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Abstract: Silicon–germanium (SiGe) alloys have sparked a great deal of attention due to their ex-
ceptional high-temperature thermoelectric properties. Significant effort has been expended in the
quest for high-temperature thermoelectric materials. Combining density functional theory and
electron–phonon coupling theory, it was discovered that silicon–tin (SiSn) alloys have remarkable
high-temperature thermoelectric performance. SiSn alloys have a figure of merit above 2.0 at 800 K,
resulting from their high conduction band convergence and low lattice thermal conductivity. Further
evaluations reveal that Si0.75Sn0.25 is the best choice for developing the optimum ratio as a thermo-
electric material. These findings will provide a basis for further studies on SiSn alloys as a potential
new class of high-performance thermoelectric materials.

Keywords: thermoelectrics; silicon–tin alloy; density functional theory; electron–phonon coupling

1. Introduction

Thermal energy may be readily converted into electric energy using thermoelectric
materials, without the need for complex devices. The figure of merit (ZT) is a thermoelectric
material criterion that is expressed as

ZT =
S2σ

κ
T (1)

where S is the Seebeck coefficient, σ is the electrical conductivity, κ is the total thermal
conductivity, and S2σ is the power factor (PF). Thermoelectric materials, such as SiGe [1,2],
Bi2Te3 [3–5], and SnSe [6–9], have been extensively explored since they have been demon-
strated to exhibit good electron and thermal transport properties. As is widely known,
SiGe, as a traditional high-temperature thermoelectric material, is extensively investigated.
However, owing to its poor electrical properties, the ZT peak value of SiGe is not very
high (1.3 at 1200 K) [10]. Given this, further research into alternative high-temperature
thermoelectric material candidates is imperative.

In this work, the thermoelectric properties of alloys from the carbon family (C, Si,
Ge, Sn, and Pb) are systematically evaluated. Density functional theory (DFT) [11,12] is
applied to investigate the electronic energy band structures of all possible group 14 alloys.
Electron–phonon coupling theory is used to determine the electronic relaxation time of the
materials. SiSn is found to be a superior thermoelectric candidate compared to SiGe. At
present, SiGe alloys are a traditional thermoelectric material [13–16]. However, Ge is rather
rare in the Earth and much more expensive than Sn, and Ge is toxic but Sn is not. Most
importantly, SiSn is predicted to have lower lattice thermal conductivity than SiGe, which
suggests that SiSn has a greater advantage over SiGe for thermoelectrics [17]. Moreover, the
mechanical, optical, thermal, and electrical properties of SiSn are also predicted by many
theoretical scientists [18,19]. According to our theoretical predictions, the ZT peak value of
SiSn can exceed 2.0 at 800 K.
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2. Computational Methods

In this study, all electrical properties are calculated based on a 12 × 12 × 12 k mesh
within the DFT framework. The Perdew–Burke–Ernzerhof (PBE) with the generalized
gradient approximation (GGA) [20] is used for exchange and correlation energy in structural
optimization and band structure computations. In the Vienna Ab-initio Simulation Package
(VASP) [21–24], the hybrid Heyd–Scuseria–Ernzerhof (HSE06) functional [25,26] is further
utilized to estimate the energy band. The cutoff energy for the wave function is 450 eV.
Furthermore, the quasiparticle GW approximation [27], which is implemented in the
Quantum ESPRESSO (QE) [28] and Yambo [29,30] packages, is also applied to calculate the
electronic energy band. The corresponding cutoff energy is 50 Ry.

Based on electron Boltzmann transport theory, the electron transport parameters
involved in the thermoelectric euphoria calculations can be accurately computed. The
electrical conductivity and Seebeck coefficient are determined by the transport distribution
function Ξ = ∑

k
vkvkτe,k, where vk is the group velocity and τe,k is the electron relaxation

time of the wave vector k.

