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Fatigue is one of the most common multiple sclerosis (MS) symptoms. Despite

this, monitoring and measuring fatigue (subjective lack of energy)– and fatigability

(objectively measurable and quantifiable performance decline)– in people with MS have

remained challenging. Traditionally, administration of self-report questionnaires during

in-person visits has been used to measure fatigue. However, remote measurement

and monitoring of fatigue and fatigability have become feasible in the past decade.

Traditional questionnaires can be administered through the web in any setting. The

ubiquitous availability of smartphones allows for momentary and frequent measurement

of MS fatigue in the ecological home-setting. This approach reduces the recall bias

inherent in many traditional questionnaires and demonstrates the fluctuation of fatigue

that cannot be captured by standard measures. Wearable devices can assess patients’

fatigability and activity levels, often influenced by the severity of subjective fatigue.

Remote monitoring of fatigue, fatigability, and activity in real-world situations can facilitate

quantifying symptom-severity in clinical and research settings. Combining remote

measures of fatigue as well as objective fatigability in a single construct, composite score,

may provide a more comprehensive outcome. The more granular data obtained through

remote monitoring techniquesmay also help with the development of interventions aimed

at improving fatigue and lowering the burden of this disabling symptom.
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INTRODUCTION

Evaluating Fatigue or Fatigability?
One of the more challenging aspects of research in multiple sclerosis (MS) fatigue is a lack of
consensus on how to define, and therefore measure, this heterogeneous symptom.

Fatigue has variably been described as “an overwhelming sense of tiredness that is out of
proportion to the performed activity” (1), “a feeling of difficulty initiating, or sustaining voluntary
effort” (2), or “a feeling related to a lack of motivation to deploy resources” (3). A panel of experts
(the MS Council for Clinical Practice Guidelines) defined MS fatigue as “a subjective lack of
physical and/or mental energy that the individual or caregiver perceives to interfere with usual
activities” (4). This definition not only points to the multidimensionality of MS fatigue and its
negative impact on patient’s life, but also emphasizes the subjective nature of this symptom.
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However, this expert definition is still vague and does not
answer many important and practical questions about the
severity, temporality, or triggers of fatigue. For example, one
patient may feel they do not have enough energy for going on a
hike, and another may feel they do not have the energy to go from
the living room to the mailbox. The severity, and perhaps, the
“quality” of fatigue is very different between these two patients,
yet the definition does not distinguish between the two, nor does
it clarify if the subjective lack of energy happens before or after an
effortful activity.

In contrast to the subjective feeling of lack of energy (fatigue),
fatigability has been defined as a more objectively measurable
and quantifiable performance decline in physical or cognitive
tasks. Unfortunately, even the association between subjective
fatigue and objective fatigability in MS is not straightforward, as
noted in people with advanced MS where change in subjective
fatigue did not correlate with cognitive fatigability (5). More
encouragingly, subjective fatigue (measured with a validated
questionnaire) was associated with an objective measure of
physical activity (step count from an accelerometer, as a proxy
for physical fatigability) in a cohort of MS with a wide range
of disability scores (6). After exertion, a 6-min walk test, gait
and motor parameters (postural sway, arm-swing and hand
grip strength) demonstrated potential associations with fatigue
ratings and fatigability scores (7). These emphasize the need for
objective, validated measures that are able to capture real-time
fatigability in people withMS (PwMS), during all moments of the
day (i.e., during and after going for a hike, going to the mailbox,
or sitting watching TV) and over many days at a time.

CURRENT METHODS OF EVALUATION

FOR FATIGUE AND FATIGABILITY AND

THEIR LIMITATIONS

Fatigue
Clinical methods to characterize patients’ feeling of fatigue use
self-reported questionnaires (8). Data derived from self-report
scales depend on the scale developer’s conceptualization of
fatigue and the respondent’s interpretation of the questions (9).
Some scales, developed to quantify fatigue in other medical
conditions, are not specific to MS. Most fatigue questionnaires
ask patients to retrospectively evaluate previous fatigue, and
many have a look-back period of seven to 28 days (hence, calling
these measurements “trait” fatigue) (10). However, the scores
usually do not portray the average fatigue severity in the look-
back period and are mainly influenced by the most recent and
most severe fatigue states (11). These scales do not provide any
information about either diurnal or day-to-day variations in
fatigue severity, phenomena that are well-known to patients with
MS and their clinicians (i.e. “having good days and bad days”)
(10). The lack of granularity and placebo-responsiveness of
fatigue measures from self-report questionnaires could represent
significant limitations to identifying or developing effective
fatigue treatments in MS (12).

