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Everything should be as simple as it can be, but not simpler.—Attributed to Albert Einstein (1)

ABSTRACT Reactive oxygen species (ROS) are produced by host phagocytes and exert antimicrobial actions against a broad range
of pathogens. The observable antimicrobial actions of ROS are highly dependent on experimental conditions. This perspective
reviews recent controversies regarding ROS in Salmonella-phagocyte interactions and attempts to reconcile conflicting observa-
tions from different laboratories.

IMPORTANCE OF ROS IN HOST DEFENSE

In 1932, the uptake of Micrococcus by canine leukocytes was found
to result in a burst of oxygen consumption (2). This phenomenon
was later rediscovered (3, 4) and linked to the formation of hydro-
gen peroxide (5), suggesting a possible role in microbial killing by
phagocytes (6, 7), as hydrogen peroxide was known to exhibit
antimicrobial activity. The NADPH-dependent NOX2 phagocyte
oxidase complex responsible for the generation of reactive oxygen
species (ROS) is now well characterized (8). The enhanced suscep-
tibility to infection of individuals with inherited deficiencies of
specific NOX2 components, a condition known as chronic gran-
ulomatous disease (CGD), has unequivocally demonstrated the
importance of ROS production in host defense (9). Important
opportunistic pathogens in CGD include Salmonella enterica,
Staphylococcus aureus, Serratia marcescens, and Aspergillus spp.
(10, 11). Mouse models with targeted disruption of NOX2 exhibit
impaired host resistance comparable to that of humans with CGD
(12). However, the mechanisms by which phagocyte-derived ROS
kill microbes and by which pathogens resist ROS-dependent an-
timicrobial actions remain controversial. This perspective will
provide a brief overview of ROS-dependent antimicrobial actions,
critically assess selected recent publications concerning ROS and
Salmonella, and attempt to reconcile conflicting observations.

INTERCONVERSION OF ROS

The product of NOX2 is superoxide radical (O2·�), which can
undergo spontaneous or enzymatic dismutation to hydrogen per-
oxide (H2O2). The cytotoxic potential of H2O2 results to a large
extent from its ability to oxidize ferrous iron (II), in what is re-
ferred to as Fenton chemistry (13), to form highly reactive hy-
droxyl radicals (OH·). O2·� and H2O2 exhibit synergistic cytotox-
icities, suggested by Haber and Weiss to result from the reduction
of ferric iron (III) by O2·� (14), but studies of Escherichia coli have
demonstrated an alternative mechanism, the mobilization of iron
from iron-sulfur clusters by O2·� (15, 16), thereby increasing the
availability of free iron to participate in Fenton-mediated damage.
H2O2 itself can also mobilize iron from iron-sulfur clusters (17).
In neutrophils, myeloperoxidase (MPO) catalyzes the formation
of hypochlorous acid (HOCl) from H2O2 and chloride ion. Al-
though HOCl dramatically enhances the microbicidal activity of
H2O2, MPO appears to be nonessential for host defense, as MPO-
deficient individuals do not have a high frequency of infections,
with the exception of an increased susceptibility to Candida spp.
(18, 19).

PHAGOSOMAL ROS CONCENTRATIONS

During the respiratory burst, professional phagocytes can convert
3 to 4 nmol of oxygen to ROS per 106 cells each minute (20).
However, much of the generated H2O2 is released from the cell
(21), as H2O2 diffuses freely across membranes. Attempts to
model steady-state ROS concentrations within the neutrophil
phagosome have estimated concentrations of O2·� to be 25 �M,
with H2O2 concentrations in the low micromolar range, but levels
rise to �100 �M O2·� and 30 �M H2O2 if MPO is absent (22).
These values are somewhat lower than the extracellular concen-
trations of H2O2 required for observable antimicrobial actions in
vitro, although intracellular concentrations as low as 1 �M are
toxic for E. coli (17). The higher H2O2 concentrations required in
order to demonstrate antimicrobial actions in experimental sys-
tems are largely an artifact of the rapid degradation of H2O2 by
concentrated cell suspensions, which does not occur when a single
bacterium is situated within a phagosome. Moreover, it is likely
that bacteria located close to the source of ROS generation expe-
rience considerable oxidative stress out of proportion to that
caused by steady-state H2O2 concentrations. Recent studies of
Moraxella catarrhalis indicate that high levels of flux through a
truncated denitrification pathway result in nitric oxide (NO·)-
dependent protein modification and substantial cytotoxicity even
though steady-state NO· levels remain so low that they are unde-
tectable with a sensitive electrode (23). By analogy, exposure to a
constant ROS flux generated in close proximity should not be
considered equivalent to treatment with a bolus administration of
H2O2 in a test tube.

