
Vol.:(0123456789)1 3

Chemoecology (2018) 28:29–37 
https://doi.org/10.1007/s00049-017-0250-4

SHORT COMMUNICATION

A biosynthetically informed distance measure to compare secondary 
metabolite profiles

Robert R. Junker1 

Received: 30 September 2017 / Accepted: 16 November 2017 / Published online: 27 November 2017 
© The Author(s) 2017. This article is an open access publication

Abstract
Secondary metabolite profiles are one of the most diverse phenotypes of organisms and can consist of a large number of 
compounds originating from a limited number of biosynthetic pathways. The statistical treatment of such profiles often 
is complicated due to their diversity as well as the intra- and interspecific variability in the quantitative and qualitative 
composition of secondary metabolites. Most importantly, the assumption of independence of the presence/absence and the 
quantity of compounds is violated due to the shared biosynthetic origin of many compounds. Therefore, I propose a biosyn-
thetically informed pairwise distance measure that fully considers the biosynthesis of the compounds and thus quantifies 
the similarity in the enzymatic equipment of two samples. The biosynthetic similarity of compounds is calculated based on 
the proportion of shared enzymes that are required for their biosynthesis. Using this information (provided as dendrogram 
structure) and the quantitative composition of the samples, generalized UniFrac distances are calculated measuring that 
fraction of the dendrogram (i.e., the branch lengths) that is unique to either of the samples but not shared by both samples. 
To allow a straightforward cross-platform application of the approach, I provide functions for the statistical software R and 
sample data sets. A hypothetical and a real world example show the feasibility of the biosynthetically informed distances 
dA,B and highlight the differences to conventional distance measures. The advantages of this approach and potential fields 
of application are discussed.
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Introduction

Organisms synthesize a plethora of secondary metabo-
lites that are of physiological and ecological importance 
(Dudareva et al. 2013; Steiger et al. 2011). Species may 
produce few to thousands of compounds originating from 
various biosynthetic origins (Wink 2010; Wyatt 2014). 
A single plant species, for example, may emit volatiles 
originating from the shikimate (aromatic compounds), 
the lipoxygenase (LOX, fatty acid-derived compounds), 

the 2-C-methyl-d-erythritol 4-phosphate (MEP, monoter-
penes, diterpene-derived compounds, and tetraterpene-
derived compounds), and the mevalonate pathway (MVA, 
sesquiterpenes and sesquiterpene-derived compounds) 
(Dudareva et al. 2013; Knudsen et al. 2006). Each of these 
pathways feature a backbone of enzymes producing the 
precursors for the final products that are subsequently 
produced by the final enzymes of the respective path-
ways (Dudareva et al. 2013). Terpenoid compounds, for 
instance, produced by just two pathways are enormously 
diversified both within species and across plant lineages 
(Pichersky and Raguso 2016). This high diversity of sec-
ondary metabolites results in a pronounced intra- and 
interspecific variation in the qualitative and quantitative 
composition of secondary metabolite profiles (Junker 
2016; Junker et al. 2017; Kuppler et al. 2016; Masclaux-
Daubresse et al. 2014; Knudsen et al. 2006). As a result 
of the diversity and variability of secondary metabolites, 
species synthesize a unique composition of compounds, 
which means that only a relatively small proportion of 
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compounds can be detected in more than one or few spe-
cies sampled in a common environment (Junker 2016).

