Ermentrout,
2017

2017 Investigate the anti-arrhythmic
properties of stochastic pacing

Stochastic pacing Stochastic pacing rates can be antiarrhythmic
and inhibit the formation of discordant alternans

Jordan and
Christini, 2004

2004 Control action potential duration
alternans using electrical stimulation

Adaptive diastolic interval control algorithm Adaptive diastolic interval pacing controls
alternans in single cell model but exhibits limited
spatial control of alternans in 1D model

Kulkarni et al.,
2018a

2018 Validate the anti-arrhythmic effects
of constant diastolic interval pacing

A new closed loop system which detects
T-waves from real-time ECG and applies stimuli
after predefined constant diastolic intervals on a
beat-by-beat basis

Maintaining a constant diastolic interval on an
every beat basis prevents the spatiotemporal
onset of voltage driven restitution dependent
alternans in isolated whole rabbit hearts

Sridhar et al.,
2013

2013 Suppression of alternans using
ex vivo and in silico models

Alternating-period-feedback stimulations This method is more robust to noise than
previous alternans reduction techniques based
on fixed point stabilization

Zagrodzky et al.,
2001

2001 To assess the effect of biventricular
pacing on the inducibility of
sustained monomorphic VT in
patients with coronary artery
disease

Biventricular pacing Acute biventricular pacing decreases the
inducibility of sustained monomorphic VT in
patients with ischemic cardiomyopathy

Kowal et al.,
2004

2001 To evaluate in a prospective
randomized fashion the
electrophysiologic effects of acute
biventricular pacing

Biventricular pacing Biventricular pacing significantly reduces
susceptibility to VT compared to the RV pacing

ARP, absolute refractory period; VT, ventricular tachycardia; RV, right ventricular.
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diastolic interval pacing technique demonstrated control of
alternans in a one dimensional Purkinje fiber in silico study,
but exhibited limited spatial control (Jordan and Christini,
2004). However, more recently the anti-arrhythmic effects of
maintaining a constant diastolic interval on an every beat basis
was demonstrated using ex vivo optical mapping experiments on
isolated whole rabbit hearts (Kulkarni et al., 2018a). Kulkarni
et al. (2018a) developed a novel closed loop system capable of
detecting T-waves from ECG in real-time, enabling the successful
implementation of constant diastolic interval pacing, which was
shown to be anti-arrhythmic and prevented the spatio-temporal
onset of alternans in the heart. While the utility of controlling the
diastolic interval on a beat-by-beat basis in preventing voltage
driven restitution dependent alternans has been effectively
demonstrated, its efficacy in suppressing arrhythmias originating
from metabolic and Ca(2+) cycling instabilities remains to be
investigated (Kulkarni et al., 2018a, 2021d).

Another anti-arrhythmic pacing technique, namely the
alternating-period-feedback protocol, has been proposed which
demonstrably reduced the presence of alternans in isolated whole
heart experiments (Sridhar et al., 2013). The protocol aimed
at suppressing alternans by applying small perturbations to
the pacing cycle length and was proposed to be more robust
than previous alternans reduction techniques offering promising
implications for experimental investigations into its clinical
utility for arrhythmia prevention.

To treat patients with ventricular dysfunction, biventricular
pacing (BV) has been an effective modality even though
electrophysiologic effects of BV pacing remain poorly understood
(Zagrodzky et al., 2001). A study by Zagrodzky et al. (2001)
assessed the effect of BV pacing on the inducibility of sustained
monomorphic VT in patients with coronary artery disease and
demonstrated a 60% reduction in inducibility with BV pacing as
compared to single-site right ventricular pacing. Similar findings
were reported by other studies over the years supporting the
hypothesis that BV pacing reduces the frequency of ventricular
arrhythmias, however, the mechanism of arrhythmia suppression
remains unclear (Kowal et al., 2004).

Dynamic Control of Arrhythmias
As the development of arrhythmias is a dynamic instability
shift from sinus rhythm, many dynamical approaches are
being investigated to control these instabilities and prevent the
occurrence of arrhythmias. Dynamic R-wave triggered pacing
during the absolute refractory period has been shown to suppress
spontaneous repolarization alternans, a pattern of ventricular
repolarization that repeats on every other beat basis, which has
been seen to be closely associated with VT/VF (Armoundas
et al., 2013; Merchant et al., 2020). This novel pacing modality
has been shown to suppress cardiac alternans in vivo and
under diseased conditions by delivering subthreshold stimuli
during the absolute refractory period to modulate ventricular
repolarization, thus offering a potential technique to improve
the current ICDs by preventing the onset of ventricular
arrhythmias. Cardiac alternans has also been shown to be
controlled by mechanical perturbation, which can alter the
electrical activity of tissue by mechano-electric coupling, in

in silico studies (Dubljevic and Christofides, 2008; Hazim et al.,
2015).