INTERACTION OF ROS WITH OTHER HOST DEFENSES

The challenge of analyzing ROS-dependent antimicrobial actions
in tissue culture or animal models is increased by potential ROS
interactions with other mediators. The reaction of O2·� and NO·
can generate the cytotoxic peroxynitrite (OONO�) anion (24),
and NO· can also potentiate the antimicrobial actions of H2O2 (25,
26). ROS appear to interact synergistically with certain neutrophil
proteases (27), although a paper providing some of the evidence
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underpinning this claim has recently been retracted due to an
inability to reproduce the original findings (28). The involvement
of ROS and NOX2 in signal transduction, phagocyte activation,
and the regulation of autophagy must also be considered (29, 30).

MICROBIAL ROS TARGETS

One of the most important cellular targets of ROS is DNA (31).
Base oxidation, particularly guanine, may be mutagenic (17), and
blocking lesions or strand breaks may be lethal unless they are
repaired (32, 33). As previously mentioned, iron-sulfur cluster-
containing proteins are also vulnerable to ROS damage (34) and
may substantially restrict metabolic pathways even if the damage
is not microbicidal. The presence of SOD in the periplasm has
suggested the existence of extracytoplasmic O2·� targets (17), al-
though these are as yet unidentified.

MICROBIAL ROS DEFENSES

A number of enzymes can transform ROS into less toxic products.
Among the most important of these are catalases, peroxiredoxins,
and superoxide dismutases (SODs). Salmonella enterica carries
three catalases (KatE, KatG, KatN), three peroxiredoxins (AhpC,
TsaA, Tpx), and four SODs (SodA, SodB, SodCI, SodCII) (35–41).
Catalases and peroxiredoxins are scavengers of H2O2, and super-
oxide dismutases are scavengers of O2·�. Although SODs create
0.5 mol of H2O2 per mol of O2·�, SODs may actually reduce over-
all H2O2 levels by preventing the reaction of O2·� with other re-
ductants (42); SOD may also prevent cytotoxic interactions of
O2·� and NO· (43). The redundancy of antioxidant enzymes is
more apparent than real. Several of these enzymes differ with re-
gard to cofactors, regulation, stability, or cellular compartmental-
ization, and some mutants lacking individual antioxidant en-
zymes exhibit enhanced ROS susceptibility. As intracellular free
iron is limiting for Fenton chemistry, mechanisms to sequester
iron or control its uptake are important determinants of ROS
susceptibility (44). The importance of DNA as a microbicidal tar-
get is underscored by the existence of a protein called Dps, which
simultaneously sequesters iron to prevent its interaction with
H2O2 and physically protects DNA (44–46). Dps-deficient mutant
bacteria are highly susceptible to killing by H2O2 and attenuated
for virulence in macrophages and mice (44, 45). In addition, a
plethora of repair enzymes can reverse oxidative DNA lesions
(17).

A unique mechanism of ROS evasion has been described in
Salmonella. The type III secretory system (T3SS) encoded by Sal-
monella pathogenicity island 2 (SPI2) is expressed within the
phagosome, translocates effector proteins into the host cell cyto-
sol, and interferes with the localization of a functional NOX2
complex in Salmonella-containing vacuoles (47–49). Moreover,
the SPI2-encoded T3SS reduces the colocalization of intracellular
Salmonella and H2O2, detected as cerium perhydroxide precipi-
tate by transmission electron microscopy (49), and enhances Sal-
monella survival in activated primary peritoneal macrophages
from C57BL/6 mice but not in their NOX2-deficient counterparts
(49) or in macrophages deficient in the tumor necrosis factor p55
or SLAMF1 receptors required for the recruitment of active NOX2
to the phagosome (48, 50). The colocalization of intraphagosomal
Salmonella and nitrotyrosine, indicative of peroxynitrite forma-
tion from O2·� and NO·, has also been reported to be abrogated by
SPI2 (51). Casbon et al. observed NOX2 within Rab11-positive
recycling endosomes (52), and it has been suggested by those au-

thors that Rab11 may participate in SPI2-dependent depletion of
NOX2 from the Salmonella-containing vacuole, as described for
CD44 (53).