The diversity of secondary metabolites originating 
from a limited number of pathways and the consequen-
tial high number of singletons in data sets (compounds 
occurring only in one sample) introduce some difficul-
ties in the statistical treatment of secondary metabolite 
profiles (Junker and Parachnowitsch 2015; Brückner and 
Heethoff 2017). First, data sets containing the composi-
tion of secondary metabolites (of many species) are usu-
ally zero-inflated. Second, due to the shared biosynthetic 
origin, the identity and quantity of a compound is not 
independent of the other compounds in the same sample. 
Accordingly, it has been shown that the biosynthesis of 
the compounds explains a large proportion of the quanti-
tative composition of plant volatiles (Junker et al. 2017). 
One of the most commonly applied approaches to statisti-
cally compare compositions is the calculation of distances 
of relative or absolute quantities between samples (often 
Bray–Curtis dissimilarities or Euclidean distances) fol-
lowed by non-metric multidimensional scaling (Brückner 
and Heethoff 2017; Legendre and Legendre 2012). Both 
mentioned distance/dissimilarity measures, however, do 
not consider the biosynthetic origin of the compounds 
but treat each compound as independent variable. Euclid-
ean distances are strongly affected by the large number 
of zeros in the data often leading to high similarities 
between samples that have in common that they both do 
not comprise a number of compounds, while they may not 
share the presence of the relevant compounds. Bray–Cur-
tis dissimilarities, in contrast, ignore compounds that are 
not present in a sample pair and thus this distance meas-
ure is preferable compared to Euclidean distances. None-
theless, a large variation in the quantity of compounds 
may also lead to large distances despite a very similar 
or the same qualitative composition. Other commonly 
applied distance measures face similar problems (Leg-
endre and Legendre 2012). While some of the problems 
of distance measures can be avoided by choosing the most 
suitable for the research question or by transforming the 
quantitative data in meaningful way, none of the available 
distance measures, to the best of my knowledge, considers 
the biosynthetic origin of the compounds and thus their 
dependence on each other.

To provide a statistical approach that calculates dis-
tances that consider the biosynthesis of compounds 
between samples, I introduce a biosynthetically informed 
distance measure dA,B. This biosynthetically informed 
distance measure dA,B integrates the quantitative com-
positions of secondary metabolites in samples A and B 
with the biosynthetic similarity of compounds present in 
samples A and B based on the number of shared enzymes.

A biosynthetically informed distance measure

The biosynthetically informed distance measure dA,B com-
bines data on the enzymes involved in the biosynthesis of 
secondary metabolites and the quantitative composition 
of secondary metabolites. In the following, the informa-
tion on the quantitative (or qualitative) composition of 
compounds as well as the biosynthesis of the compounds 
is used to calculate UniFrac distances, which has been 
developed to compute differences between microbial com-
munities (Lozupone and Knight 2005). The data structure 
of site x microbial species matrices (with sites as rows 
and microbial species (operational taxonomic units OTUs) 
as columns, entries are abundances per OTU and site) 
obtained from high throughput techniques is similar to 
the one observed in sample × secondary metabolite matri-
ces (with samples as rows and secondary metabolites as 
columns, entries are quantities per metabolite and sam-
ple). Both are often zero-inflated and information about 
the (phylogenetic or biosynthetic) similarity of the species 
or secondary metabolite can add valuable information to 
the distance between sites or samples. Instead of directly 
considering microbial taxa, UniFrac distances are based 
on the phylogeny describing the evolutionary similarity 
of taxa. UniFrac calculates the fraction of the branches 
(i.e., their lengths) of a phylogenetic tree that are unique 
to one of the samples but not shared by taxa present in 
both samples. Thus, not the identity of a taxon is consid-
ered but its evolutionary history. This approach can be 
adopted for secondary metabolites that share parts of their 
biosynthetic pathway. Here the biosynthetic information 
allows evaluating the similarity in the enzymatic equip-
ment of an organism. Thus, the interdependence between 
compounds is fully considered and the distance between 
samples is calculated based on their biosynthetic abilities 
and not exclusively by the number of shared compounds. 
This means that samples that are dominated by compounds 
that originate from the same biosynthetic pathway but do 
not share a single compound are still more similar to each 
other than two samples that feature compounds of different 
pathways (Fig. 1). Therefore, in contrast to conventional 
distance/dissimilarity measures (e.g., Bray–Curtis), the 
biosynthetically informed distance measure dA,B is the 
first one that incorporates biosynthetic pathways into the 
quantification of distances between compositions of sec-
ondary metabolites. In an ecological context where, for 
example, animals respond to individual compounds and 
not to pathways, the biosynthetically informed distance 
measure dA,B may be irrelevant. However, for research 
questions on a phylogenetic signal in secondary metab-
olite profiles across taxon lineages, on chemotaxonomy 
separating species based on the composition of secondary 
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metabolites, or on the functional diversity of ecological 
communities, the biosynthetically informed distance meas-
ure dA,B adds a fundamentally new information and will 
lead to novel insights into the evolution and ecology of 
secondary metabolites.