To address the problem with recall bias, there has been an
attempt to use self-report questions or questionnaires to assess

the fatigue “state” (fatigue severity at the moment) (13). These
include visual analog scales and/or asking patients to rate how
severe their fatigue is at the moment of assessment. However,
because of the diurnal and day-to-day variations of fatigue
severity, “state” fatigue needs to be measured several times a day
and over a longer epoch to provide amore comprehensive picture
of a patient’s fatigue severity. This in turn may increase the sense
of fatigue in the patient.

Fatigability
Considering the inherent limitations of self-report measures,
efforts to measure fatigue more objectively have involved
several physical and cognitive performance-based measures.
In these tests, compared to healthy controls, patients with
MS demonstrate a decline in physical (e.g., sustained muscle
contraction) and cognitive function (e.g., visual and verbal
memory) after an effortful continuous performance task (14).
These declines can happen even if baseline muscle strength
and cognitive performance are normal. To date, such objective
declines in performance (which we defined as fatigability) may
not correlate with self-reported fatigue (15, 16). This lack of
correlation might be because self-reported fatigue has a look-
back period and is supposed to measure “the average fatigue
severity” over the look-back period, while the performance-based
test measures the fatigability “at the moment.” This issue could
be overcome by more frequent (or continuous) assessments of
the performance.

The lack of correlation between subjective fatigue and
objective fatigability may also be due to the multidimensionality
of MS-related fatigue. In this case, it is important to
incorporate both self-reported and performance-based measures
when assessing fatigue in the research setting. Thus far,
most clinical trials evaluating the efficacy of medication and
interventions for MS-related fatigue have relied solely on self-
reported questionnaires.

REMOTE EVALUATION OF FATIGUE AND

FATIGABILITY

Subjective Assessments: Fatigue
Almost all validated fatigue questionnaires can be administered
and answered remotely by PwMS. These surveys can be accessed
via a web page on patients’ computers, smartphones or tables,
from their homes or workplace. Remote evaluation of fatigue
using patient surveys can obviate the need for a clinic visit
and facilitates participation in fatigue research by reducing
barriers (i.e., eliminating commutes to testing centers). Such
a strategy was used in a clinical trial assessing the efficacy
of pharmacotherapy for MS fatigue (12). The readability and
acceptability of an electronic version of a recently-developedMS-
specific fatigue questionnaire were formally demonstrated during
the initial evaluation of the instrument (17). The advantage
of computerized questionnaires also includes adaptive features,
where the list of questions offered to a patient can change
based on their answers to previous questions [e.g., Neuro-QOL
fatigue survey (18)].
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The ubiquitous availability and versatility of portable
electronic devices and smartphones provide a unique
opportunity to continuously obtain self-reported (fatigue;
state and trait) and performance-based (fatigability) measures
in patients’ real-life settings. This methodology, referred to as
ecological momentary assessment (EMA), involves the repeated
sampling of subjects’ experiences and behavior in the subjects’
natural environment and in real-time (19). Applying the EMA to
smartphones and electronic devices can create a set of observable
behaviors from the interaction between human disease and
the person’s use of the technology, collectively referred to as
digital phenotypes (20). In a study that used a handheld portable
electronic device, a self-report of fatigue severity (by asking
a single question) was prompted by auditory alarms multiple
times a day. Fluctuation in fatigue in both PwMS and healthy
individuals was demonstrated in this study (21). In another
study, PwMS used a wrist-worn device to record Real-Time
Digital Fatigue Scores (RDFS) several times a day, over 3 weeks.
Mean RDFS correlated with traditional validated fatigue scores,
and captured circadian variation in fatigue severity (22). In a
similar way, smartphones can be used for gathering real-time,
patient-reported fatigue severity several times a day and in
various social situations. This eliminates the recall bias inherent
to the currently used questionnaires. Smartphones can also be
used to present patients with tasks (such as a reaction time task)
to assess performance-based fatigue.

