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1 |  INTRODUCTION

Congenital contractural arachnodactyly (CCA, OMIM 
#121050) is a rare congenital disorder characterized by ab-
normal connective tissue.1 CCA was first described in 1968, 
and it was found to share some common characteristics 
with Marfan syndrome (MFS), such as arachnodactyly, pec-
tus deformities, dolichostenomelia, and kyphoscoliosis.2-4 

However, most patients with CCA do not have the ocular and 
cardiovascular complications, which are the typical charac-
teristics of MFS.5,6

Through genetic linkage analysis and mutation screen-
ing, FBN2 gene mutations were found to correspond to 
the incidence of CCA in many probands or families.7-15 
To date, FBN2 is the only known susceptibility gene of 
CCA.10,16-18 The FBN2 gene encodes fibrillin- 2, which has 
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Key Clinical Message
We identified a novel heterozygous mutation (c.4177T>G and p.Cys1393Gly) in 
FBN2 that cosegregated with congenital contractural arachnodactyly (CCA) in a 
five- generation Chinese family. This mutation may cause the loss of the disulfide 
bond between Cys 1393 and Cys 1378 residues of fibrillin- 2. Our study expands the 
genetic profile of CCA.
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been demonstrated to have important roles in the structure 
of  extracellular  microfibrils in elastic fiber by providing 
strength and  flexibility to connective tissue.14,16,19 Previous 
studies in mouse models showed that the knockout of FBN2 
resulted in phenotypes such as forelimbs contractures, disor-
ganized microfibrils, and bilateral syndactyly.14,20

In this study, we performed whole- exome sequencing in 
a five- generation Chinese family that exhibited autosomal 
dominant CCA, resulting in the identification of a novel het-
erozygous mutation (c.4177T>G, p.Cys1393Gly) of FBN2. 
This mutation cosegregated with CCA in the present pedi-
gree and was absent in normal controls. Our study may pro-
vide valuable information for the genetic diagnosis in patients 
with CCA and allow for subsequent studies on CCA patho-
genesis due to FBN2 mutations.

2 |  CLINICAL REPORT

The CCA pedigree in this study has 33 members across 
five generations, six of whom were deceased (Figure 1A). 
Physical tests, medical examinations, and X- ray imaging 
were performed on the proband and other members of the 
family to determine the status of CCA. The proband (IV:7) 
had contractures of the fingers at birth, and the other six 
living members of the family showed the same phenotype 

(Figure 1B). Further physical examination of the 27 living 
members and the CCA disease revealed an autosomal domi-
nant mode of inheritance in the present pedigree. Except for 
arachnodactyly and camptodactyly, all seven affected mem-
bers showed no aberrant mental and motor development. No 
obvious aberrant results were observed from the results of 
blood and urine examinations. There were no signs of muscle 
hypoplasia, tall stature kyphoscoliosis, large joint contrac-
ture, cardiovascular abnormalities, crumpled ears, or ocular 
complication. Additionally, there was no heterogeneity of the 
phenotype between different genders.

Written informed consent was obtained from all subjects, 
and the study was approved by the Ethics Committees on 
human subject research of Huazhong University of Science 
and Technology (2017- IEC- S091). All experiments were 
performed in accordance with the Declaration of Helsinki.

3 |  METHODS

3.1 | Whole- exome sequencing
The whole- exome sequencing was carried out by a com-
mercial company (Kangso medical inspection, Beijing, 
China) following standard experimental procedures. The 
exome was captured using Agilent SureSelectXT Human All 
Exon V6 Kit. The high- throughout sequencing was based 

F I G U R E  1  FBN2 c.4177T>G mutation results in congenital contractural arachnodactyly (CCA) in the family. A, The affected members with 
CCA are depicted by a shaded black square (male) or circle (female). Generations are shown as I to III. The proband (IV:7) is indicated by an arrow, 
and the slash indicates deceased individuals. B, Clinical features of patients with CCA (II:2, III:1, III:3, IV:7, IV:9, V:5, and V:6) and controls (III:6 
and III:7). C, Sanger sequencing to confirm the FBN2 c.4177T>G mutation in the proband (IV:7) and the unaffected control (III:7). The mutation is 
marked by an arrow
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on NextSeq500 (Illumina, San Diego, CA, USA). The read 
length of the sequencing was paired- end 150 bp, and the read 
depth was 120×. High- throughput exome sequencing was se-
lectively carried out on the proband (IV:7), her son (V:5), and 
daughter (V:6). Details of the exome sequencing are shown 
in Appendix S1.

3.2 | Bioinformatics analysis of the  
mutations
The possible effects of the mutations on the function and 
structure of protein, and likelihood of pathological damage 
were analyzed by tools including SIFT, MutationTaster, 
PolyPhen- 2. Mutation Assessor, and FATHMM.

The software Rapid Automatic Detection and Alignment 
of Repeats (RADAR) was used to analyze the repeats of 
FBN2 calcium- binding epidermal growth factor (cbEGF) 
motifs 18- 19.18

The sequences of fibrillin- 2 protein from human, mouse, 
chicken, zebrafish, cat, and chimpanzee were aligned. and 
the conservation was analyzed using Clustal Omega. We also 
aligned the protein sequences of human fibrillin 1, 2, and 3 
and predicted the conservation among the homologs of the 
fibrillin family.18

Using the protein structure modeling tool SWISS- 
MODEL,21 we predicted the structure of the wild- type and 
mutant for the cbEGF motifs 18- 19 (residues 1367- 1448).18 
The structure prediction was performed using the cbEGF- like 
domain pair of human fibrillin- 1 as the template (PDB:1emn). 
The similarity in sequences between human FBN1 and FBN2 
was 78%.