Sketch of the approach

The biosynthetically informed distance measure dA,B is cal-
culated combining a number of pre-existing R packages as 
well as information on the biosynthetic pathways of second-
ary metabolites. To allow a straightforward cross-platform 
application of the approach, I provide functions for R (R 
Core Team 2016) and sample data sets in electronic sup-
plementary material 1.

Data requirement

Two data sets are required to calculate biosynthetically 
informed distance measure dA,B:

1. A matrix with samples as rows, secondary metabolites 
as columns and information on the quantity of each com-
pound in each sample as entries. Qualitative information 
(the presence or absence of a compound in a sample) is 
sufficient.

2. A presence/absence matrix with secondary metabolites 
as rows and enzymes as columns. This matrix contains 
information about the enzymes involved in the biosyn-
thesis of each compound. Such a matrix had been com-
piled for 150 plant volatiles and can be downloaded as 
supporting information S3 in Junker et al. (2017).

Approach

Using these data sets, few statistical steps need to be per-
formed to obtain the biosynthetically informed distance dA,B 
between samples A and B.

1. Calculation of Sørensen dissimilarities between the 
secondary metabolites based on the number of shared 
enzymes using the R package vegan (Dixon 2003). 
Large Sørensen dissimilarities indicate that second-
ary metabolites require completely different or largely 
non-overlapping sets of enzymes in their biosynthesis, 
whereas small distances indicate a large number of 
shared enzymes that are involved in their biosynthesis. 
Note that some compounds have Sørensen dissimilari-
ties = 0 in the case of multi-product enzymes (e.g., α- 
and β-pinene that are synthesized by the same terpene 
synthase,see Fig. 1).

2. Based on the Sørensen dissimilarities matrix of the 
compounds, a hierarchical cluster analysis is performed 
implemented in the R package stats (R Core Team 
2016). The resulting clustering tree is then converted 
into an object of the class “phylo”, which is required by 
the following step.

3. Using the converted clustering tree containing the infor-
mation on the biosynthetic similarity and the matrix 
containing the composition of secondary metabolites 
of the samples, weighted generalized UniFrac distances 
between all sample pairs are calculated using the R 
package GUniFrac (Chen et al. 2012). UniFrac distances 
require the dendrogram information from the previous 
step (2) and quantify the fraction of the total branch 
length of the dendrogram that leads to compounds pre-
sent in one sample or the other, but not both (Lozupone 
and Knight 2005). Weighted generalized UniFrac have 
the advantage that neither to much weight is assigned 
to compounds in low nor in high quantities (Chen et al. 
2012). Weighted UniFrac distances are used as biosyn-
thetically informed distance dA,B that are weighted by the 
quantity of the compounds.

To facilitate an easy calculation of biosynthetically 
informed distance dA,B, steps 1–3 are compiled in a single 
function BioSynDist(), which is provided as source file in 
electronic supplementary material 1. The function BioSyn-
Dist() uses default settings of all functions described in steps 
1–3, which can be changed in the source function if desired.

Alternative approach requiring less detailed information 
on biosynthesis of compounds

Biosynthetically informed distances as described above 
require detailed information on the enzymatic pathways of 
compound biosynthesis. This information, however, may not 
always be available preventing the calculation of biosynthet-
ically informed distances. To allow a more general applica-
tion of biosynthetically informed distances, I am proposing 
an additional method that requires only the knowledge about 
the chemical classes of the compounds instead of the enzy-
matic pathways. Alternatively, any other information on the 
characteristics of the compounds (functional groups, chain 
length of cuticular hydrocarbons, etc.) can be used in this 
approach. The potentially lower resolution of the approach 
relying on chemical classes or other characteristics instead 
of enzymes can be compensated by merging the biosyntheti-
cally informed distances with Bray–Curtis dissimilarities, 
which results in astonishingly similar distances compared to 
those obtained from trials using information of the enzymes 
involved in the synthesis of the compounds (see below). To 
allow a straightforward cross-platform application of this 
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alternative approach, I provide functions for R (R Core Team 
2016) and sample data sets in supporting information 1.