σ = e2
∫

Ξ(ε)
(
−∂ f0

∂ε

)
dε (2)

S =
ekB
σ

∫
Ξ(ε)

(
−∂ f0

∂ε

)
ε− µ

kBT
dε (3)

where kB is the Boltzmann constant, ε is the electronic energy, µ is the chemical potential,
and f0 is the Fermi distribution function.

The electron relaxation time τe in the electron transport is an important parameter.
Based on Fermi’s golden rule [31,32], the τe is given by

τ−1
e

∣∣∣
nk→mk+q

=
2π

} |gnm(k, q)|2δ
(
εnk − εmk+q

)
(4)

where gnm(k, q) is the electron–phonon coupling matrix element of electron wave vector k
and phonon wave vector q, and εnk is the electron eigenvalue energy of the band n and
wave vector k. In the electron–phonon coupling, the electron–phonon coupling matrix
element is defined as

gmn(k, q) =
1√
2ωq

〈
ψmk+q

∣∣∂qV
∣∣ψnk〉 (5)

where ωq is the phonon frequency of wave vector q, ψnk is the wavefunction of the band
n and wave vector k, and V is the self-consistent potential. Acoustic phonon scatter-
ing (APS) and polar optical phonon scattering (POPS) are the two primary scattering
mechanisms in electron–phonon coupling, and the electron relaxation time is generally
determined by APS. To determine which scattering mechanism dominates in the dia-
mond system, the electron relaxation time of APS and POPS is roughly estimated using
a 33 × 33 × 33 k mesh. The electron–phonon Wannier (EPW) [31,32] method is used to
determine the electron transport properties more accurately. This method must account
for all types of phonons (acoustic and optical phonons) in electron scattering, which ne-
cessitates a dense electron–phonon mesh in the Brillouin zone, as well as high computing
costs [31]. The electron–phonon coupling has been extensively studied and shown to be
useful in determining the electrical transport properties of diamond-like structures [33–35].
The electron and thermal transport in the electron–phonon coupling are calculated using a
12 × 12 × 12 k mesh and 6 × 6 × 6 q mesh, respectively. By using the maximally localized
Wannier functions interpolation method [36], the electrical and phonon properties of fine
meshes of 60 × 60 × 60 k mesh and 60 × 60 × 60 q mesh can be obtained.

The special quasi-random structure (SQS) [37,38] method is applied to simulate the
disordered structure of SiGeSn alloys. Here, 2 × 2 × 2 supercells are constructed by
extending the two-atom primitive cell along with the directions of three basis vectors.
The objective function of the established randomness of SiGeSn alloys is close to −1.0,
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indicating that the disordered structures established by SQS may accurately reflect the
actual alloy structure. The energy band is also calculated using the HSE06 functional.

The minimum lattice thermal conductivity of SiGeSn alloys can be estimated using
Cahill’s model [39], i.e.,

κmin =
(π

6

)1/3
kBρ2/3

3

∑
i=1

vi

(
T
Θi

)2 ∫ Θi/T

0

x3ex

(ex − 1)2 dx (6)

Here, ρ is the number density of atoms, vi is the sound velocity of different phonon
modes, and Θ is the Debye temperature. This formula is based on the amorphous limit;
however, the vibration behavior of atoms in disordered alloys is comparable to that of
atoms in amorphous solids; therefore, the model is well suited for predicting disordered
SiGeSn alloys.

3. Results and Discussion

Alloys containing group 14 elements (C, Si, Ge, Sn, and Pb) have a face-centered cubic
structure similar to diamond. Each atom possesses four strong covalent bonds (Figure 1),
which guarantees the structure’s rigidity and hardness. As the radius of the atoms in alloys
increases, the lattice constants increase correspondingly. Here, the thermoelectric properties
of binary alloys are studied firstly, which is used as a basis to screen ternary alloys with
better performance. Table 1 presents the optimized lattice constants of binary alloys. The
calculated lattice constant of CSi (4.38 Å) is close to the experimental value (4.37 Å) [40].
The table also includes the results of Wang’s LDA computation for comparison [41], and
our results are consistent with these data.