VARIABLES AFFECTING ROS SUSCEPTIBILITY

A number of experimental variables have a significant impact on
in vitro ROS-dependent antimicrobial actions; these include ROS
concentration, bacterial cell density, growth phase, metabolic ac-
tivity, and the mode of ROS generation. H2O2 exhibits bacterio-
static actions at low concentrations and bactericidal actions at
higher concentrations (54). DNA damage plays an important role
in E. coli at micromolar concentrations, with additional targets
involved in killing by higher H2O2 concentrations (55). ROS con-
centration must be evaluated in concert with cell density. At high
cell densities and high H2O2 concentrations, catalase is of critical
importance in Salmonella resistance to killing, but at low cell den-
sities and low H2O2 concentrations, DNA repair is essential,
whereas catalase appears to be dispensable (36). The expression of
antioxidant defense mechanisms, such as Dps, is growth phase
dependent, such that logarithmic and stationary-phase bacteria
exhibit very different levels of ROS susceptibility (56). Reduced
levels of respiration enhance susceptibility to H2O2-mediated
DNA damage during logarithmic phase by increasing NADH ac-
cumulation, resulting in the reduction of flavins and free iron (26,
31), while the inhibition of respiration is protective against H2O2

in stationary phase (57). Exogenous oxidative stress can be created
by the simple addition of H2O2, chemically generated by the auto-
oxidation of pyrogallol, or enzymatically generated by the xan-
thine oxidase/hypoxanthine system, but none of these methods
can be said to precisely reproduce the stress induced by the sus-
tained production of O2·� and the resulting ROS flux generated by
NOX2 within an intracellular compartment.

Experimental variables also have a substantial effect on the
antimicrobial actions of ROS in cultured cells and animal models,
and these include timing, cell type, method of cellular activation,
mode of cell entry, mouse strain, route of administration, and
inoculum size. Timing is among the most important variables, as
the respiratory burst is activated early and subsequently sup-
planted by other antimicrobial effector systems (58, 59). During in
vivo infection, the nature of inflammatory cell populations evolves
over time (60), and even cells of related lineages exhibit different
levels of ROS production depending on their tissue of origin, with
peritoneal macrophages producing greater quantities of ROS in
response to standard stimuli than splenic or bone marrow mac-
rophages (61, 62). Various agents may be used to prime or stim-
ulate ROS release. Phorbol myristate acetate (PMA) triggers the
phosphorylation and translocation of the p47phox component of
NOX2 from the cytosol to the plasma membrane and is com-
monly employed to induce phagocyte ROS production. However,
the plasma membrane localization of NOX2 in response to PMA
differs from the phagosomal NOX2 localization observed after
phagocytosis (49, 63), with likely functional consequences. Op-
sonization of bacteria prior to phagocytosis augments the respira-
tory burst, with both antibody and complement playing a role
(64). Phagocytes from different strains of inbred mice exhibit var-
ious levels of ROS production upon stimulation, and one deter-
minant is the presence of a functional Nramp1 (Slc11a1) locus,
which influences innate susceptibility to intracellular pathogens,
including Salmonella, Mycobacterium, and Leishmania spp. (65).
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Finally, the route of administration and inoculum size determine
the host cell populations initially encountered by microbes (60).

HOW DO HOST-DERIVED ROS DAMAGE BACTERIA?

In this light, recent new claims regarding ROS and Salmonella can
be critically examined. Previous studies suggested that only
periplasmic SodC among the antioxidant enzymes of Salmonella
plays a specific role in virulence (36, 37, 43). Hébrard et al. revis-
ited the role of antioxidant enzymes in Salmonella virulence and
reported that a mutant strain lacking all three catalases and two of
the putative peroxiredoxins (HpxF�) is attenuated for growth in
macrophages and virulence in mice (38). Those authors con-
cluded that cytoplasmic antioxidant enzymes contribute to Sal-
monella virulence. It should be noted that Hébrard et al. actually
confirmed earlier reports that catalases and the AhpC peroxire-
doxin are individually dispensable for Salmonella virulence (36,
66). Reduced virulence was observed only in an HpxF� mutant
lacking a combination of five antioxidant enzymes. However, this
strain was also severely defective for aerobic growth in minimal
medium and in macrophages treated with a NOX2 inhibitor, so it
is difficult to attribute the virulence defect of an HpxF� mutant to
a specific role of the cytoplasmic enzymes in detoxifying
phagocyte-derived ROS.