Data requirement for the alternative approach

Two data sets are required to calculate biosynthetically 
informed distance measure dA,B:

1. A matrix with samples as rows, secondary metabolites 
as columns and information on the quantity of each com-
pound in each sample as entries. Qualitative information 
(the presence or absence of a compound in a sample) is 
sufficient (same dataset as for the main approach).

2. The presence/absence matrix with secondary metabo-
lites as rows and chemical classes or other characteris-
tics of the compounds as columns.

Alternative approach

Using these data sets, statistical steps 1–3 described above 
for the main approach have to be performed. The weighted 
UniFrac distances (step 3) are used as biosynthetically 
informed distances dA,B that are weighted by the quantity of 
the compounds. In the alternative approach, these distances 
have a very low resolution both regarding the biosynthesis 
(all compounds of a chemical class are considered to have 
the same enzymatic pathway) and—because of the utiliza-
tion of weighted generalized UniFrac distances—the identity 
of compounds is not considered in this approach. To com-
pensate for this low resolution, biosynthetically informed 
distance dA,B are now merged with Bray–Curtis dissimilari-
ties calculated based on the quantitative composition of the 
secondary metabolite profiles. To merge biosynthetically 
informed distance dA,B and Bray–Curtis dissimilarities, the 
weighted mean of both pairwise distances mDist is calcu-
lated using w (0 ≤ w ≤ 1) as weight: 

If w is set to 1 mDist = dA,B based on chemical classes 
(BioSynDistStand), if w is set to 0 mDist = Bray–Curtis dis-
similarities (DistStand). Both distance measures are stand-
ardized between 0 and 1 (d′ = d/max(d)) prior to the this 
step. Values of weight w between 0 and 1 merge biosyntheti-
cally informed distance dA,B and Bray–Curtis dissimilarities 
in different ratios.

To facilitate an easy calculation of biosynthetically 
informed distance dA,B based on chemical classes or any 
other information on the compounds and to merge these dis-
tances with Bray–Curtis dissimilarities, steps 1–3 are com-
piled in a single function BioSynDist(), which is provided 
as source file in supporting information 1. The function 
BioSynDist() uses default settings of all functions described 
in steps 1–3, which can be changed in the source function 

mDist = w × BioSynDistStand + (1 − w) × DistStand.

if desired. The final step where biosynthetically informed 
distances dA,B are merged with Bray–Curtis dissimilarities 
is compiled in a function MergeDist(), which is provided as 
source file in supporting information 1.

Results and discussion

To demonstrate the potential of biosynthetically informed 
distance dA,B, I tested the approach using an hypothetical 
dataset and a real world example containing samples of flo-
ral scent emissions of two plant species. Data on enzymes 
involved in the biosynthesis of the selected compounds of 
both examples were obtained from Junker et al. (2017, sup-
porting information S3).

Hypothetical compositions of secondary 
metabolites

I generated 13 samples composed of up to 13 secondary 
metabolites originating from the MEP (five monoterpenes), 
shikimate (five aromatics), and LOX pathway (three fatty 
acid derivatives, Fig. 1). The composition of the samples 
was chosen to highlight the differences of the biosyntheti-
cally informed distances dA,B to conventional distance meas-
ures (e.g., Bray–Curtis dissimilarities). Analysis of data pre-
sented in Fig. 1 can be replicated using the data sets and R 
code in electronic supplementary material 1.