Objective Assessments: Fatigability
In a disease as fluctuating as MS, where symptoms can change
hourly, one-time clinic-based measures do not provide us with
a complete picture of the persons’ performance or deficits.
Wearable technology has greatly enhanced the ability to monitor
patients’ function outside of the clinic; smaller and more discreet
wearable monitors can be worn on various parts of the body to
provide data from everyday life.

Changes in accelerometer or sensor-based gait and muscle
activation metrics can be used to infer the users fatigability

over minutes, hours or days (23, 24). Physical activity in PwMS
is influenced by multiple factors, one of which is the patients
current subjective energy levels (state fatigue) (25, 26). As
noted, physical activity outcomes from accelerometry have been
associated with conventional measures of perceived fatigue in
MS (27–32). Self-reported fatigue (state and trait) has also been
associated with sensor-based gait parameters, providing a more
objective correlate to an otherwise subjective measure (7, 33–36).

Smartphones
Because texting and web browsing are among smartphones’ most
used features, keystroke dynamics (KD) data can be studied as a
possible measure of fatigue in MS. KD is one of the behavioral
biometric characteristics and is based on the assumption that
different people have different typing manners. KD has constant
and variable components. The constant component is dependent
on the person’s physical data and does not change over time.
The variable component, however, is dependent on the person’s
psychological state. By associating changes in parameters such as
typing speed, the number of mistakes, and usage of specific keys,

changes in physical and mental behavior could be determined.
For example, in a study of healthy subjects using specific
key press and release timing information from text input
tasks, average daytime fatigue recognition accuracy of 98%
could be reached (37). Also, specific changes in smartphone
usage and KD metadata were correlated with mood states in
patients with bipolar affective disorder (38). Keystroke features
differentiated between PwMS and healthy controls and were
correlated with measures of disability, such as the Expanded
Disability Status Scale (EDSS). However, KD data were not
associated with traditional trait fatigue questionnaires, such as
Fatigue Severity Scale (FSS) (39). This lack of correlation could
be due to recall bias associated with traditional questionnaires.
There is a possibility that KD data better reflect fatigability (as
opposed to subjective fatigue). Future longitudinal studies with
concurrent measurements of fatigue and fatigability can answer
these questions.

Activity Monitors

Types of Activity Monitors
Many gait and activity assessment wearables exist, chiefly divided
into Activity monitors: measuring the quantity of activity,
and Movement monitors: for gait quality or movement. The
pedometer is the simplest activity monitor - traditionally used
to record step counts only (40). The most commonly used
research devices in MS are triaxial waist-worn accelerometers
(e.g., ActiGraphs) (41). However, these devices tend to express
output in activity counts rather than step counts, which are
potentially harder to interpret for the lay person. Some devices
are designed to wear on lower limbs (i.e., ankle or thigh) (42).
Despite variable correlation accuracy with manual step counts,
they may not be practical for longer-term use as they look less
like ‘trendy wearables’ and more research or monitoring devices
(43, 44). Other devices used in research adhere to the skin,
for example, the ActivPAL or the BioStamp (45). A study in
MS found that the BioStamp had high accuracy for detecting
gait patterns and step number and perceived differences in gait
characteristics by disability level (45). Inertial Measurement Unit
(IMU) devices are also used for evaluation and monitoring.
These small devices are comprised of accelerometers, gyroscopes,
and magnetometers which measure linear acceleration, angular
velocity, and magnetic field strength, respectively. They can be
embedded in shoes or clothing, providing spatio-temporal data.
Multisensors, using biaxial accelerometers with heat flux sensors,
skin temperature sensors, near-body ambient sensors, galvanic
skin response sensors are worn on an armband around the upper
arm. These provide a comprehensive picture of activity as well
as the environment and physiological state of the user at the
time of data capture (46), and by measuring multiple elements
are likely to be advantageous for the study of a heterogeneous,
multidimensional symptom like fatigue.