Figure 1. The crystal structure diagram, high symmetry points in the first Brillouin zone, and band
structures of group 14 alloys from HSE06 functional.



Materials 2022, 15, 4107 4 of 12

Table 1. The lattice parameters of group 14 alloys, and the band gaps Eg from PBE and HSE06
calculation. Lattice parameters from another ab initio calculation [41] (Reprinted with permission
from Ref. [41]. Copyright 2002, American Physical Society) and experimental data [41,42] are listed
for comparison.

a from
QE (Å)

a from
VASP (Å)

a from [41]
(Å)

a from
Exp. (Å)

Eg of
PBE (eV)

Eg of
HSE06 (eV)

CSi 4.38 4.38 4.314 4.360 [41] 1.37 2.26
CGe 4.63 4.63 4.500 1.62 2.40
CSn 5.09 5.10 4.961 0.64 1.38
CPb 5.27 5.38 5.139 0.00 0.00
SiGe 5.61 5.62 5.472 5.537 [42] 0.61 1.17
SiSn 5.99 6.08 5.914 0.40 0.97
SiPb 6.29 6.32 6.047 0.00 0.00
GeSn 6.22 6.22 6.004 0.00 0.14
GePb 6.42 6.46 6.154 0.00 0.00
SnPb 6.80 6.86 6.539 0.00 0.00

The energy band gap Eg plays an important role in predicting thermoelectric perfor-
mance, since thermoelectric materials need a sufficiently wide band gap to maintain a
suitably high electrical conductivity and Seebeck coefficient. For C-based alloys (CSi, CGe,
CSn, and CPb), the band energy of the G point decreases as the average molecular mass
increases. This modification transforms C-based alloys from indirect semiconductors (CSi
and CGe) to direct semiconductors (CSn) to semimetals (CPb). The top of the valence band
of these compounds’ energy bands is at the position of the G point. The conduction band
bottom of CSi and Cge is situated at high symmetry point X, whereas that of CSn and CPb
is positioned at the G point. The PBE and HSE06 calculations predict that the band gaps of
CSi are 1.37 and 2.26 eV, respectively, while the experimental measurement is 7.34 eV [43].
Even in the calculation of the HSE06 hybrid functional, the band gap is still underestimated,
implying that the actual gap of the material should be considerably larger than our calculated
value. Since the calculated gap of CGe is larger than that of CSi, CGe should be an insulator.
Among the other group 14 alloys, SiPb, GePb, SnPb, and GeSn are semimetals or metals; thus,
further investigation into their thermoelectric properties is superfluous. Therefore, only the
three semiconductor materials CSn, SiGe, and SiSn merit further investigation.

To further screen candidates for n-type thermoelectric materials better than SiGe from
these three materials, a type of dimensionless material parameter β is introduced to assess
the performance [44]. The larger the β value, the better the thermoelectric performance.
The material parameter β can be expressed as

β =
Nv

3π2

(
2m∗dkBT

}2

) 3
2 k2

BTτe

m∗c kl
(7)

where Nv is the band degeneracy, m∗d is the effective mass of density of states, } is the
reduced Planck constant, τe is the relaxation time of an electron, and m∗c is the conductivity
effective mass. The m∗d and m∗c are defined as

m∗d = (m∗xm∗ym∗z )
1/3 (8)

1
m∗c

=
1
3

(
1

mx
+

1
my

+
1

mz

)
(9)

where m∗i (i = x, y, and z) is the electron effective mass in different directions. In general, the
APS is dominant in electron transport, and thus the relaxation time τe is [45]

τe =
π}4C

√
2E2

(
m∗dkBT

)3/2 (10)
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Here, C is the elastic modulus, and E is the deformation potential constant. Then, the
β is simplified to

β =
2k2

BT}CNv

3πm∗c E2kl
. (11)

According to the formula, larger band degeneracy and lower conductivity effective
mass imply better thermoelectric performance.