3.3 | Segregation analysis
Direct Sanger sequencing was carried out to identify the po-
tential disease- causing mutations. PCR primers were as fol-
low: 5′- GGAATAGCACCATCTATTATTGG- 3′ (forward) 
and 5′- TTAGGCAGGAATTATCTTGCAA- 3′ (reverse).

Mutations in unrelated controls were screened using a 
RG- 6000 real- time HRM system as described by us previ-
ously. Details are shown in Appendix S1.

4 |  RESULTS

After the filtering steps, a solitary heterozygous missense 
variant, c.4177T>G (NM_001999), in the FBN2 gene 
(NM_001999) was identified in three affected patients based 
on sequences from the OMIM and HGMD databases. The 
mutation was located in exon 32 and confirmed by Sanger 
sequencing (Figure 1C). Another rare variant, rs757406333 
(c.1643A>C, p.Asp548Ala) in FBN2, was also observed in 
all three samples; however, the functional prediction indicated 

that this variant could be tolerated. Sanger sequencing  revealed 
that the c.4177T>G mutation of FBN2 was present in all 
 individuals with the CCA phenotype, but not in any of the 
individuals without CCA (Figure 1C), demonstrating that the 
mutation cosegregated with the disease phenotype in this fam-
ily. The FBN2 c.4177T>G (p.Cys1393Gly) mutation was not 
present in any public genomic variants database, including 
1000Genomes, ESP6500, ExAC Browser (exome aggregation 
consortium), and COSMIC (the catalog of somatic mutations 
in cancer). Additionally, the c.4177T>G mutation in FBN2 
was also not present in 500 normal unrelated controls that were 
screened, nor was the mutation present in the UMD- FBN2 and 
HGMD databases. These results indicated that c.4177T>G in 
FBN2 is a novel mutation that may cause CCA.

The heterozygous c.4177T>G mutation results in a cys-
teine to glycine substitution at amino acid residue 1393. 
The conservation analysis via Clustal Omega revealed that 
cysteine 1393 of human FBN2 is phylogenetically con-
served among various species including human, chimpan-
zee, cat, mouse, chicken, and zebrafish (Figure 2A) and 
showed high conservation when compared with human 
FBN1 and FBN3 (Figure 2B). Using variant functional 
prediction tools, this mutation was predicted to be damag-
ing or to have a high functional impact (SIFT, score = 0, 
damaging; PolyPhen- 2, score = 0.997, possible damaging; 
Mutation Taster, score = 159, disease causing; Mutation 
Assessor, score = 5.52, high functional impact; FATHMM, 
score = −5.9, damaging). These results indicated that the 
FBN2 c.4177T>G (p.Cys1393Gly) mutation was the disease- 
causing mutation.

5 |  DISCUSSION

Congenital contractural arachnodactyly is a rare autosomal 
dominant disorder and has been reported to have various 
clinical manifestations and intragenic heterogeneity.16,22 
CCA is genetically distinct from MFS. CCA has only been 
observed in individuals with mutations in FBN2; however, 
individuals with MFS have mutations in FBN1, TGFBR2, 
and TGFBR1.8,16,22,23

FBN2, which encodes fibrillin- 2, contains 2,912 amino 
acids. Fibrillins (fibrillin- 1, 2, and 3) can form microfi-
brils,24-26 which play important roles in the structural integ-
rity of organs. Fibrillins and microfibrils act as a scaffold in 
the process of elastogenesis,26-28 and abnormalities in fibril-
lins have been identified in a series of hereditary connective 
tissue diseases.29-31

Fibrillin- 2 is composed of three EGF domains, nine 
TGFβ- binding protein- like domains, and 43 cbEGF domains 
(Figure 2C).18,21 The structure of the cbEGF domain of fibril-
lin- 2 is stabilized by six cysteine residues that form three 
stabilizing disulfide bonds with a 1- 3, 2- 4, and 5- 6 pattern 
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(Figure 2D).18,21,32-34 Cysteine 1393 located within the 18th 
cbEGF domain of the fibrillin- 2 was predicted to interact with 
cysteine 1378 via a disulfide bond (Figure 2E). In the present 
pedigree, the c.4177T>G mutation resulted in a cysteine to 
glycine substitution, resulting in a loss of the disulfide bond 
between cysteines 1393 and 1378. The mutation may reduce 
the stability of the structure of fibrillin- 2 and thereby result in 
the symptoms of CCA.

In conclusion, through exome sequencing of a five- 
generation Chinese family, we identified a novel missense 
mutation of FBN2 (c.4177T>G, p.Cys1393Gly), which 

resulted in a cysteine to glycine substitution at residue 1393 
that cosegregated with CCA. The cysteine 1393 residue is 
highly conserved, and the mutation results in the loss of a di-
sulfide bond between cysteines 1393 and 1378 of fibrillin- 2. 
Our study demonstrates that the p.Cys1393Gly is the patho-
genic mutation in this family and also a novel disease- causing 
mutation of CCA.
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F I G U R E  2  Conservation analysis of FBN2 p.Cys1393. A, Phylogenetic comparison of FBN2 across species. B, Phylogenetic comparison 
of human fibrillin- 1, 2, and 3. C, The putative structural domains. The p.Cys1393Gly mutation identified was located in cbEGF domain 18. D, 
Multiple sequence alignment of cbEGF domain 18- 19 of fibrillin- 2. Disulfide bonds are shown indicated by black lines (SS). Location of Cys 1393 
is shown by the red arrow. E, Modeled structure of cbEGF domain 18 and 19 of fibrillin- 2. The disulfide bonds are shown by green lines
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