Types of Monitoring Outcomes
Remote monitors generate an array of outcomes, including
activity counts or step counts (using different levels of granularity
and aggregated data summaries; daily or minute-by-minute,
intensity, duration), gait kinematics (such as walking speed,
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stride length, width and cadence), energy expenditure, heart
rate, breathing rate, burnt calories, sleep quality and duration,
estimation of activity type, range of movement, distance traveled
- andmore. Due to themany factors and symptoms that can affect
fatigue (state or trait) and fatigability, the use of remote wearable
devices that can measure various outcomes concurrently in
everyday life would be ideal. Supposedly due to restrictions in size
and weight of the devices, none to date evaluate all outcomes in
the home setting.

Real-World Examples
A significant benefit of wearable devices is their potential for
ecological and continuous use. Therefore, commercially available
devices made for ‘ease of use’ and with fashion-conscious designs
have made their way into clinical research to improve adherence
in longitudinal studies. The Apple iWatch and Fitbit specifically
have gained wide publicity (47–73).

In MS, studies evaluating physical activity using commercial
wearables have shown (1) strong-moderate correlations between
clinical and patient-reported disability measures (6, 74–80),
(2) continuous observation provides less biased assessment vs.
sporadic cross-sectional measures (6, 74, 81, 82), (3) fatigue is not
the only factor affecting sedentary behavior and physical activity
in MS (83, 84) and (4) that average daily step count (STEPS)
is responsive to change over 1-year, even when conventional
measures remain stable (74).

Associations With Fatigability (Performance) and Trait

Fatigue (Patient Rating)
In the FITriMS study (a year-long observational study of
continuous, remote ambulatory activity in PwMS) participants
wore a Fitbit Flex for up to 2 years on their non-dominant
wrist and were asked to complete online surveys every 6 months,
including a subjective, validated measure of fatigue: the 5-item
Modified Fatigue Impact Scale (MFIS-5) (6, 74, 85). Results
indicated that STEPS strongly correlate not only with ambulatory
function (6) but also with worse MFIS-5 scores (r = −0.44,
p < 0.05).

Remote Monitoring Captures Fatiguability and State Fatigue
Initial research using bilateral foot-worn sensors (small IMUs)
demonstrated the ability of spatio-temporal gait parameters to
predict fatigue level (using the BORG scale for perceived exertion
as a proxy for state fatigue) (86). Results from the foot-worn
sensors demonstrate a significant change in gait parameters
pre and post a 6-min walk test – providing information about
the subjects’ performance/fatigability. These data highlight the
promising use of remote monitors as objective measures to
evaluate fatigue as well as fatigability in PwMS both inside and
out of the clinic setting.

Trait and state fatigue has been correlated to poor sleep
quality and quantity (87). Increased physical activity (moderate-
to-vigorous physical activity) has been correlated with improved
sleep quality and reductions in subjective fatigue (88–90). Given
the heterogeneity of symptoms associated with fatigue and the
lack of insight into sleep quality and quantity in the home
setting, remote devices monitoring sleep and physical activity

are beneficial for evaluating personalized correlations on a
patient-by-patient basis. Similarly, restless leg syndrome (RLS)
is common in PwMS and has been correlated with higher
fatigue (trait) and worse sleep quality and quantity (91)– using
wearables to evaluate night-time lower extremity movement
(from RLS) and sleep metrics can provide tailored information
about factors exacerbating or involved in MS fatigue and
potentially also fatiguability.

General Limitations and Possible Solutions

(i.e., Future Work)
Fatigue, by definition, remains a subjective symptom, and
similar to pain, the measurement and monitoring tools will
rely on patients’ reports. Although subjective fatigue contributes
to reduced physical, cognitive, and psychosocial activities
among patients, many other factors result in decreased activity
and fatigability. The pathophysiology of MS fatigue is also
multifactorial and is different among patients and even for a given
patient over the disease course. So, finding a single serological,
cerebrospinal fluid, structural, or functional imaging biomarker
for MS fatigue may not be attainable.

In this situation, we recommend combining ecological
momentary fatigue assessment (i.e., for state and trait fatigue,
using repeated questionnaires via smartphone applications)
and remote real-world measurement of physical and cognitive
function (fatigability) as a solution to this complex problem.
Perhaps, it is possible to design a combined ‘composite score’ that
incorporates both subjective fatigue and objective fatigability into
a single construct. Isolating the concept of fatigue from similar
concepts, such as depression and excessive daytime sleepiness,
and understanding how they affect and interact with each other
may lead to more specific and targeted treatments for patients.