As shown in Figure 2, the band structures of GW are comparable to those of HSE06.
The findings of the GW computation are mostly discussed in this section. The gaps between
the conduction band energy valleys of G, L, and X and the top of the valence band for CSn
are 1.6, 2.9, and 1.7 eV, respectively. The gaps between the conduction band energy valleys
of G, L, and X and the top of the valence band in SiGe are 2.3, 1.4, and 1.0 eV, respectively.
The gap at the G point is the largest and is 1.15 eV higher than the bottom of the conduction
band. The gaps between the conduction band energy valley of G, L, and X and the top of
the valence band for SiSn are 1.1, 0.9, and 1.0 eV, respectively. It is worth noting that the
difference between the three gaps is small, with the maximum gap difference being no more
than 0.2 eV. The degeneracy order of G, L, and X is as follows: L > X > G. Therefore, the
conduction band degeneracy order of the three materials is as follows: SiSn > SiGe > CSn.

Figure 2. Cont.
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Figure 2. The band structures of CSn, SiGe, and SiSn from GW approximation.

Table 2 shows the effective masses of CSn, SiGe, and SiSn. Due to the strong isotropy
of the conduction bands at the G point, m∗d and m∗c are found to be equal. The conduction
bands of the L and X points are anisotropic, resulting in a discrepancy between m∗d and
m∗c . When comparing β values, m∗c is more significant. It can be seen that m∗c is sorted
as follows: CSn > SiGe > SiSn. When combined with conduction band degeneracy and
conductivity effective mass, it is seen that SiSn has superior thermoelectric properties to
SiGe, and therefore SiSn merits further investigation.

Table 2. The effective mass of CSn, SiGe, and SiSn.

m*
d(me) m*

c(me)

G L X G L X

CSn 0.08 0.40 0.37 0.08 0.26 0.32
SiGe 0.08 0.18 0.32 0.08 0.14 0.28
SiSn 0.04 0.16 0.27 0.04 0.13 0.26

Figure 3 depicts the n-type SiGe and SiSn electron relaxation time from various scat-
tering mechanisms; where the energy is zero, this represents the conduction band’s bottom.
At high temperatures, electron–phonon coupling often dominates electron scattering, and
thus 800 K is used as a reference. Because the relaxation time of APS is much shorter than
that of POPS, APS is stronger than POPS for these two materials. Total relaxation time can
be obtained by combining the two scattering mechanisms. Each of the energy valleys is
observed to have a distinct relaxation time. The L energy valley has the lowest energy and
therefore contributes the most to electron transport. SiSn has a lower electronic effective
mass at the G point conduction band energy than SiGe, and thus the relaxation time at the
G point increases from 10−14 s for SiGe to 10−13 s for SiSn. This difference is significant,
indicating that SiSn should have an excellent electron transport performance compared
to SiGe.

The electron transport properties of n-type SiGe and SiSn at 800 K at carrier con-
centrations ranging from 1018 to 1021 cm−3 are shown in Figure 4. Many experiments
on the thermoelectric properties of Si0.8Ge0.2 [46–51] have been extensively performed.
Because Si0.8Ge0.2 contains more silicon than Si0.5Ge0.5, it has a much wider energy band
gap. Comparatively, Si0.8Ge0.2 has a higher Seebeck coefficient and smaller electrical con-
ductivity. Si0.8Ge0.2 has a Seebeck coefficient of 0.25 mV/K at 800 K and conductivity of
5 × 104 S/m at an electron carrier concentration of 2.2 × 1020 cm−3 [10]. Furthermore, at
donors of 2.5 × 1020 cm−3, the Seebeck coefficient of Si0.7Ge0.3 is 0.21 mV/K [52]. At the
2.2 × 1020 cm−3 carrier concentration, the two parameters for Si0.5Ge0.5 are 0.16 mV/K and
2.3 × 105 S/m, respectively. These findings are consistent with our predictions, and our
computations are accurate. The PF peak value, on the other hand, is a useful indicator of
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the electron transport performance. At 800 K, SiGe has a maximum PF of 57 mW/cmK2,
whereas SiSn has a peak PF of 71 mW/cmK2. In contrast, the PF of SiSn is 25% higher than
that of SiGe. The impact of multi-energy valleys can enhance the number of conducting
channels, resulting in superior electron transport performance.