Overall, hypothetical profiles are well separated based on 
biosynthetically informed distances dA,B and on Bray–Curtis 
dissimilarities (Fig. 1). Although distance matrices based on 
both distance measures are well correlated (Mantel statistic 
based on Pearson’s product–moment correlation: r = 0.64, 
p < 0.001), a visual inspection of the dendrograms reveals 
important differences between both distance measures, 
which are highlighted in Table 1. These examples demon-
strate how biosynthetic information affects distances, which 
may be—depending on the research question—a relevant 
addition to conventional distance measures.

To test whether mDist (alternative approach requiring less 
detailed information on biosynthesis of compounds) reflects 
biosynthetically informed distance dA,B based on enzymes 
and to test which weight w returns the best result, I merged 
biosynthetically informed distance dA,B based on chemi-
cal classes with Bray–Curtis dissimilarities using different 
weights w using the same hypothetical dataset as described 
above. For each w, I tested whether mDist correlates to bio-
synthetically informed distance dA,B based on enzymes using 
Mantel statistic based on Pearson’s product–moment cor-
relation. Correlation was highest using w = 0.878 (Mantel 
statistic: p < 0.001, r = 0.999, Fig. 2). Therefore, w = 0.878 
is the default setting in the function MergeDist(), which, 
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however, is not universally the best setting (as an exercise, 
the reader may test this using the real world examples (see 
below) provided in supporting information 1).

This result demonstrates that information on chemical 
classes or other information on the compounds may be suf-
ficient to obtain results that reassemble those obtained using 
enzymatic information very well. Although w = 0.878 is 
definitively not the best setting for all data sets, it may be a 
good value to start with.

Real world example

I used the floral scent bouquets of Achillea millefolium 
(Asteraceae, Larue et al. 2016) and Sinapis arvensis (Bras-
sicaceae, Kuppler et al. 2016) and extracted the biosynthetic 
information from Junker et al. (Junker et al. 2017, support-
ing information S3). For both plant species, I included sam-
ples from n = 9 individuals. Data sets on composition and 
biosynthetic information are available in electronic sup-
plementary material 1. I used the R package dendextend to 
plot the tanglegram, which helps to compare the dendro-
gram based on biosynthetically informed distances and the 

Table 1  Examples of differences between the biosynthetically informed distance dA,B and Bray–Curtis dissimilarities as shown in Fig. 1

Smaller distances in the former measure than in the latter are indicated by “<”; larger distances in the latter than in the former measure are indi-
cated by “>”. Differences are explained based on statistical and biosynthetic reasons

Profiles Biosynthetically informed distances Bray–Curtis dissimilarity

C, D < (monoterpenes and aromatics present in C and D share a large 
number of enzymes, respectively)

> (C and D do not share a single compound)

E, F < (α- and β-pinene are synthesized by the same terpene synthase) > (only two thirds of the compounds are shared)
G, H < (aromatics share a large number of enzymes) > (only one third of the compounds are shared by the bouquets)
I, J, K, L < (weighted UniFrac distances consider differences in quantitative 

composition, biosynthetic similarity of bouquets remains high)
> (quantitative composition and number of shared compounds 

strongly influences values of distances)

Fig. 1  Hypothetical secondary metabolite profiles A–M. Profiles are 
composed of monoterpenes, aromatics, and/or fatty acid derivatives 
(FAD). Biosynthetic distances of compounds based on the number of 
shared enzymes are visualized by the upper dendrogram. Numbers in 
rows are the quantities of the compounds in each of the profiles, no 
number means that this compound is absent in the profile. Similarities 