Looking forward, remotemonitors can be used for therapeutic
intervention. Exercise, as well as energy conservation methods,
are known to be beneficial for treating MS fatigue (89, 92, 93).
Using monitors can help personalize when, how and how much
activity a person can perform before getting exhausted. A real-
world example, from the FITriMS study, was the use of the Fitbit
step count as a “dose-meter” – allowing the participant to know
when they needed to slow down to ensure sufficient energy for
the rest of the day, and even subsequent days.

CONCLUSION

Subjective fatigue is one of the most common MS symptoms.
Validated questionnaires are the most common tools for
monitoring and measuring this disabling symptom. Most fatigue
questionnaires can be administered remotely and can therefore
be used for remote evaluation of fatigue in patients. Through
deployment via smartphones and other mobile technologies,
ecological momentary assessment may enable clinicians and
researchers to better understand the patients’ fatigue level, and
its fluctuation and response to treatment in real-life settings.
Objective decline of patients’ function with exertion: what has
been defined as fatigability, can be evaluated using wearable
devices assessing level of physical activity - that can be influenced
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by fatigue severity. Wearables can also quantify the objective
decline. By combining validated questionnaires, momentary
and frequent subjective assessments, and objective measures
of function and its decline with exertion, remote monitoring
techniques will provide a more comprehensive picture of a
patient’s burden of symptoms and treatment response.
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93. Rzepka M, Toś M, Boroń M, Gibas K, Krzystanek E. Relationship between

fatigue and physical activity in a polish cohort of multiple sclerosis patients.

Medicina. (2020) 56:726. doi: 10.3390/medicina56120726

Conflict of Interest: As recipient of the Career Transition Award, VB received

funding from The National Multiple Sclerosis Society. As recipient of the Harry

Weaver Award, RB received funding from The National Multiple Sclerosis Society.

BN has received research funding from NMSS, PCORI, NIH, DoD and Gentech.

BN also received personal fees from Jazz Pharmaceutical.

The authors declare that the research was conducted in the absence of any

commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Block, Bove and Nourbakhsh. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurology | www.frontiersin.org 7 June 2022 | Volume 13 | Article 878313

https://doi.org/10.1038/oby.2007.281
https://doi.org/10.1152/ajpregu.00349.2016
https://doi.org/10.1001/jamanetworkopen.2019.0570
https://doi.org/10.1123/apaq.24.3.245
https://doi.org/10.1016/j.jns.2014.10.021
https://doi.org/10.1016/j.apmr.2015.12.031
https://doi.org/10.1177/1352458516680749
https://doi.org/10.1177/1352458517690823
https://doi.org/10.1177/20556683211067362
https://doi.org/10.1016/j.gaitpost.2016.07.184
https://doi.org/10.1177/1545968320916159
https://doi.org/10.1038/s41598-021-99631-z
https://doi.org/10.1016/S1474-4422(17)30470-2
https://doi.org/10.1016/j.msard.2022.103519
https://doi.org/10.1001/archneur.61.4.525
https://doi.org/10.1016/j.dhjo.2021.101133
https://doi.org/10.1016/j.msard.2018.03.020
https://doi.org/10.1002/14651858.CD009956.pub2
https://doi.org/10.1111/ene.14984
https://doi.org/10.1016/j.jpeds.2019.01.040
https://doi.org/10.3390/medicina56120726
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

	The Role of Remote Monitoring in Evaluating Fatigue in Multiple Sclerosis: A Review
	Introduction
	Evaluating Fatigue or Fatigability?

	Current Methods Of Evaluation For Fatigue and Fatigability and Their Limitations
	Fatigue
	Fatigability

	Remote Evaluation of Fatigue and Fatigability
	Subjective Assessments: Fatigue
	Objective Assessments: Fatigability
	Smartphones
	Activity Monitors
	Types of Activity Monitors

	Types of Monitoring Outcomes
	Real-World Examples
	Associations With Fatigability (Performance) and Trait Fatigue (Patient Rating)
	Remote Monitoring Captures Fatiguability and State Fatigue


	General Limitations and Possible Solutions (i.e., Future Work)

	Conclusion
	Author Contributions
	References