Figure 3. The electronic relaxation time of n-type SiGe and SiSn from electron–phonon coupling at
800 K.

Figure 4. The electrical conductivity σ (a), Seebeck coefficient S (a), PF (b), electronic thermal
conductivity κe (c), and ZT (d) of n-type SiGe and SiSn at 800 K.
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Thermal conductivity is mainly composed of the contributions from electrons and
phonons. According to the Wiedemann–Franz law [53], electronic thermal conductivity is
κe = L0σT. However, the relationship between κe and carrier concentration is not linear,
indicating that the Lorentz number L0 is not constant and varies depending on the carrier
concentration. The Lorentz number L0 is given by

Lo =

(
kB
e

)2

(
r + 7

2
)

Fr+5/2(
r + 3

2
)

Fr+1/2
−
[(

r + 5
2
)

Fr+3/2(
r + 3

2
)

Fr+1/2

]2
 (12)

Here, r is the scattering parameter, and the Fermi integral Fs is defined as

Fs =
∫ ∞

0

εs/kBT
e(ε−εF)/kBT + 1

d(ε/kBT) (13)

where εF is the Fermi energy. The Lorentz constant is very sensitive to the scattering mecha-
nism. According to the previous analysis, APS dominates the electron transport mechanism
in SiGe and SiSn; therefore, r is −1/2. The calculated electron thermal conductivity of SiGe
and SiSn is illustrated in Figure 4c.

The calculation of the lattice thermal conductivity of group 14 alloys is complex owing
to the numerous phonon scattering mechanisms: phonon–phonon, isotope, mass disorder,
impurity [54], electron–phonon coupling [34], and nanoparticles [10,55]. There is an alloy
disorder (a combination of mass and interatomic local strain field variation), and the effect
enhances phonon scattering while significantly reducing lattice thermal conductivity. There
are numerous theoretical [17,52,54,56–58] and experimental [51,59,60] studies about the
lattice thermal conductivity of group IVA alloys. The experimental measurement results
show that the lattice thermal conductivity of SiGe at 800 K is approximately 3.8 W/mK [59],
while that of nano SiGe is approximately 2.6 W/mK [10]. Furthermore, Khatami and
Aksamija computed the thermal transport properties of SiGe and SiSn by using the phonon
Boltzmann transport theory [17]. Their calculations fit well with the experiment results, and
they claimed that the lattice thermal conductivity of SiSn would be around half of that of
SiGe under the same grain scale, and thus the lattice thermal conductivity of SiSn at 800 K
is cautiously estimated to be 1.3~1.9 W/mK. Our computed phonon dispersion curves are
shown in Figure S1, which suggests that SiSn is as thermodynamically stable as SiGe. Our
lattice thermal conductivity of SiGe and SiSn at the amorphous limit at 800 K is 2.6 and
1.4 W/mK, respectively, which is in excellent agreement with the previous theoretical and
experimental data.

The ZT values of SiGe and SiSn at 800 K can be calculated using Formula (1). The
maximum ZT value for SiGe is 1.1, which is consistent with the experimental data [10].
This is sufficient to demonstrate the accuracy of our calculations, which are reliable. At
the optimum carrier concentration, the lattice thermal conductivity of SiSn is considerably
lower, and the ZT can reach 2.2 for SiSn. SiSn had a ZT value that was approximately
100% more than SiGe. This incredible finding offers new possibilities for group 14 alloys
with diamond-like structures, and SiSn may be a potential thermoelectric material to
replace SiGe.