A study by Craig and Slauch took a different experimental ap-
proach, employing mixed murine infections with various Salmo-
nella mutant strains to determine the contribution of specific ge-
netic loci to virulence (67). The studies were performed with
BALB/c mice that lack a functional Nramp1 locus and are exqui-
sitely susceptible to Salmonella (intraperitoneal 50% lethal dose
[LD50] � 10 CFU) (68). Craig and Slauch did not investigate
catalases or peroxiredoxins but rather evaluated the contribution
of the SodCI periplasmic superoxide dismutase in Salmonella
strain backgrounds deficient in cytoplasmic superoxide dismutase
activity or DNA repair. They concluded that since SodCI does not
exhibit synthetic effects on the in vivo competitive index with cy-
toplasmic SOD or DNA repair, the antimicrobial effects of host-
derived ROS are the result primarily of damage to an extracyto-
plasmic target, rather than to DNA. Of note, the authors reported
a 5- to 8-fold attenuating effect of a sodCI mutation in wild-type
Salmonella but a 32-fold effect in a recA mutant deficient in re-
combinational DNA repair. This might be interpreted to indicate
that periplasmic SOD protects Salmonella from DNA damage re-
paired by RecA and is consistent with other studies indicating that
DNA is a major target of ROS (55). Craig and Slauch rejected this
interpretation because SodCI had only a 5-fold effect in a ruvAB
mutant that lacks the RuvAB resolvase, which is also involved in
recombination. However, mutations in recA and ruvAB are not
equivalent. For instance, RecA is essential for repair of double-
strand breaks, whereas RuvAB can be functionally replaced by
RecG (69). Additional observations suggest that DNA is an impor-
tant target of phagocyte-derived ROS. Periplasmic SodC defi-
ciency potentiates H2O2 killing of mutant Salmonella lacking the
DNA-protective protein Dps (70). DNA repair-deficient Salmo-
nella strains are sensitive to killing by ROS-producing macro-
phages, and this is dependent on ROS production (71, 72). Fur-
thermore, recombinational DNA repair is essential for the ability
of Salmonella to withstand ROS at low cell densities, resist killing
by ROS-producing macrophages, and cause lethal systemic infec-
tion in NOX2-producing mice (36, 73). Mutant Salmonella lack-
ing the Fpg enzyme responsible for removal of oxidized guanine

and formamidopyrimidine residues exhibits an enhanced muta-
tion rate during murine infection despite the inhibition of nitric
oxide synthesis (74), suggesting that ROS production by the host
during infection is sufficient to damage bacterial DNA. Lastly, it
should be noted that fur mutant and ferritin-deficient Salmonella
strains with elevated intracellular free-iron levels exhibit attenu-
ated virulence in mice, which suggests that cytoplasmic Fenton
chemistry is an important determinant of susceptibility to host
defenses (44).

DOES THE SPI2 T3SS PROTECT SALMONELLA FROM NOX2?

Most recently, Aussel et al. utilized a green fluorescent protein
(GFP) transcriptional fusion to the Salmonella ahpC peroxire-
doxin gene as a biosensor of oxidative stress experienced by Sal-
monella during infection (75). Those authors observed that ahpC
expression was dependent on host ROS production and the pres-
ence of catalases and peroxiredoxins but not the expression of the
SPI2 T3SS. That study, supported by an accompanying commen-
tary by Slauch (76), concluded that the contribution of SPI2 to
Salmonella pathogenesis is unrelated to an interaction with
NOX2. In addition, Aussel et al. cited a recent study by Helaine et
al. which indicated that SPI2 promotes bacterial replication rather
than resistance to killing during infection (77).