Chaos control based non-linear dynamical approaches
have shown promising results in controlling arrhythmias in
in vitro and in silico studies (Christini et al., 1999, 2001;
Kulkarni and Tolkacheva, 2021). Christini et al. (1999, 2001)
demonstrated the successful termination of pacing-induced
period-2 atrioventricular-nodal conduction alternans using non-
linear dynamical control by stabilizing the underlying unstable
steady-state conduction in 52/54 control attempts in five patients.
Chaos control techniques have been shown to modulate human
cardiac electrophysiological dynamics and successfully prevent
cardiac arrhythmias by stabilizing unstable rhythms through
small time continuous perturbations aimed at restoring the heart
to a steady state, which has potential to be incorporated into
pacemakers (Garfinkel et al., 1992, 1995; Christini et al., 2001;
Ferreira et al., 2011).

FUTURE PERSPECTIVES: BRIDGING
THE GAP BETWEEN BASIC AND
CLINICAL SCIENCE

As we embark into 60 years of cardiac pacing, the field has seen
significant technological advancements and continued progress.
Cardiac stimulation strategies have registered significant benefits
with reductions in HF hospitalization, AF and mortality.
However, as summarized in this review, there are several
shortcomings in the existing treatment strategies and many
current pacing devices face challenges of false positives,
suboptimal accuracy of predicting the onset of abnormal rhythms
and low efficacy in suppressing ongoing arrhythmic events.
Novel pacing strategies that are under research and development
although show promise, there exist several challenges to bring
these technologies into clinical practice that warrants further
research for testing and validating the safety and efficacy of these
newer modalities.

Innovative approaches to predict the onset of cardiac
arrhythmias as well as control abnormal rhythms offer huge
promise in reducing the arrhythmic burden in preclinical and
in silico experiments. Yet focused studies investigating their
robustness and accuracy are required that can show the pathway
toward clinical translation. Firstly, non-linear dynamical
approaches and AI based strategies offer computational
challenges in pacing devices which directly demands longer
battery life. Limited battery life, warranting device replacements,
lead extractions and related complications have challenged the
pacing field significantly. Researchers should be wary of this
important limitation and consider concurrent investigations of
both cardiac pacing and battery technology together. Battery-less,
solar-powered cardiac pacing offers significant promise, however,
it has fundamental challenges to be addressed in terms of climate,
energy harvesting and early warning of low battery levels.

Secondly, the advent of AI in cardiac dynamics is showing
a steady increase in both prediction and control strategies of
cardiac pacing. However, to date, there are no ML models
that have been highly robust and accurate when dealing with
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interpatient and inter-institutional variability, hence questioning
their translatability into a usable universal diagnostic tool. Several
researchers have used millions of ECG datasets to develop
prediction models, which are mostly black box applications
with no novel insights into the physiological mechanisms of
arrhythmia etiology that significantly hamper clinical translation.
The gap between basic and clinical science is inadvertently
increasing due to this approach and more interpretable ML
models with physiological significance are required to bridge
this gap. Therefore, a strong synergistic effort between basic
scientists for developing and validating novel pacing strategies,
cardiologists as well as pacemaker design industries is imperative
to advance this important clinical need that can play a crucial role
in cardiac patient healthcare.

CONCLUSION

Novel pacing modalities for control and suppression of cardiac
arrhythmias have shown promising results in translational
preclinical studies. Applying non-linear dynamical approaches
combined with advances in AI has opened the doors for
investigating volumes of patient data and extracting relevant
information for aiding clinical diagnostics and decision

making. Predicting the onset of arrhythmias and the transition
from steady to unstable cardiac rhythms has been a long
standing challenge which newer non-linear methods have
shown promising efficacy in addressing. However, the clinical
adaptation of AI and dynamical pacing strategies would require
a comprehensive framework that accounts for a reliable,
accountable and secure diagnostic system, encouraging the
active participation by researchers, engineers, technicians
and physicians alike. While the novel pacing modalities and
predictive algorithms discussed here are a promising first step
for advancing cardiac arrhythmia management strategies, a
thorough clinical investigation and physician assessment are
necessary for the successful translation of these techniques into
a diagnostic approach. Such an integrative approach combining
medicine and engineering principles holds promise in pushing
traditional boundaries and translating preclinical findings into
clinically viable devices for cardiac arrhythmia prediction,
prevention and control.
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