between profiles based on biosynthetically informed distances dA,B 
are visualized in the left dendrogram, similarities based on Bray–Cur-
tis dissimilarities in the right dendrogram. Differences between den-
drograms are highlighted as tanglegram. Major differences are listed 
and explained in Table 1
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dendrogram based on Bray–Curtis dissimilarities. In total, 
40 volatile organic compounds were detected in the floral 
scent bouquets of A. millefolium and S. arvensis and both 
bouquets were dominated by monoterpenes. 25 compounds 
were exclusively emitted by A. millefolium flowers, 4 by S. 
arvensis flowers, and 11 compounds were detected in both 
bouquets (Fig. 3a). Biosynthetically informed distances dA,B 
and Bray–Curtis dissimilarities correlated (Mantel statistic 
based on Pearson’s product-moment correlation: r = 0.55, 
p < 0.001), but differences are revealed by a visual inspec-
tion of the tanglegram comparing the results based on both 
distance measures (Fig. 3b). Both distance measures well 
separated the species, albeit one S. arvensis sample clustered 
closer to A. millefolium samples than to conspecifics in the 
dendrogram based on Bray–Curtis dissimilarities. In general, 
within-species pairwise biosynthetically informed distances 
tended to have stronger contrast to between-species pairwise 
distances (Fig. 3c) than Bray–Curtis dissimilarities (Fig. 3d). 
In summary, both distance measures were well suited to 
cluster samples based on the quantitative composition of 
floral scent compounds (species factor fitted onto NMDS 
based on biosynthetically informed distances dA,B: r2 = 0.66, 
p < 0.001; Bray–Curtis dissimilarities: r2 = 0.72, p < 0.001; 
R package vegan, Dixon 2003). However, the results differ 
in the distances within species, which may reveal impor-
tant information about the biosynthetic causes for intra- and 
interspecific variation.

Caveats

Biosynthetically informed distance dA,B requires a detailed 
knowledge about the enzymes that are involved in the bio-
synthesis of the compounds identified in samples. Unfor-
tunately, this information is not available for a majority 
of compounds and there are no databases compiling such 
information. In the supporting information S3 in Junker 
et al. (2017), we provide this information for n = 150 vol-
atile organic compounds, which may not be sufficient for 
many studies. For some of the compounds listed, enzymatic 
pathways have been described in the literature in detail, 
for many others at least the final enzyme had to be postu-
lated (Junker et al. 2017), which requires expert knowledge 
and may prevent a general utilization of biosynthetically 
informed distance dA,B. However, compounds originating 
from major biosynthetic pathways share a common back-
bone of enzymes, which may help to assign and postulate 
enzymes to compounds whose enzymatic pathway has not 
been revealed in detail. As an alternative, I additionally 
propose an approach to obtain biosynthetically informed 
distance dA,B, which requires knowledge about the chemi-
cal class of a compound, but not the enzymes involved in 
its biosynthesis (see above). The lower resolution of the 
approach relying on chemical classes instead of enzymes can 
be compensated by merging the biosynthetically informed 
distances with Bray–Curtis dissimilarities, which results in 
astonishingly similar distances compared to those obtained 
from trials using information of the enzymes involved in the 
synthesis of the compounds (see Fig. 2).
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Fig. 2  Similarity of biosynthetically informed distance dA,B based on 
enzymes and merged distances mDist, which is the weighted mean of 
biosynthetically informed distances dA,B based on chemical classes 
and Bray–Curtis dissimilarities. a For 0 ≤ w ≤ 1, I tested which w 
returns merged distances mDist most strongly correlated to biosyn-

thetically informed distance dA,B based on enzymes. mDist calculated 
with w = 0.878 correlated most strongly to dA,B (r = 0.999). b Tangle-
gram visualizing the similarity of biosynthetically informed distance 
dA,B based on enzymes and mDist (w = 0.878). Dendrograms based on 
both distance measures turned out to be nearly identical
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As mentioned earlier, biosynthetically informed distance 
dA,B may be irrelevant in studies where the similarity in sec-
ondary metabolite profiles is related to similarity in animal 
behavior toward these profiles. Animals often respond to 
key compounds or a number of compounds in defined ratios 
(Junker et al. 2017; Bruce et al. 2005), but certainly not to 
the presence or absence of a biosynthetic pathway. There-
fore, the research question should dictate which distance 
measure is best suited. Research questions that may benefit 

the most of the biosynthetically informed distance dA,B are 
discussed below.