However, alloys include not only binary alloys with the same ratios of two composi-
tions, but also binary alloys with different proportions, ternary alloys, and so on. SiGeSn
alloys are chosen for a further search for high-performance alloys with additional compo-
nents based on the appropriate energy gap and relatively low lattice thermal conductivity.
Figure 5e depicts the optimal lattice constant distribution of SiGeSn alloys. The lattice
constants at different ratios establish a linear relationship, which is in line with Vegard’s
law. Figure 5a depicts the band gaps of each alloy based on the calculation of the HSE06
functional, and Figure 5b shows the lattice thermal conductivity at the amorphous limit.
The greater the Sn component, the narrower the band gap, and the lower the lattice thermal
conductivity. Assuming that the electron relaxation time is 10−15 s, the ZT of SiGeSn
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alloys can be determined by constant relaxation time approximation [61]. This relaxation
time value is very conservative, particularly in comparison to the results from electron–
phonon coupling. Although the ZT of alloys is underestimated, it can reflect the relative
thermoelectric performance. It has been found that Si0.75Sn0.25 has superior thermoelec-
tric performance to Si0.5Sn0.5, which means that SiSn alloys continue to offer unmatched
benefits over SiGe alloys.

The gaps between the three conduction band valleys (G, X, and L) and the top of the
valence band are EG, EX , EL, respectively. Band difference Ed is defined as

Ed = EG + EX + EL − 3min{EG, EX , EL} (14)

The smaller Ed represents the three conduction band valleys at the G, X, and L points,
which converge to each other more closely. Si0.75Sn0.25 and Si0.75Ge0.25 possess strong
energy band convergence, as shown in Figure 5d. Considering that Si0.75Sn0.25 has lower
lattice thermal conductivity, it is no wonder that Si0.75Sn0.25 has superior thermoelectric
performance. Therefore, for a material to have good thermoelectric properties, it must
have a sufficient band gap in addition to strong band degeneracy and low lattice thermal
conductivity.

Figure 5. The band gap Eg (a), lattice thermal conductivity κmin at 800 K (b), n-type ZT at 800 K (c),
band difference Ed (d), and optimized lattice constant distribution (e) of SiGeSn alloys.

4. Conclusions

In this study, we investigated the differences in the energy band structures of group
14 (C, Si, Ge, Sn, Pb) alloys by using rigorous first-principles calculations. As a traditional
thermoelectric material, n-type SiGe benefits from the effect of conduction band energy
degeneracy, which also exists in SiSn. Surprisingly, SiSn alloys possess stronger energy
band convergence; namely, the energy values of conduction band valleys at the L and X
points are very close to the energy at the G point, forming a three-energy-valley convergence
effect. The electron transport properties of SiSn are indeed found to be superior to those
of SiGe by using Boltzmann transport theory and electron–phonon coupling theory. This
finding demonstrates that the multi-energy valley effect can effectively enhance electron
transport performance.

Furthermore, due to the stronger mass–disorder scattering, the lattice thermal con-
ductivity of SiSn is lower than that of SiGe. SiSn exhibits ZT values greater than 2.0 at
800 K, which supports its superior electron transport performance and lower lattice thermal
conductivity. The theoretical calculation suggests that SiSn has very high ZT values (up



Materials 2022, 15, 4107 10 of 12

to 2.2 at 800 K), implying that SiSn may be a potential new candidate for thermoelectric
materials. A further in-depth investigation reveals that the best thermoelectric component
of SiSn alloys is Si0.75Sn0.25, which is enhanced by strong band degeneracy and low lattice
thermal conductivity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15124107/s1, Figure S1: Phonon dispersion curves of SiSn
and SiGe.
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