It is uncontroversial to state that some contributions of SPI2 to
Salmonella virulence are NOX2 independent. The expression of
SPI2-related virulence phenotypes in nonphagocytic cells lacking
the high-output generation of ROS has been noted previously (49,
78, 79). However, the observations of Aussel et al. do not exclude
a role for SPI2 in opposing the antimicrobial actions of NOX2.
One limitation of the study by Aussel et al. is the use of a stable
GFP derivative (80), which might not have detected effects of the
SPI2 T3SS on the temporal dynamics of oxidative stress in vivo.
Another concern is the reliance of these investigators on ahpC
expression as an indicator of oxidative stress. AhpC expression is
elicited by low endogenous levels of H2O2, and given that steady-
state H2O2 accumulation is limited, it cannot be assumed that the
ahpC-gfp reporter is capable of sensing enhanced intraphago-
somal H2O2 fluxes in the absence of SPI2, even though oxidative
cellular damage might be increased. In addition to the aforemen-
tioned researchers (47–50), Suvarnapunya and Stein used a differ-
ent type of biosensor to demonstrate that macrophages inflict in-
creased oxidative DNA damage in Salmonella mutants that lack
SPI2 (81). Those authors additionally observed that the timing of
SPI2 expression is dependent on experimental conditions, which
thereby determine the observed relative contribution of SPI2 and
DNA repair to intracellular Salmonella survival. It is also impor-
tant to note that the bacterial inoculum size used by Aussel et al. to
infect mice was significantly different from the inoculum sizes
used by earlier investigators. For technical reasons relating to their
novel gfp reporter system, Aussel et al. infected mice with large
bacterial inocula (ca. 104 � LD50) that may have overwhelmed
innate immune defenses and obscured an interaction between the
SPI2 T3SS and NOX2. After administration of these large inocula,
Aussel et al. observed that most Salmonella cells were contained
within neutrophils, which contrasts with the predominant role of
macrophages when smaller inocula are administered (60). This is
of potential importance because neutrophils generally generate
higher quantities of ROS than macrophages and because it is un-
known whether SPI2 can affect NOX2 trafficking in neutrophils,
which occurs via a mechanism different from that in macrophages
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(52). Earlier studies to investigate the interaction between SPI2
and NOX2 used inoculum sizes approximately 1,000-fold lower
than those used by Aussel et al. and Helaine et al. Finally, in com-
parison to the peritoneal or human monocyte-derived macro-
phages used by earlier investigators (47–50), bone marrow-
derived macrophages, which were used by Aussel and Helaine et
al., exhibit reduced anti-Salmonella activity (82). The failure to
observe a significant effect of SPI2 on Salmonella killing might
simply reflect the poor bactericidal activity of these cells. Aussel et
al. stimulated their macrophages with PMA, which, as previously
mentioned, targets NOX2 to the plasma membrane rather than
the phagosome (49, 63). Numbers of bacterial CFU were not re-
ported by Aussel et al., so it is unclear how effectively SPI2 pro-
moted intracellular Salmonella survival under these conditions.
Thus, differences in both methodology and interpretation may
contribute to the discrepancies between the recent studies and
earlier observations.

Further experimentation may help to reconcile some of the
present uncertainties. For example, it would be of interest to re-
peat some of the relevant studies using a wider range of inoculum
sizes, cell types, biosensors, gfp derivatives (83), and other exper-
imental conditions to determine which of these variables is most
important. However, one must also consider that the desire for
simple reductionist explanations (84) may be futile when consid-
ering the complex antimicrobial actions of ROS. Experimental
observations in apparent conflict might each be valid but also
limited in their relevance to specific stages or types of host-
pathogen interactions. As the Bob Dylan song (85) goes,

Half of the people can be part right all of the time
Some of the people can be all right part of the time
But all of the people can’t be right all of the time
I think Abraham Lincoln said that.

CONCLUSIONS

ROS can attack diverse targets to exert antimicrobial activity,
which helps to account for their versatility in mediating host de-
fense against a broad range of pathogens. The observable actions
of ROS and the contribution of various microbial antioxidant
strategies to resist them are highly dependent on the experimental
methods employed. Under certain conditions, ROS may be bac-
teriostatic or bactericidal for Salmonella, may attack extracyto-
plasmic or cytoplasmic targets (in particular iron-sulfur centers
and DNA), and may be opposed by antioxidant enzymes or the
SPI2 T3SS. The experimental conditions most relevant to natural
host-pathogen interactions are presently uncertain. Nevertheless,
available evidence suggests that the effects of host-derived ROS on
microbial pathogens are complex. Simple explanations regarding
the mechanisms and roles of ROS during infection on the basis of
individual experimental models should be regarded with caution.
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