Concluding remarks

Conventional distance measures applied for secondary 
metabolite profiles do not consider the biosynthetic path-
ways of the compounds (Brückner and Heethoff 2017). 
Thereby, the reciprocal dependence of compounds due to 

Fig. 3  Similarity between floral scent bouquets of Achillea mille-
folium (Am 1–9) and Sinapis arvensis (Sa 1–9). a Biosynthetic dis-
tances of compounds emitted by both plant species based on the num-
ber of shared enzymes are visualized by the dendrogram. Compounds 
exclusively detected in samples of A. millefolium are shown in green; 
those exclusively detected in S. arvensis samples in blue, and those 
emitted by both species in red. b Similarities based on biosyntheti-

cally informed distance dA,B (left) and Bray–Curtis dissimilarities 
(right). c, d Histograms show distribution of pairwise distances based 
on biosynthetically informed distance dA,B (c) and Bray–Curtis dis-
similarities (d) between the samples of the same species (A. millefo-
lium in green, S. arvensis in blue) and distances of samples from dif-
ferent species (red). (Color figure online)
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their shared biosynthetic pathways is ignored, which clearly 
affects the production of secondary metabolites (Junker et al. 
2017). The approach proposed here directly addresses this 
concern and calculates biosynthetically informed distances 
between secondary metabolite profiles and consequently 
considers the similarity of the biosynthetic pathways of the 
compounds additionally to their identity. Next to informa-
tion on biosynthesis, the approach uses generalized UniFrac 
distances (Chen et al. 2012; Lozupone and Knight 2005) 
that have been developed to calculate the distance between 
microbial communities and is now a standard approach in 
microbiome research.

In general, biosynthetically informed distances represent 
a useful addition to conventional distance measures com-
monly used in studies comparing secondary metabolite 
profiles and provide information about the similarity of the 
enzymatic equipment of the organisms that have been sam-
pled rather than the similarity between the compositions of 
the compounds detected. In my opinion, the new approach 
mainly benefits studies in community ecology and in studies 
searching for phylogenetic signals in secondary metabolite 
profiles. Community ecology will produce data sets com-
prising the secondary metabolite profiles of multiple spe-
cies but with few replicates per species. Such a dataset will 
comprise a large proportion of compounds that are present 
in one or few species (and thus samples) only (Junker 2016), 
which will limit the validity of interpretations of results 
based on conventional distance measures. By considering 
the biosynthetic pathways leading to the compounds instead 
of exclusively the identity of the compounds, the functional 
composition and diversity of a community may be assessed 
in a more meaningful way. For phylogenetic investigations, 
the approach may likewise yield more meaningful results. 
In conventional distance measures, the addition of any new 
compound is considered in exactly the same way regardless 
the biosynthetic origin. Let us assume two species that differ 
in a single compound only: one species contains α-pinene 
and the other one, e.g., β-phellandrene (both monoterpenes, 
see Fig. 1), both species have nearly the same enzymatic 
equipment that differs only in the final enzyme of the path-
way. In contrast, if one species contains α-pinene and the 
other one indole (aromatic compound, Fig. 1), the species 
possess completely different pathways. Despite these differ-
ences, conventional distance measure would return the same 
distances although the former example indicates a conserved 
(or converged, depending on the phylogenetic distance of the 
species) evolutionary relationship and the latter a diverged 
evolutionary relationship if biosynthetic information is 
considered. These strong differences in the assessment of 
the evolutionary relationship of two species would be pre-
cisely depicted using biosynthetically informed distances 
dA,B. The main and the alternative approaches introduced 
here are highly flexible in incorporating any information on 

the compounds that is of relevance in a given study. For 
instance, instead of information on the enzymes involved in 
the biosynthesis of compounds or their chemical class, func-
tional groups, other chemical properties, or even ecological 
functions can be used to characterize the compounds. There-
fore, biosynthetically informed distances dA,B are broadly 
applicable and can be adopted to specific research questions.

Biosynthetically informed distances thus provide a novel 
way to compare secondary metabolite profiles considering 
the biosynthesis of the compounds present in the samples. 
This information is meaningful addition to conventional dis-
tance measures and allows novel insights into the functional 
composition and diversity of communities and the evolution 
of secondary metabolites.
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